www.ktunotes.in

kting companion.

MODULE 1

Number systems & Binary codes

Outline of Chapter 1

- 1.1 Digital Systems
- 1.2 Binary Numbers
- 1.4 Octal and Hexadecimal Numbers
- 1.5 Complements
- 1.6 Signed Binary Numbers
- 1.7 Binary Codes

Digital Systems and Binary Numbers

- Digital age and information age
- Digital computers
 - General purposes
 - Many scientific, industrial and commercial applications
- Digital systems
 - Telephone switching exchanges
 - Digital camera
 - Electronic calculators, PDA's
 - Digital TV
- Discrete information-processing systems
 - Manipulate discrete elements of information
 - ▶ For example, {1, 2, 3, ...} and {A, B, C, ...}...

Analog and Digital Signal

- Analog system
 - The physical quantities or signals may vary continuously over a specified range.
- Digital system
 - The physical quantities or signals can assume only discrete values.
 - Greater accuracy

Binary Digital Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
 - Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
 - Digits 0 and 1
 - Words (symbols) False (F) and True (T)
 - Words (symbols) Low (L) and High (H)
 - And words On and Off
- Binary values are represented by values or ranges of values of physical quantities.

Decimal Number System

- Base (also called radix) = 10
 - 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- Digit Position
 - Integer & fraction
- Digit Weight
 - ► Weight = (Base) ^{Position}
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Octal Number System

- Base = 8
 - 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- Weights
 - ► Weight = (Base) Position
- Magnitude
 - KTUNOTES. Sum of "Digit x Weight"
- Formal Notation

Downloaded from Ktunotes.in

64

5

2

8

1

1

2

0

5 *8²+1 *8¹+2 *8⁰+7 *8 +4 *8

=(330.9375)

(512.74)

1/8

4

-2

Binary Number System

- Base = 2
 - 2 digits { 0, 1 }, called binary digits or "bits"

8 bits = Byte

- Weights
 - ▶ Weight = (Base) ^{Position}
- Magnitude
 - Sum of "Bit x Weight"
- Formal Notation
 - Groups of bits 4 bits = Nibble

1/2 2 1 NOTES. 2 1 0 -2 1 *2²+0 *2¹+1 *2⁰+0 *2 +1 *2 =(5.25) (101.01)101

1000101

Hexadecimal Number System

- Base = 16
 - 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Weights
 - ▶ Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Downloaded from Ktunotes.in

1/16 1/256

*16

256

UNOTES 2 1 0 -1 1*16²+14*16¹+5*16⁰+7*16 +

16

1

5

=(485.4765625)

(1E5.7A)

The Power of 2

sign Ch1-10

Decimal Addition

Binary Addition

Column Addition

1 1 1 1 1 1 $\frac{1}{1} \frac{1}{1} \frac{1}$ **= 61** = 23 0 1 0 1 0 **= 84** 0 1 \geq (2)₁₀ Downloaded from Ktunotes.in

Binary Subtraction

Borrow a "Base" when needed

Bit by bit

Number Base Conversions

Decimal (Integer) to Binary

- Dimetre ingit py the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Decimal (*Fraction*) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: (175)₁₀

	Integer	Fraction	Coefficient
0.3125 * 8	3 = 2	5	$a_{-1} = 2$
0.5 * 8	S = 4 .	0	$a_{-2} = 4$
Anowaki	(0.2425)	_ (0	

Answer: $(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_8 = (0.24)_4$

Binary – Octal Conversion

Works both ways (Binary to Octal & Octal to Binary)

Binary – Hexadecimal Conversion

- ► 16 = 2⁴
- Each group of 4 bits represents a hexadecimal digit

Works both ways (Binary to Hex & Hex to Binary)

Octal – Hexadecimal Conversion

Convert to Binary as an intermediate step

Example:

Works both ways (Octal to Hex & Hex to Octal)

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

- There are two types of complements for each base-r system: the radix complement and diminished radix complement.
- Diminished Radix Complement (r-1)'s Complement
 - Given a number N in base r having n digits, the (r-1)'s complement of N is defined as:

 $(r^{n} - 1) - N$

- Example for 6-digit <u>decimal</u> numbers:
 - : IN▶ 9's complement is (rⁿ - 1)-N = (10⁶-1)-N = 999999-N
 - 9's complement of 546700 is 999999-546700 = 453299

Example for 7-digit <u>binary</u> numbers:

- ▶ 1's complement is $(r^n 1) N = (2^7 1) N = 1111111 N$
- 1's complement of 1011000 is 1111111-1011000 = 0100111
- **Observation:**
 - Subtraction from $(r^n 1)$ will never require a borrow
 - Diminished radix complement can be computed digit-by-digit
 - For binary: 1 0 = 1 and 1 1 = 0

- 1's Complement (Diminished Radix Complement)
 - All '0's become '1's
 - All '1's become '0's

Example (10110000)₂

⇒ (01001111)₂

If you add a number and its 1's complement ...

