
MODULE-3

Syllabus: Design and Development of Embedded Product – Firmware Design and Development –

Design Approaches, Firmware Development Languages.

1. Firmware Design and Development

1.1- INTRODUCTION:

 Embedded firmware is responsible for controlling various peripherals of the embedded

hardware and generating responses in accordance with the functional requirements

mentioned in the requirements for the particular product.

 Firmware is considered as the master brain of the embedded systems.

 Once the intelligence is imparted to the embedded product, by embedding the firmware in

the hardware, the product start functioning properly and will continue serving the

assigned task till hardware breakdown occurs.

 Designing an embedded firmware requires understanding of embedded product hardware.

 Like various component interfacing, memory map details I/O port details, configuration

and register details of various hardware chips used and some programming language.

 Embedded firmware development process start with conversion of firmware requirements

into a program model using modeling tools like UML or flow chart based representation.

 Once the program modeling is created, next step is the implementation of the task and

actions by capturing the model using a language which is understandable by the target

processor.

1.2-EMBEDDED FIRMWARE DESIGN APPROACHES:

• Firmware design approaches depends on the

– Complexity of the function to be performed.

– Speed of operation required.

– Etc.

• Two basic approaches for firmware design.

– Conventional Procedure based Firmware Design/Super Loop Design.

– Embedded Operating System Based Design.

a) SUPER LOOP BASED APPROACH

 This approach is applied for the applications that are not time critical and the

response time is not so important .

 Similar to the conventional procedural programming where the code is

executed task by task.

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

 Task listed at the top of the program code is executed first and task below

the first task are executed after completing the first task.

 True procedural one.

 In multiple task based systems, each task executed in serial.

 Firmware execution flow of this will be:

1. Configure the common parameter and perform initialization for

various hardware components, memory, registers etc.

2. Start the first task and execute it

3. Execute the second task

4. Execute the next task 5.

5. ….

6. Execute the last defined task

7. Jump back to the first task and follow the same flow

 From the firmware execution sequence, it is obvious that the order

in which the task to be executed are fixed and they are hard coded in

the code itself

 Operations are infinite loop based approach

 In terms of C program code as:

Void main(){

 configuration(); initializations(); while(1){

 task1();

 task2();

 …..

 taskn();

 } }

 Almost all task in embedded applications are non-ending and are repeated

infinitely throughout the operation.

 By analyzing C code we can see that the task 1 to n are performed one after

another and when the last task is executed, the firmware execution is again

redirected to task 1 and it is repeated forever in the loop.

 This repetition is achieved by using an infinite loop(while(1)).

 Therefore Super loop based Approach.

 Since the task are running inside an infinite loop, the only way to come out of the

loop is either

 -Hardware reset or

 -Interrupt assertion

 A Hardware reset brings the program execution back to the main loop.

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

 Whereas the interrupt suspend the task execution temporarily and perform the

corresponding interrupt routine and on completion of the interrupt routine it

restart the task execution from the point where it got interrupted.

 Super Loop based design does not require an OS, since there is no need for

scheduling which task is to be executed and assigning priority to each task.

 In a super Loop based design, the priorities are fixed and the order in which the

task to be executed are also fixed.

 Hence the code for performing these task will be residing in the code memory

without an operating system image.

 This type of design is deployed in low-cost embedded products where the

response time is not time critical.

 Some embedded products demand this type of approach if some tasks itself are

sequential.

 Example of ― Super Loop Based Design‖ is

 -Electronic video game toy containing keypad and display unit

 -The program running inside the product must be designed in such a way that it

reads the key to detect whether user has given any input and if any key

press is detected the graphic display is updated. The keyboard scanning and

display updating happens at a reasonable high rate

 -Even if the application misses the key press, it won‘t create any critical issue.

 -Rather it will treated as a bug in the firmware.

Drawback of Super Loop based Design:

 Major drawback of this approach is that any failure in any part of a single task

will affect the total system

– If the program hang up at any point while executing a task, it will remain

 there forever and ultimately the product will stop functioning

– Some remedial measures are there

• Use of Hardware and software Watch Dog Timers (WDTs) helps in

coming out from the loop when an unexpected failure occurs or when the

processor hang up

 – May cause additional hardware cost and firmware overhead

 Another major drawback is lack of real timeliness

– If the number of tasks to be executed within an application increases, the

time at which each task is repeated also increases. This brings the

probability of missing out some events.

– To identify the key press, you may have to press the key for a sufficiently

long time till the keypad status monitoring task is executed internally.

– Lead to lack of real timeliness.

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

b) EMBEDDED OPERATING SYSTEM BASED APPROACH

 Contains OS, which can be either a General purpose Operating System

(GPOS) or real Time Operating System (RTOS).

 GPOS based design is very similar to the conventional PC based Application

development where the device contain an operating system and you will be

creating and running user applications on top of it

– Examples of Microsoft Windows XP OS are PDAs, Handheld devices/ Portable

Devices and point of Sale terminals.

 RTOS based design approach is employed in embedded product demanding

Real Time Responses.

 RTOS respond in a timely and predictable manner to events.

 RTOS contain a real time Kernel responsible for performing pre- emptive

multi tasking scheduler for scheduling the task, multiple thread etc.

 RTOS allows a flexible scheduling of system resources like the CPU and

Memory and offer some way to communicate between tasks

– Examples of RTOS are

• Windows CE, pSOS, VxWorks, ThreadX, Micro C/OS II,Embedded

Linux, Symbian etc…

2-Embedded Firmware DevelopmentLanguages
 For embedded firmware development you can use either

• Target processor/controller specific language (Assembly

 language) or

• Target processor/ controller independent language (High level

 languages) or

• Combination of Assembly and high level language

a) Assembly language based development

 Assembly language is human readable notation of machine language whereas

machine language is a processor understandable language.

 Machine language is a binary representation and it consist of 1s and 0s.

 Machine language is made readable by using specific symbols called

‗mnemonics‘.

 Hence machine language can be considered as an interface between processor and

programmer.

 Assembly language and machine languages are processor dependant and

assembly program written for one processor family will not work with others.

 Assembly language programming is the task of writing processor specific

machine code in mnemonics form, converting the mnemonics into actual

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

processor instructions (machine language) and associated data using an

assembler.

 The general format of an assembly language instruction is Opcode followed

 by the Operand

 Opcode tells what to do and Operand gives the information to do the task

 The operand may be single operand, dual operand or more

– MOV A, #30

– Here MOV A is the opcode and 30 is Operand

– Same instruction in machine language like this 01110100 00011110

 The mnemonic INC A is an example for the instruction holding operand

implicitly in the Opcode

 The machine language representation is 00000100

– This instruction increment the 8051 Accumulator register content by 1

 LJMP 16 bit address is an example of dual operand instruction

 The machine language for the same is

– 00000010 addr_bit15 to addr_bit8 addr_bit7 to addr_bit0

– The first binary data is the representation of LJMP machine code

– The first operand that immediately follow the opcode represent the bit 8 to 15

of the 16 bit address to which the jump is requited and the second operand

represent the bit 0 to 7 of the address to which the jump targeted

 The mnemonic INC A is an example for the instruction holding operand

implicitly in the Opcode

 The machine language representation is 00000100

– This instruction increment the 8051 Accumulator register content by 1

 LJMP 16 bit address is an example of dual operand instruction

 The machine language for the same is

– 00000010 addr_bit15 to addr_bit8 addr_bit7 to addr_bit0

– The first binary data is the representation of LJMP machine code

– The first operand that immediately follow the opcode represent the bit 8

to 15 of the 16 bit address to which the jump is requited and the second

operand represent the bit 0 to 7 of the address to which the jump targeted

 Assembly language instructions are written in one per line

 A machine code program thus consisting of a sequence of assembly language

instructions, where each statement contains a mnemonic

 Each line of assembly language program split into four field as given below

LABEL OPCODE OPERAND COMMENTS

 Label is an optional field. A label is an identifier to remembering where data or

code is located

 LABEL is commonly used for representing

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

– A memory location, address of a program, sub-routine, code portion etc…

– The max length of the label differs between assemblers. Labels are always

suffixed by a colon and begin with a valid character. Labels can contain

numbers from 0 to 9 and special character _

– Labels are used for representing subroutine names and jump locations in

Assembly language programming

DELAY: MOV R0, #255 ; load Register R0 with 255

 DJNZ R0, DELAY ; Decrement R0 and loop till R0=0

 RET ; return to calling program

 The assembly program contains a main routine which start at address 0000H and

it may or may not contain subroutines.

 In main program subroutine is invoked by the assembly instruction LCALL

DELAY

 Executing this instruction transfers the program flow to the memory

address referenced by the ‗LABEL‘ DELAY

 While assembling the code a ‗;‘ inform the assembler that the rest of the

part coming in a line after the ‗;‘ symbol is comments and simply ignore it

 Each assembly instruction should be written in a separate line

 More than one ASM code lines are not allowed in a single line.

 In the previous example LABEL DELAY represent the reference to the start of

the subroutine

 DELAY: MOV R0, #255 ; load Register R0 with 255

 DJNZ R0, DELAY ; Decrement R0 and loop till R0=0

 RET ; return to calling program

 We can directly replace the LABEL by putting desired address first and then

writing assembly code for the routine

ORG 0100H

 MOV R0, #255 ; load Register R0 with 255

 DJNZ R0, DELAY ; Decrement R0 and loop till R0=0

 RET ; return to calling program

 ORG 0100H is not an assembly language instruction; it is an assembler directive

instruction. It tells the assembler that the instruction from here onwards should

be placed at location starting from 0100H

Conversion of assembly language into machine language is carried out by a

sequence of operations

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

SOURCE FILE TO OBJECT FILE TRANSLATION

OBJECT TO HEX FILE CONVERTER

• This is the final stage in the conversion of Assembly language to machine

understandable language

• Hex file is the representation of the machine code and the hex file is dumped into the

code memory of the processor

• Hex file representation varies depending on the target processor

• For Intel processor the target hex file format will be ‗Intel HEX‘ and for Motorola, hex

file should be in ‗Motorola HEX‘ format

• HEX files are ASCII files that contain a hexadecimal representation of target

application

Advantage Of Assembly Language Based Development

• Assembly language based development is the most common technique adopted

from the beginning of the embedded technology development

• Thorough understanding of the processor architecture, memory organization, register

set and mnemonics is very essential for Assembly Language based Development

• Efficient Code Memory and data Memory Usage (Memory Optimization)

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

– Since the developer is well versed with the target processor architecture and

memory organization, optimized code can be written for performing operations

– This lead to the less utilization of code memory and efficient utilization of data

memory

– Memory is the primary concern in any embedded product

• High Performance

– Optimized code not only improve the code memory usage but also improve the

total system performance

– Though effective assembly coding optimum performance can be achieved for

target applications

Drawbacks Of Assembly Language Based Development

• High Development time

– Assembly language programs are much harder to program than high level

languages

– Developer must have thorough knowledge of architecture, memory organization

and register details of target processor in use

– Learning the inner details of the processor and its assembly instructions are high

time consuming and it create delay impact in product development

– Solution

• Use a readily available developer who is well versed in target processor

architecture assembly instructions

– Also more lines of assembly code are required for performing an action which

can be done with a single instruction in a high level language like C

• Developer Dependency

– There is no common rule for developing assembly language based applications

whereas all high level language instruct certain set of rules for application

development

– In Assembly language programming, the developers will have the freedom to

choose the different memory locations and registers

– If the approach done by a developer is not documented properly at the

development stage, it may not be able to recollect at later stage or when a new

developer is instructed to analyze the code , he may not be able to understand

what is done and why it is done

– Hence upgrading/modifying on later stage is more difficult

– Solution

 Well documentation

• Non-portable

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

– Target applications written in assembly instructions are valid only for that

particular family of processors

 Example—Application written for Intel X86 family of processors

– Cannot be reused for another target processors

– If the target processor changes, a complete rewriting of the application using

assembly instructions for the new target processor is required

B) High Level Language Based Development

• Any High level language with a supported cross compilers for the target processor can

be used for embedded firmware development

– Cross Compilers are used for converting the application development in high

level language into target processor specific assembly code

• Most commonly used language is C

– C is well defined easy to use high level language with extensive cross platform

development tool support

• The program written in any of the high level language is saved with the corresponding

language extension

• Any text editor provided by IDE tool supporting the high level language in use can be

used for writing the program

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

• Most of the high level language support modular programming approach and hence you

can have multiple source files called modules written in corresponding high level

language

Advantages Of High Level Language Based Development

• Reduced Development Time

– Developers requires less or little knowledge on the internal hardware details and

architecture of the target processor

– Syntax of high level language and bare minimal knowledge of memory

organization and register details of target processor are the only pre- requisites

for high level language based firmware development

– With High level language, each task can be accomplished by lesser number of

lines of code compared to the target processor specific assembly language based

development

• Developer Independency

– The syntax used by most of the high level languages are universal and a program

written in high level language can be easily be understood by a second person

knowing the syntax of the language

– High level language based firmware development makes the firmware,

developer independent

– High level language always instruct certain set of rules for writing code and

commenting the piece of code

• Portability

– Target applications written in high level languages are converted to target

processor understandable format by a cross compiler

– An application written in high level language for a particular

 target processor can be easily converted to another target processor

with little effort by simply recompiling the code modification

 followed by the recompiling the application for the

required processor

– This makes the high level language applications are highly portable

Limitations Of High Level Language Based Development

• Some cross compilers avail for the high level languages may not be so efficient in

generating optimized target processor specific instructions

• Target images created by such compilers may be messy and no optimized in terms of

performance as well as code size

For more visit www.ktunotes.in

www.ktunotes.in
http://www.ktunotes.in/