 $1\ 0\ 1\ 1\ 0\ 0\ 0\ 0$ $+\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 1$

11111111

The *r*'s complement of an *n*-digit number *N* in base *r* is defined as $r^n - N$ for $N \neq 0$ and as 0 for N = 0. Comparing with the (r - 1) 's complement, we note that the *r*'s complement is obtained by adding 1 to the (r - 1) 's complement, since $r^n - N = [(r^n - 1) - N] + 1$.

Examples:complement of 012398 is 987602 The 10's complement of 246700 is 753300

Extends complete thent of 1101100 is 0010100
 The 2's complement of 0110111 is 1001001

Take 1's complement then add 1

+

OR Toggle all bits to the left of the first '1' from the right Example:

Number:

1's Comp.:

10110000ES.N 1011000 01001111

01010000

01010000

Subtraction with Complements

- 1. Add the minuend M to the r's complement of the subtrahend N. Mathematically, $M + (r^n N) = M N + r^n$.
- 2. If $M \ge N$, the sum will produce and end carry r^n , which can be discarded; what is left is the result M N.
- 3. If M < N, the sum does not produce an end carry and is equal to $r^n (N M)$, which is the *r*'s complement of (N M). To obtain the answer in a familiar form, take the *r*'s complement of the sum and place a negative sign in front.

Exar	mple 1.7			
(a)	Given the two binary numbers X = 2's complement of Y = Sum = Discard end carry $2^7 =$	$\begin{aligned} x &= 1010100\\ 1010100\\ +0111101\\ 10010001\\ -10000000 \end{aligned}$	and Y = and (b) Y -	- X,
	Answer. $X - Y =$	0010001		
(b)	Y = 2's complement of X =	1000011 + <u>0101100</u>		There is no end carry. Therefore, the answer is Y - X = - (2's complement
	Sum =	1101111		of 1101111) = - 0010001.

- Subtraction of unsigned numbers can also be done by means of the (r - 1)'s complement. Remember that the (r - 1) 's complement is one less then the r's complement.
- Example 1.8

Repeat Example 1.7. but this time using 1's complement.

```
(a) X - Y = 1010100 - 1000011
```

X = 1010100

1's complement of $Y = \pm 0111100$ Sum = 10010000

End-around carry = + 1

Answer. X - Y = 0010001

(b) Y - X = 1000011 - 1010100 Y = 10000111's complement of $X = \pm 0101011$ Sum = 1101110 Downloaded from Ktunotes.in

- To represent negative integers, we need a notation for negative values.
- It is customary to represent the sign with a bit placed in the leftmost position of the number since binary digits.
- The convention is to make the sign bit 0 for positive and 1 for **FINOTES** negative.

Example:

Signed-magnitude representation:	10001001
Signed-1's-complement representation:	11110110
Signed-2's-complement representation:	11110111
three representations.	

Table 1.3Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	—	—

Arithmetic addition

- The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common sign. If the signs are different, we subtract the smaller magnitude from the larger and give the difference the sign if the larger magnitude.
- The addition of two signed binary numbers with negative numbers represented in signed-2's-

	+ 6	00000110	- 6	11111010	addition of the		
	<u>+13</u>	00001101	+13	00001101	iscardod		
F	+ 19	00010011	+ 7	00000111	iscalueu.		
	+ 6	00000110	-6	11111010	/		
	<u>-13</u>	<u>11110011</u>	<u>-13</u>	<u>11110011</u>			
	- 7	11111001	- 19	11101101			
	Downloaded from Ktunotes.in						

- 1. Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit).
- 2. A carry out of sign-bit position is discarded.

$$(\pm A) - (+B) = (\pm A) + (-B)$$
$$(\pm A) - (-B) = (\pm A) + (+B)$$

(-6)-(-13) (11111010 - 11110011) (11111010 + 00001101) 00000111 (+ 7) Downloaded from Ktunotes.in

- BCD Code
 - A number with k decimal digits will require 4k bits in BCD.
 - Decimal 396 is represented in BCD with 12bits as 0011 1001 0110, with each group of 4 bits representing one decimal digit.
 - A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9.
 - The binary combinations 1010 through 1111 are not used and have no meaning in BCD.

Table 1.4 Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
S 0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Table 1.5

ther De	Decimal Digit	BCD 8421	2421	Frees-3	84-7-1
-	Digit	0421	2721	LACC33-J	0, 4, 2, 1
	0	0000	0000	0011	0000
	1	0001	0001	0100	0111
	2	0010	0010	0101	0110
	3	0011	0011	0110	0101
	4	0100	0100	0111	0100
	5	0101	1011	1000	1011
	6	0110	1100	1001	1010
	7	0111	1101	1010	1001
	8	1000	1110	1011	1000
	9	1001	1111	1100	1111
-		1010	0101	0000	0001
	Unused	1011	0110	0001	0010
	bit	1100	0111	0010	0011
	combi-	1101	1000	1101	1100
	nations	1110	1001	1110	1101
		1111	1010	1111	1110

Gray Code	Table 1.6 Gray Code	
The advantage is that only bit in the code group changes in going from one number to the next.	Gray Code	Decimal Equivalent
Error detection.	0000	0
Representation of analog data	0001	1
representation of analog data.	0011	2
Low power design.	0010	3
TINUT	0110	4
000	0111	5
	0101	6
	0100	7
	1100	8
	1101	9
010 011	1111	10
100 < 101	1110	11
	1010	12
	1011	13
	1001	14
110 111	1000	15
1-1 and onto!!	tupotes in	Divital Lovic Desi

		<i>b</i> ₇ <i>b</i> ₆ <i>b</i> ₅						
b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р	`	р
0001	SOH	DC1	!.	1	A	Q	а	q
0010	STX	DC2		2	В	R	b	r
0011	ETX	DC3	#	3	С	S	с	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	Е	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	•	7	G	W	g	w
1000	BS	CAN	(8	Н	Х	h	х
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	К	[k	{
1100	FF	FS	,	<	L	١	1	- I
1101	CR	GS	_	=	М]	m	}
1110	SO	RS		>	Ν	\wedge	n	\sim
1111	SI	US	/	?	0	_	0	DEI

 Table 1.7

 American Standard Code for Information Interchange (ASCII)

Control characters

Α	NUL	Null	DLE	Data-link escape
	SOH	Start of heading	DC1	Device control 1
	STX	Start of text	DC2	Device control 2
	ETX	End of text	DC3	Device control 3
	EOT	End of transmission	DC4	Device control 4
	ENQ	Enquiry	NAK	Negative acknowledge
	ACK	Acknowledge	SYN	Synchronous idle
	BEL	Bell	ETB	End-of-transmission block
	BS	Backspace	CAN	Cancel
	HT	Horizontal tab	EM	End of medium
	LF	Line feed	SUB	Substitute
	VT	Vertical tab	ESC	Escape
	FF	Form feed	FS	File separator
	CR	Carriage return	GS	Group separator
	SO	Shift out	RS	Record separator
	SI	Shift in	US	Unit separator
	SP	Space	DEL	Delete
		-		

ASCII Character Codes

- American Standard Code for Information Interchange (Refer to Table 1.7)
- A popular code used to represent information sent as TES.IN character-based data.
- It uses 7-bits to represent:
 - 94 Graphic printing characters.
 - ▶ 34 Non-printing characters.
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return).
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

ASCII Properties

- ASCII has some interesting properties:
 - Digits 0 to 9 span Hexadecimal values 30₁₆ to 39₁₆
 - Upper case A-Z span 41₁₆ to 5A₁₆
 - Lower case a-z span 61₁₆ to 7A₁₆
 - Lower to upper case translation (and vice versa) occurs by flipping bit 6.

TES.IN

Error-Detecting Code

- To detect errors in data communication and processing, an <u>eighth bit</u> is sometimes added to the ASCII character to indicate its parity.
- A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.

	With even parity	With odd parity
ASCII A = 1000001	01000001	11000001
ASCII T = 1010100	11010100	01010100

Error-Detecting Code

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1's in the code word is even.
- A code word hassageray if 000000 er of (esen parity) code word is odd.

Message B: 100010010 (odd parity)

Example: