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PREFACE

Ten years ago the authors undertook to produce a book covering the known material on

formal languages, automata theory, and computational complexity. In retrospect, only a

few significant results were overlooked in the 237 pages. In writing a new book on the

subject, we find the field has expanded in so many new directions that a uniform com-

prehensive coverage is impossible. Rather than attempt to be encyclopedic, we have been

brutal in our editing of the material, selecting only topics central to the theoretical

development of the field or with importance to engineering applications.

Over the past ten years two directions of research have been of paramount im-

portance. First has been the use of language-theory concepts, such as nondeterminism and

the complexity hierarchies, to prove lower bounds on the inherent complexity of certain

practical problems. Second has been the application of language-theory ideas, such as

regular expressions and context-free grammars, in the design of software, such as compilers

and text processors. Both of these developments have helped shape the organization of

this book.

USE OF THE BOOK

Both authors have used Chapters 1 through 8 for a senior-level course, omitting only the

material on inherent ambiguity in Chapter 4 and portions of Chapter 8. Chapters 7, 8,

12, and 13 form the nucleus of a course on computational complexity. An advanced

course on language theory could be built around Chapters 2 through 7, 9 through 11,

and 14.

EXERCISES

We use the convention that the most difficult problems are doubly starred, and problems

of intermediate difficulty are identified by a single star. Exercises marked with an S have

v
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VI PREFACE

solutions at the end of the chapter. We have not attempted to provide a solution manual,

but have selected a few exercises whose solutions are particularly instructive.
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CHAPTER

1
PRELIMINARIES

In this chapter we survey the principal mathematical ideas necessary for under-

standing the material in this book. These concepts include graphs, trees, sets,

relations, strings, abstract languages, and mathematical induction. We also pro-

vide a brief introduction to, and motivation for, the entire work. The reader with a

background in the mathematical subjects mentioned can skip to Section 1.6 for

motivational remarks.

1.1 STRINGS, ALPHABETS, AND LANGUAGES

A "symbol" is an abstract entity that we shall not define formally, just as "point"

and "line" are not defined in geometry. Letters and digits are examples of

frequently used symbols. A string (or word) is a finite sequence of symbols jux-

taposed. For example, a, b, and c are symbols and abcb is a string. The length of a

string w, denoted
|
w

|
, is the number of symbols composing the string. For exam-

ple, abcb has length 4. The empty string, denoted by £, is the string consisting of

zero symbols. Thus \e
\
= 0.

A prefix of a string is any number of leading symbols of that string, and a

suffix is any number of trailing symbols. For example, string abc has prefixes £, a, ab,

and abc; its suffixes are £, c, be, and abc. A prefix or suffix of a string, other than the

string itself, is called a proper prefix or suffix.

The concatenation of two strings is the string formed by writing the first,

followed by the second, with no intervening space. For example, the concatena-

tion of dog and house is doghouse. Juxtaposition is used as the concatenation

operator. That is, if w and x are strings, then wx is the concatenation of these two

1
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2 PRELIMINARIES

strings. The empty string is the identity for the concatenation operator. That is,

£w = we — w for each string w.

An alphabet is a finite set of symbols. A (formal) language is a set of strings of

symbols from some one alphabet. The empty set, 0, and the set consisting of the

empty string {e} are languages. Note that they are distinct; the latter has a member
while the former does not. The set of palindromes (strings that read the same

forward and backward) over the alphabet {0, 1} is an infinite language. Some
members of this language are e, 0, 1, 00, 11, 010, and 1101011. Note that the set of

all palindromes over an infinite collection of symbols is technically not a language

because its strings are not collectively built from an alphabet.

Another language is the set of all strings over a fixed alphabet Z. We denote

this language by Z*. For example, if Z = {a}, then Z* = {e, a, aa, aaa, . . .}. If

Z = {0, 1}, then Z* = {e, 0, 1, 00, 01, 10, 1 1, 000, . . .}.

1.2 GRAPHS AND TREES

A graph, denoted G = (V, E), consists of a finite set of vertices (or nodes) V and a

set of pairs of vertices E called edges. An example graph is shown in Fig. 1.1. Here

V = {1, 2, 3, 4, 5} and E = {(n, m)
|
n + m = 4 or n + m = 7}.

Fig. 1.1 Example of a graph.

A path in a graph is a sequence of vertices v l9 v2 , . .
. , vk , k > 1, such that there

is an edge (vh vi+1 ) for each i, 1 < i < k. The length of the path is k — 1. For

example, 1, 3, 4 is a path in the graph of Fig. 1.1; so is 5 by itself. If v
x
= vk9 the

path is a cycle.

Directed graphs

A directed graph (or digraph), also denoted G = (V, E), consists of a finite set of

vertices V and a set of ordered pairs of vertices E called arcs. We denote an arc

from v to w by v -> w. An example of a digraph appears in Fig. 1.2.

A path in a digraph is a sequence of vertices v l9 v2 , vk , k > 1, such that

Vi -> vi+ j is an arc for each i, 1 < i < k. We say the path is from v
x
to vk . Thus

l-+2->3->4isa path from 1 to 4 in the digraph of Fig. 1.2. If v -> w is an arc we
say i? is a predecessor of w and w is a successor of u.
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1.2 | GRAPHS AND TREES J

Fig. 1.2 The digraph ({1, 2, 3, 4}, {i -+j\i< ;}).

Trees

A tree (strictly speaking, an ordered, directed tree) is a digraph with the following

properties.

1) There is one vertex, called the root, that has no predecessors and from which

there is a path to every vertex.

2) Each vertex other than the root has exactly one predecessor.

3) The successors of each vertex are ordered "from the left."

We shall draw trees with the root at the top and all arcs pointing downward.

The arrows on the arcs are therefore not needed to indicate direction, and they

will not be shown. The successors of each vertex will be drawn in left-to-right

order. Figure 1.3 shows an example of a tree which is the "diagram" of the English

sentence "The quick brown fox jumped over the lazy dog." The vertices are not

named in this example, but are given "labels," which are either words or parts of

speech.

<sentence>

<subject>

/
<noun phrase>

v
< adjectivc> <noun phrase>

the

<adjective> <noun phrase>

I /quick /

< adject ive> <noun phrase>

I

brown

<noun>

I

lox

<predicate>

\
<verb phrase>/ \

<verb> <adverbial phrase>

1 / \jumped / \

<preposition> <noun phrase>

<adjective> <noun phrase>

I / \
<adjective> <noun phrase>

I

lazy

<noun>

I

dog

Fig. 1.3 A tree.
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4 PRELIMINARIES

There is a special terminology for trees that differs from the general terminol-

ogy for arbitrary graphs. A successor of a vertex is called a son, and the predeces-

sor is called thefather. If there is a path from vertex v x
to vertex v2 , then v

x
is said

to be an ancestor of v2 , and v2 is said to be a descendant oiv^ Note that the case

v
x
= v2 is not ruled out; any vertex is an ancestor and a descendant of itself. A

vertex with no sons is called a leaf and the other vertices are called interior

vertices. For example, in Fig. 1.3, the vertex labeled (verb) is a son of the vertex

labeled (verb phrase), and the latter is the father of the former. The vertex labeled

"dog" is a descendant of itself, the vertex labeled (verb phrase), the vertex labeled

(sentence), and six other vertices. The vertices labeled by English words are the

leaves, and those labeled by parts of speech enclosed in angle brackets are the

interior vertices.

1.3 INDUCTIVE PROOFS

Many theorems in this book are proved by mathematical induction. Suppose we
have a statement P(n) about a nonnegative integer n. A commonly chosen

example is to take P(n) to be

The principle of mathematical induction is that P(n) follows from

a) P(0), and

b) P(n - 1) implies P(n) for n > 1.

Condition (a) in an inductive proof is called the basis, and condition (b) is called

the inductive step. The left-hand side of (b), that is P(n — 1), is called the inductive

hypothesis.

Example 1.1 Let us prove (1.1) by mathematical induction. We establish (a) by

substituting 0 for n in (1.1) and observing that both sides are 0. To prove (b), we

substitute n — 1 for n in (1.1) and try to prove (1.1) from the result. That is, we
must show for n > 1 that

I <
2 =

n n(n+ l)(2n + 1)

6
(1.1)

n —

i = 0

(n- i)n(2n- 1)

6
implies £ i

2 =
« = o

n n(n+ l)(2n+ 1)

6

Since

n n 1

1 = 0 i = 0

and since we are given
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1.4 | SET NOTATION 5

we need only show that

(n - l)n(2n - 1) 2 _ n(n + l)(2n + 1)

6
+ " ~

6
*

The latter equality follows from simple algebraic manipulation, proving (1.1).

1.4 SET NOTATION

We assume that the reader is familiar with the notion of a set, a collection of

objects (members of the set) without repetition. Finite sets may be specified by

listing
4

their members between brackets. For example we used {0, 1} to denote the

alphabet of symbols 0 and 1. We also specify sets by a set former:

{x\P(x)}, (1.2)

or

{xin^l|P(x)}. (1.3)

Statement (1.2) is read "the set of objects x such that P(x) is true," where P(x) is

some statement about objects x. Statement (1.3) is "the set of x in set A such that

P(x) is true," and is equivalent to {x|P(x) and x is in A}. For example,

{/ 1 i is an integer and there exists integer j such that i = 2j]

is a way of specifying the even integers.

If every member of A is a member of B, then we write A^ B and say A is

contained in B. A 3 B is synonymous with B £ A. If A £ B but A ^ By that is,

every member of /I is in B and there is some member of B that is not in A, then we
write A £ B. Sets /I and £ are equal if they have the same members. That is, A = B
if and only if A ^ B and B ^ A.

Operations on sets

The usual operations defined on sets are:

1) A u B, the wmcw of /I and B, is

{x
|
x is in A or x is in B}.

2) A n B, the intersection of ^ and £, is

{x
|
x is in ^ and x is in #}.

3) A — B, the difference of /I and 5, is

{x |x is in A and x is not in B}.

4) /I x B, the Cartesian product of A and £, is the set of ordered pairs (a, b) such

that a is in A and 5 is in B.

5) 2^, the power set of >4, is the set of all subsets of A.
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6 PRELIMINARIES

Example 1.2 Let A = {1, 2} and B = {2, 3}. Then

A u £ = {1,2, 3}, /I n B = {2}, A-B = {1},

,4xB = {(l, 2),(1, 3), (2, 2), (2, 3)},

and

2" = {0,{1}, {2},{1, 2}}.

Note that if A and B have n and m members, respectively, then A x B has wn
members and 2

A has 2" members.

Infinite sets

Our intuition when extended to infinite sets can be misleading. Two sets S
x
and 5 2

have the same cardinality (number of members) if there is a one-to-one mapping of

the elements of S
{
onto S2 . For finite sets, if S

x
is a proper subset of S2 , tnen $i

and S 2 have different cardinality. However, if S
x
and S 2 are infinite, the latter

statement may be false. Let S, be the set of even integers and let S 2 be the set of all

integers. Clearly 5! is a proper subset of S 2 . However, S t
and S2 have the same

cardinality, since the function/ defined by

/

(2i) = i is a one-to-one mapping of the

even integers onto the integers.

Not all infinite sets have the same cardinality. Consider the set of all integers

and the set of all reals. Assume that the set of reals can be put in one-to-one-onto

correspondence with the integers. Then consider the real number whose ith digit

after the decimal is the ith digit of the ith real plus 5 mod 10. This real number

cannot be in correspondence with any integer, since it diners from every real that

has been mapped to an integer. From this we conclude that the reals cannot be

placed in one-to-one correspondence with the integers. Intuitively there are too

many real numbers to do so. The above construction is called diagonalization and

is an important tool in computer science.

Sets that can be placed in one-to-one correspondence with the integers are

said to be countably infinite or countable. The rationals and the set Z* of the

finite-length strings from an alphabet X are countably infinite. The set of all

subsets of X* and the set of all functions mapping the integers to {0, 1} are of the

same cardinality as the reals, and are not countable.

1.5 RELATIONS

A (binary) relation is a set of pairs. The first component of each pair is chosen from

a set called the domain, and the second component of each pair is chosen from a

(possibly different) set called the range. We shall use primarily relations in which

the domain and range are the same set S. In that case we say the relation is on S. If

R is a relation and (a, b) is a pair in R, then we often write aRb.
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1.5 | RELATIONS 7

Properties of relations

We say a relation R on set S is

1) reflexive if aRa for all am S;

2) irreflexive if aRa is false for all a in 5;

3) transitive if aRb and bRc imply oRc;

4) symmetric if a&fr implies bRa;

5) asymmetric if aKb implies that Wfa is false.

Note that any asymmetric relation must be irreflexive.

Example 1.3 The relation < on the set of integers is transitive because a < b and

b < c implies a < c. It is asymmetric and hence irreflexive because a < b implies

b < a is false.

Equivalence relations

A relation R that is reflexive, symmetric, and transitive is said to be an equivalence

relation. An important property of an equivalence relation R on a set S is that R
partitions S into disjoint nonempty equivalence classes (see Exercise 1.8 and its

solution). That is, S = 5j u S2 u • •, where for each i and /, with i # j:

1) Si n Sj=0;

2) for each a and b :n Sh aRb is true;

3) for each a in S
t
and b in Sp aRb is false.

The S^s are called eauivalence classes. Note that the number of classes may be

infinite.

Example 1.4 A common example of an equivalence relation is congruence

modulo an integer m. We write i
=
m j or i = j mod m if i and j are integers such

that i — j is divisible by m. The reader may easily prove that =
m is reflexive,

transitive, and symmetric. The equivalence classes of = m are m in number:

{•

{. .
.
, — m, 0, m, 2m, . . .},

(m - 1), 1, m + 1, 2m + 1, .

1, m — 1, 2m — 1, 3m — 1, . •}•
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8 PRELIMINARIES

Closures of relations

Suppose & is a set of properties of relations. The ^-closure of a relation R is the

smallest relation R' that includes all the pairs of R and possesses the properties in

For example, the transitive closure of R, denoted K +
, is defined by:

1) If (a, b) is in R, then (a, b) is in R +
.

2) If (a, b) is in K + and (5, c) is in R, then (a, c) is in R +
.

3) Nothing is in R +
unless it so follows from (1) and (2).

It should be evident that any pair placed in R + by rules (1) and (2) belongs

there, else R + would either not include R or not be transitive. Also an easy

inductive proof shows that R +
is in fact transitive. Thus R +

includes R, is transi-

tive, and contains as few pairs as any relation that includes R and is transitive.

The reflexive and transitive closure of R, denoted R* 9
is easily seen to be

R + u {(a, a)\a is in S}.

Example 1.5 Let R = {(1, 2), (2, 2), (2, 3)} be a relation on the set {1, 2, 3}. Then

R+={(1,2), (2, 2), (2,3),(1, 3)},

and

** = {(!, 1), (1,2), (1,3), (2,2), (2, 3), (3, 3)}.

1.6 SYNOPSIS OF THE BOOK

Computer science is the systematized body of knowledge concerning computa-

tion. Its beginnings can be traced back to the design of algorithms by Euclid and

the use of asymptotic complexity and reducibility by the Babylonians (Hogben

[1955]). Modern interest, however, is shaped by two important events: the advent

of modern digital computers capable of many millions of operations per second

and the formalization of the concept of an effective procedure, with the con-

sequence that there are provably noncomputable functions.

Computer science has two major components: first, the fundamental ideas

and models underlying computing, and second, engineering techniques for the

design of computing systems, both hardware and software, especially the applica-

tion of theory to design. This book is intended as an introduction to the first area,

the fundamental ideas underlying computing, although we shall remark briefly on

the most important applications.

Theoretical computer science had its beginnings in a number of diverse fields:

biologists studying models for neuron nets, electrical engineers developing switch-

ing theory as a tool to hardware design, mathematicians working on the foun-

dations of logic, and linguists investigating grammars for natural languages. Out

of these studies came models that are central to theoretical computer science.
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1.6 | SYNOPSIS OF THE BOOK 9

The notions of finite automata and regular expressions (Chapters 2 and 3)

were originally developed with neuron nets and switching circuits in mind. More
recently, they have served as useful tools in the design of lexical analyzers, the part

of a compiler that groups characters into tokens—indivisible units such as var-

iable names and keywords. A number of compiler-writing systems automatically

transform regular expressions into finite automata for use as lexical analyzers. A
number of other uses for regular expressions and finite automata have been found

in text editors, pattern matching, various text-processing and file-searching pro-

grams, and as mathematical concepts with application to other areas, such as

logic. At the end of Chapter 2 we shall outline some of the applications of this

theory.

The notion of a context-free grammar and the corresponding pushdown au-

tomaton (Chapters 4 through 6) has aided immensely the specification of program-

ming languages and in the design of parsers—another key portion of a compiler.

Formal specifications of programming languages have replaced extensive and

often incomplete or ambiguous descriptions of languages. Understanding the cap-

abilities of the pushdown automaton has greatly simplified parsing. It is inter-

esting to observe that parser design was, for the earliest compilers, a difficult

problem, and many of the early parsers were quite inefficient and unnecessarily

restrictive. Now, thanks to widespread knowledge of a variety of context-free-

grammar-based techniques, parser design is no longer a problem, and parsing

occupies only a few percent of the time spent in typical compilation. In Chapter 10

we sketch the principal ways in which efficient parsers that behave as pushdown
automata can be built from certain kinds of context-free grammars.

In Chapter 7 we meet Turing machines and confront one of the fundamental

problems of computer science; namely, that there are more functions than there

are names for functions or than there are algorithms for computing functions.

Thus we are faced with the existence of functions that are simply not computable;

that is, there is no computer program that can ever be written, which given an

argument for the function produces the value of the function for that argument

and works for all possible arguments.

Assume that for each computable function there is a computer program or

algorithm that computes it, and assume that any computer program or algorithm

can be finitely specified. Thus computer programs are no more than finite-length

strings of symbols over some finite alphabet. Hence the set of all computer pro-

grams is countably infinite. Consider now functions mapping the integers to 0 and

1. Assume that the set of all such functions are countably infinite and that these

functions have been placed in correspondence with the integers. Let ft
be the

function corresponding to the fth integer. Then the function

/(«) =
(

(0 if/.(n)=l

1 otherwise
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10 PRELIMINARIES

cannot correspond to any integer, which is a contradiction. [If

/

(n) = fj(n), then we
have the contradiction

/

(j) = fj(j) and

/

(J) ^ fj(j).] This argument is formalized in

Chapters 7 and 8, where we shall see that certain easily stated problems cannot be

solved on the computer, even though they appear at first glance to be amenable to

computation.

However, we can do more than tell whether a problem can be solved by a

computer. Just because a problem can be solved doesn't mean there is a practical

algorithm to solve it. In Chapter 12 we see that there are abstract problems that

are solvable by computer but require inordinate amounts of time and/or space for

their solution. Then in Chapter 13 we discover that there are many realistic and

important problems that also fall in this category. The nascent theory of "intract-

able problems" is destined to influence profoundly how we think about problems.

EXERCISES

1.1 In the tree of Fig. 1.4,

a) Which vertices are leaves and which are interior vertices?

b) Which vertices are the sons of 5?

c) Which vertex is the father of 5?

d) What is the length of the path from 1 to 9?

e) Which vertex is the root?

Fig. 1.4 A tree.

1.2 Prove by induction on n that

. "
.

n(n + 1) v 3 /£ Ya
) I 1 = ^-y-1 b

) I 1 = E 1

i = 0 £ i = 0 \i = 0 /
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EXERCISES 11

*S 1.3 A palindrome can be defined as a string that reads the same forward and backward,

or by the following definition.

1) £ is a palindrome.

2) If a is any symbol, then the string a is a palindrome.

3) If a is any symbol and x is a palindrome, then axa is a palindrome.

4) Nothing is a palindrome unless it follows from (1) through (3).

Prove by induction that the two definitions are equivalent.

* 1.4 The strings of balanced parentheses can be defined in at least two ways.

1) A string w over alphabet {(,)} is balanced if and only if:

a) w has an equal number of fs and )'s, and

b) any prefix of w has at least as many fs as )'s.

2) a) e is balanced.

b) If w is a balanced string, then (w) is balanced.

c) If w and x are balanced strings, then so is wx.

d) Nothing else is a balanced string.

Prove by induction on the length of a string that definitions (1) and (2) define the same class

of strings.

* 1.5 What is wrong with the following inductive "proof" that all elements in any set must

be identical? For sets with one element the statement is trivially true. Assume the statement

is true for sets with n — 1 elements, and consider a set S with n elements. Let a be an element

of 5. Write S = S
{
u 5 2 , where S

{
and S 2 each have n — 1 elements, and each contains a.

By the inductive hypothesis all elements in S x
are identical to a and similarly all elements in

S 2 are identical to a. Thus all elements in S are identical to a.

1.6 Show that the following are equivalence relations and give their equivalence classes.

a) The relation Ri on integers defined by iRij if and only if i = j.

b) The relation R 2 on people defined by pR 2 q if and only if p and q were born at the same

hour of the same day of some year.

c) The same as (b) but "of the same year" instead of "of some year."

1.7 Find the transitive closure, the reflexive and transitive closure, and the symmetric

closure of the relation

2), (2, 3), (3, 4), (5, 4)}.

*S 1.8 Prove that any equivalence relation R on a set S partitions S into disjoint equiv-

alence classes.

* 1.9 Give an example of a relation that is symmetric and transitive but not reflexive.

[Hint: Note where reflexivity is needed to show that an equivalence relation defines equiv-

alence classes; see the solution to Exercise 1.8.]

* 1.10 Prove that any subset of a countably infinite set is either finite or countably infinite.

* 1.11 Prove that the set of all ordered pairs of integers is countably infinite.

1.12 Is the union of a countably infinite collection of countably infinite sets countably

infinite? is the Cartesian product?

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


12 PRELIMINARIES

Solutions to Selected Exercises

1.3 Clearly every string satisfying the second definition reads the same forward and

backward. Suppose x reads the same forward and backward. We prove by induction on the

length of x that x's being a palindrome follows from rules (1) through (3). If
|
x

\
< 1, then x

is either e or a single symbol a and rule (1) or (2) applies. If
|
x

|
> 1, then x begins and ends

with some symbol a. Thus x = awa, where w reads the same forward and backward and is

shorter than x. By the induction hypothesis, rules (1) through (3) imply that w is a palin-

drome. Thus by rule (3), x = awa is a palindrome.

1.8 Let R be an equivalence relation on S, and suppose a and b are elements of S. Let Ca

and Cb be the equivalence classes containing a and b respectively; that is, Ca = {c \aRc] and

Cb = {c
|

bRc}. We shall show that either Ca — Cb or Ca n Cb = 0. Suppose Ca n Cb 0;
let </ be in Ca n Cb . Now let e be an arbitrary member of Ca . Thus aRe. As d is in Ca n Cfc

we have and bRd. By symmetry, By transitivity (twice), bRa and bRe. Thus e is in

Cb and hence C
fl
^ Cb . A similar proof shows that Cb G C

fl ,
so Ca = C b . Thus distinct

equivalence classes are disjoint. To show that the classes form a partition, we have only to

observe that by reflexivity, each a is in the equivalence class C
fl , so the union of the

equivalence classes is S.
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CHAPTER

2
FINITE AUTOMATA AND
REGULAR EXPRESSIONS

2.1 FINITE STATE SYSTEMS

The finite automaton is a mathematical model of a system, with discrete inputs

and outputs. The system can be in any one of a finite number of internal

configurations or "states." The state of the system summarizes the information

concerning past inputs that is needed to determine the behavior of the system on

subsequent inputs. The control mechanism of an elevator is a good example of a

finite state system. That mechanism does not remember all previous requests for

service but only the current floor, the direction of motion (up or down), and the

collection of not yet satisfied requests for service.

In computer science we find many examples of finite state systems, and the

theory of finite automata is a useful design tool for these systems. A primary

example is a switching circuit, such as the control unit of a computer. A switching

circuit is composed of a finite number of gates, each of which can be in one of two

conditions, usually denoted 0 and 1. These conditions might, in electronic terms,

be two different voltage levels at the gate output. The state of a switching network

with n gates is thus any one of the 2" assignments of 0 or 1 to the various gates.

Although the voltage on each gate can assume any of an infinite set of values, the

electronic circuitry is so designed that only the two voltages corresponding to 0

and 1 are stable, and other voltages will almost instantaneously adjust themselves

to one of these voltages. Switching circuits are intentionally designed in this way,

so that they can be viewed as finite state systems, thereby separating the logical

design of a computer from the electronic implementation.

Certain commonly used programs such as text editors and the lexical analy-

zers found in most compilers are often designed as finite state systems. For exam-

13
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14 FINITE AUTOMATA AND REGULAR EXPRESSIONS

pie, a lexical analyzer scans the symbols of a computer program to locate the

strings of characters corresponding to identifiers, numerical constants, reserved

words, and so on. In this process the lexical analyzer needs to remember only a

finite amount of information, such as how long a prefix of a reserved word it has

seen since startup. The theory of finite automata is used heavily in the design of

efficient string processors of these and other sorts. We mention some of these

applications in Section 2.8.

The computer itself can be viewed as a finite state system, although doing so

turns out not to be as useful as one would like. Theoretically the state of the

central processor, main memory, and auxiliary storage at any time is one of a very

large but finite number of states. We are assuming of course that there is some

fixed number of disks, drums, tapes, and so on available for use, and that one

cannot extend the memory indefinitely. Viewing a computer as a finite state

system, however, is not satisfying mathematically or realistically. It places an

artificial limit on the memory capacity, thereby failing to capture the real essence

of computation. To properly capture the notion of computation we need a poten-

tially infinite memory, even though each computer installation is finite. Infinite

models of computers will be discussed in Chapters 7 and 8.

It is also tempting to view the human brain as a finite state system. The

number of brain cells or neurons is limited, probably 2
35

at most. It is conceivable,

although there is evidence to the contrary, that the state of each neuron can be

described by a small number of bits. If so, then finite state theory applies to the

brain. However, the number of states is so large that this approach is unlikely to

result in useful observations about the human brain, any more than finite state

assumptions help us understand large but finite computer systems.

Perhaps the most important reason for the study of finite state systems is the

naturalness of the concept as indicated by the fact that it arises in many diverse

places. This is an indication that we have captured the notion of a fundamental

class of systems, a class that is rich in structure and potential application.

An example

Before formally defining finite state systems let us consider an example. A man
with a wolf, goat, and cabbage is on the left bank of a river. There is a boat large

enough to carry the man and only one of the other three. The man and his

entourage wish to cross to the right bank, and the man can ferry each across, one

at a time. However, if the man leaves the wolf and goat unattended on either

shore, the wolf will surely eat the goat. Similarly, if the goat and cabbage are left

unattended, the goat will eat the cabbage. Is it possible to cross the river without

the goat or cabbage being eaten ?

The problem is modeled by observing that the pertinent information is the

occupants of each bank after a crossing. There are 16 subsets of the man (M), wolf

(W), goat (G), and cabbage (C). A state corresponds to the subset that is on the left
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2.1 | FINITE STATE SYSTEMS 15

bank. States are labeled by hyphenated pairs such as MG-WC, where the symbols
to the left of the hyphen denote the subset on the left bank; symbols to the right of

the hyphen denote the subset on the right bank. Some of the 16 states, such as

GC-MW, are fatal and may never be entered by the system.

The "inputs" to the system are the actions the man takes. He may cross alone

(input m), with the wolf (input w), the goat (input g), or cabbage (input c). The
initial state is MWGC-0 and the final state is 0-MWGC. The transition diagram

is shown in Fig. 2.1.

MWGC-0X *CwC-MG
g

^~— MWC-G

C-MWG

MGC-W

W-MGC

g g\

1 I

MWG-C

G-MWC

Fig. 2.1 Transition diagram for man, wolf, goat, and cabbage problem.

There are two equally short solutions to the problem, as can be seen by

searching for paths from the initial state to the final state (which is doubly circled).

There are infinitely many different solutions to the problem, all but two involving

useless cycles. The finite state system can be viewed as defining an infinite lan-

guage, the set of all strings that are labels of paths from the start state to the final

state.

Before proceeding, we should note that there are at least two important ways

in which the above example is atypical of finite state systems. First, there is only

one final state; in general there may be many. Second, it happens that for each

transition there is a reverse transition on the same symbol, which need not be the

case in general. Also, note that the term "final state," although traditional, does

not mean that the computation need halt when it is reached. We may continue

making transitions, e.g., to state MG-WC in the above example.
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16 FINITE AUTOMATA AND REGULAR EXPRESSIONS

2.2 BASIC DEFINITIONS

A finite automaton (FA) consists of a finite set of states and a set of transitions from

state to state that occur on input symbols chosen from an alphabet X. For each

input symbol there is exactly one transition out ofeach state (possibly back to the

state itself). One state, usually denoted g0 , is the initial state, in which the automa-

ton starts. Some states are designated as final or accepting states.

A directed graph, called a transition diagram, is associated with an FA as

follows. The vertices of the graph correspond to the states of the FA. If there is a

transition from state q to state p on input a, then there is an arc labeled a from

state q to state p in the transition diagram. The FA accepts a string x if the

sequence of transitions corresponding to the symbols of x leads from the start

state to an accepting state.

Example 2.1 The transition diagram of an FA is illustrated in Fig. 2.2. The initial

state, q0 , is indicated by the arrow labeled "start." There is one final state, also q0

in this case, indicated by the double circle. The FA accepts all strings of O's and l's

in which both the number of O's and the number of l's are even. To see this,

visualize "control" as traveling from state to state in the diagram. Control starts at

q0 and must finish at q0 if the input sequence is to be accepted. Each 0-input

causes control to cross the horizontal line a-b, while a 1-input does not. Thus

control is at a state above the line a-b if and only if the input seen so far contains

an even number of O's. Similarly, control is at a state to the left of the vertical line

c-d if and only if the input contains an even number of l's. Thus control is at q0 if

and only if there are both an even number of O's and an even number of l's in the

input. Note that the FA uses its state to record only the parity of the number of O's

and the number of l's, not the actual numbers, which would require an infinite

number of states.

b

Fig. 2.2 The transition diagi am of a finite automaton.
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2.2 | BASIC DEFINITIONS 17

We formally denote a finite automaton by a 5-tuple (Q, Z, g0 > ^)» where Q is

a finite set of states, Z is a finite inpur alphabet, q0 in Q is the imtt'a/ state, F ^ Q is

the set of^na/ states, and 3 is the transitionfunction mapping Q x £ to Q. That is,

a) is a state for each state q and input symbol a.

We picture an FA as a finite control, which is in some state from Q, reading a

sequence of symbols from Z written on a tape as shown in Fig. 2.3. In one move
the FA in state q and scanning symbol a enters state S(q, a) and moves its head

one symbol to the right. If S(q, a) is an accepting state, then the FA is deemed to

have accepted the string written on its input tape up to, but not including, the

position to which the head has just moved. If the head has moved off the right end

of the tape, then it accepts the entire tape. Note that as an FA scans a string it may
accept many different prefixes.

0 1 1 0 0 1 0 1

J

Finite

control

Fig. 2.3 A finite automaton.

To formally describe the behavior of an FA on a string, we must extend the

transition function <5 to apply to a state and a string rather than a state and a

symbol. We define a function 3 from Q x Z* to Q. The intention is that 3{q, w) is

the state the FA will be in after reading w starting in state q. Put another way,

3(q, w) is the unique state p such that there is a path in the transition diagram from

q to p, labeled w. Formally we define

1) 3(q, c) = q, and

2) for all strings w and input symbols a,

3(q, wa) = 3(3(q, w), a).

Thus (1) states that without reading an input symbol the FA cannot change state,

and (2) tells us how to find the state after reading a nonempty input string wa.

That is, find the state, p = 5(q, w), after reading w. Then compute the state 5(p, a).

Since 5(q, a) = 3(S(q, c), a) = S(q, a) [letting w = c in rule (2) above], there

can be no disagreement between 3 and S on arguments for which both are defined.

Thus we shall for convenience use 3 instead of 3 from here on.

Convention We shall strive to use the same symbols to mean the same thing

throughout the material on finite automata. In particular, unless it is stated other-
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18 FINITE AUTOMATA AND REGULAR EXPRESSIONS

wise, the reader may assume:

1 ) Q is a set of states. Symbols q and p, with or without subscripts, are states. q0
is the initial state.

2) Z is an input alphabet. Symbols a and by with or without subscripts, and the

digits are input symbols.

3) 3 is a transition function.

4) F is a set of final states.

5) w, x, y, and z, with or without subscripts, are strings of input symbols.

A string x is said to be accepted by a finite automaton M = (Q, Z, g0 ,
F) if

$(qoy x )
= P f°r some pin F. The language accepted by M, designated L(M ), is the

set {x \S(q0 ,
x) is in F). A language is a regular set (or just regular) if it is the set

accepted by some finite automaton.f The reader should note that when we talk

about a language accepted by a finite automaton M we are referring to the specific

set L(M), not just any set of strings all of which happen to be accepted by M .

Example 2.2 Consider the transition diagram of Fig. 2.2 again. In our formal

notation this FA is denoted M = (Q, Z, S, qQy F), where Q = {q0 , qu q2 , q3 },

Z = {0, 1}, F = {g0 }, and 3 is shown in Fig. 2.4.

Inputs

StatesV 0 1

qo qi qi

q\ <?3 qo

qi qo <73

43 qi qi

Fig. 2.4 <% a) for the FA of Fig. 2.2.

Suppose 1 10101 is input to M. We note that d(q0 , 1) = q x
and 5(qu 1) = go-

Thus

tffao, H) = (5(<%» 1), !) = <5(<h, 1) = *0 .

We might remark that thus 11 is in L(M), but we are interested in 110101. We
continue by noting d(q0 > 0) = q2 . Thus

6{q09 110) = <*(<%>, n),0) = 3(qOi 0) = q2 .

t The term "regular" comes from "regular expressions," a formalism we shall introduce in Section 2.5,

and which defines the same class of languages as the FA's.
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2.3 | NONDETERM IN ISTI C FINITE AUTOMATA 19

Continuing in this fashion, we find that

5(q0 ,
1101) = ^3 , 5(q0 ,

11010) = ^
and finally

%0 ,
H0101) = q0 .

The entire sequence of states is

qlq\q%\<Rq\q^

Thus 110101 is in L(M). As we mentioned, L(M) is the set of strings with an even

number of 0's and an even number of Fs.

2.3 NONDETERMINISTIC FINITE AUTOMATA

We now introduce the notion of a nondeterministic finite automaton. It will turn

out that any set accepted by a nondeterministic finite automaton can also be

accepted by a deterministic finite automaton. However, the nondeterministic finite

automaton is a useful concept in proving theorems. Also, the concept of non-

determinism plays a central role in both the theory of languages and the theory of

computation, and it is useful to understand this notion fully in a very simple

context ' initially. Later we shall meet automata whose deterministic and non-

deterministic versions are known not to be equivalent, and others for which

equivalence is a deep and important open question.

Consider modifying the finite automaton model to allow zero, one, or more
transitions from a state on the same input symbol. This new model is called a

nondeterministic finite automaton (NFA). A transition diagram for a nondeter-

ministic finite automaton is shown in Fig. 2.5. Observe that there are two edges

labeled 0 out of state q0 , one going back to state q0 and one going to state q 3 .

An input sequence a x a<i
• • • a„ is accepted by a nondeterministic finite autom-

aton if there exists a sequence of transitions, corresponding to the input

sequence, that leads from the initial state to some final state. For example, 01001 is

accepted by the NFA of Fig. 2.5 because there is a sequence of transitions through

the states q0 , q0 , q0 , q 3 , g4 , <?4 , labeled 0, 1, 0, 0, 1. This particular NFA accepts all

strings with either two consecutive 0's or two consecutive Fs. Note that the FA of

the previous section (deterministic FA, or DFA for emphasis) is a special case of

the NFA in which for each state there is a unique transition on each symbol. Thus
in a DFA, for a given input string w and state qy there will be exactly one path

labeled w starting at q. To determine if a string is accepted by a DFA it suffices to

check this one path. For an NFA there may be many paths labeled w, and all must

be checked to see whether one or more terminate at a final state.

In terms of the picture in Fig. 2.3 with a finite control reading an input tape,

we may view the NFA as also reading an input tape. However, the finite control

at any time can be in any number of states. When a choice of next state can be
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20 FINITE AUTOMATA AND REGULAR EXPRESSIONS

V o J

1

Fig. 2.5 The transition diagram for a nondeterministic finite automaton.

made, as in state q0 on input 0 in Fig. 2.5, we may imagine that duplicate copies of

the automaton are made. For each possible next state there is one copy of the

automaton whose finite control is in that state. This proliferation is exhibited in

Fig. 2.6 for the NFA of Fig. 2.5 with input 01001.

</4
! <U

Fig. 2.6 Proliferation of states of an NFA.

Formally we denote a nondeterministic finite automaton by a 5-tuple (Q, I, S y

q0 ,
F), where Q, L, q0 , and F (states, inputs, start state, and final states) have the

same meaning as for a DFA, but S is a map from g x I to 2Q . (Recall 2Q is the

power set of Q, the set of all subsets of Q.) The intention is that 3(q, a) is the set of

all states p such that there is a transition labeled a from q to p.
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2.3 | N ON DETERM IN ISTI C FINITE AUTOMATA 21

Example 2.3 The function 3 for the NFA of Fig. 2.5 is given in Fig. 2.7.

Inputs

States \ 0 1

too, <73 }

qi 0 {q 2 }

Q2 {q2 } {q 2 }

<?3. 0
<?4

Fig. 2.7 The mapping d for the NFA of Fig. 2.5.

The function 3 can be extended to a function <5 mapping Q x Z* to 2° and

reflecting sequences of inputs as follows:

1) %£) = {<?},

2) 3(4, wo) = {p|for some state r in <%, w), p is in <S(r, a)}.

Condition ( 1) disallows a change in state without an input. Condition (2) indicates

that starting in state q and reading the string w followed by input symbol a we can

be in state p if and only if one possible state we can be in after reading w is r, and

from r we may go to p upon reading a.

Note that 3(q y a) = 3(q, a) for a an input symbol. Thus we may again use 3 in

place of 3. It is also useful to extend 3 to arguments in 2Q x Z* by

3) 3(Py w)={J qinP 3(q, w)

for each set of states P ^ Q. L(M), where M is the NFA (Q, £, (5, g0 ,
F), is

{w | c5(g0 ,
w) contains a state in F).

Example 2.4 Consider again the NFA of Fig. 2.5, whose transition function 3

was exhibited in Fig. 2.7. Let the input be 01001.

<5(<Zo, °) = {<7o, q*}-

3(q0y 01) = 3(3(q0 , 0), 1) = 3({q0 , q 3 ), 1) = 1) u 5fo 3 , 1) = fo0 , Qii

Similarly, we compute

6{q09 010) = {q0 , q3 }, 3(q0 , 0100) = {q0 , *3 . qj

and

6(q0 ,
01001) = {<?0 , ^ <j4 }.
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The equivalence of DFA's and NFA's

Since every DFA is an NFA, it is clear that the class of languages accepted by

NFA's includes the regular sets (the languages accepted by DFA's). However, it

turns out that these are the only sets accepted by NFA's. The proof hinges on

showing that DFA's can simulate NFA's; that is, for every NFA we can construct

an equivalent DFA (one which accepts the same language). The way a DFA
simulates an NFA is to allow the states of the DFA to correspond to sets of states

of the NFA. The constructed DFA keeps track in its finite control of all states that

the NFA could be in after reading the same input as the DFA has read. The formal

construction is embodied in our first theorem.

Theorem 2.1 Let L be a set accepted by a nondeterministic finite automaton.

Then there exists a deterministic finite automaton that accepts L

Proof Let M = (Q, I, 3 9 q09 F) be an NFA accepting L. Define a DFA, M' = (Q\

3\ 4o> F'\ as follows. The states ofM' are all the subsets of the set of states ofM.
That is, Q' = 2Q . M' will keep track in its state of all the statesM could be in at any

given time. F is the set of all states in Q' containing a final state ofM. An element

of Q' will be denoted by [q l9 q2 , . .
. , qt], where q l9 q2 , . .

. , qx
are in Q. Observe that

<?2> • Qi] ls a single state of the DFA corresponding to a set of states of the

NFA. Note that q0 = [q0 ].

We define

<5%i, 92, Qil a) = [Pi> P2 , Pjl

if and only if

<*(fai. 02. •••,<?«}> <*) = {Pl, P2,---,Pj}-

That is, 6' applied to an element [q l9 q2 , . .
. , qt] ofQ is computed by applying 3 to

each state of Q represented by [qu q 2 , qj. On applying 3 to each of^,^*

q{
and taking the union, we get some new set of states, p ly p2 , . .

. , Pj- This new set

of states has a representative, [p l9 p 2 , . .
. , pj] in Q'

9 and that element is the value of

o"([lu q2 , ^f], fl).

It is easy to show by induction on the length of the input string x that

^'(QoyX) = [q l9 q29 ... 9 ql]

if and only if

HQo, x) = {q l9 q29 qi}.

Basis The result is trivial for |x
|
=0, since q'

0
= [^0] and x must be c.

Induction Suppose that the hypothesis is true for inputs of length m or less. Let

xa be a string of length m + 1 with a in Z. Then

<5'(4o> xa) = <5'(<5'(4o, x), a).
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By the inductive hypothesis,

<%o> *) = bi, Pi, ...,pj

if and only if

But by definition of 5\

#{[Pi,P2, ••.,/>;], fl) = [ri,r2 ,
...,rj

if and only if

&({Pu P2..-..Py}. fl) = {»
,

i,r2,...,rJk}.

Thus,

if and only if

%o.^) = r2 , ...,rk},

which establishes the inductive hypothesis.

To complete the proof, we have only to add that S'(q'0 ,
x) is in F exactly when

S(q0 ,
x) contains a state of Q that is in F. Thus L(M) = L(M').

Since deterministic and nondeterministic finite automata accept the same sets,

we shall not distinguish between them unless it becomes necessary, but shall

simply refer to both as finite automata.

Example 2.5 Let M = ({q0 , q x }, {0, 1}, 5, q0 , {q t }) be an NFA where

<*fao> 0) = {q0 , 8(q0 , 1) = fail &{q» 0) = 0, 5{q l9 1) = {q0 , q t }.

We can construct a DFA M' = (Q, {0, 1}, d\ [q0], F), accepting L(M) as follows. Q
consists of all subsets of {q0 , q t }. We denote the elements of Q by [q0 ], [q Y ],

[tfo> q\\ and 0. Since S(q0 , 0) = {^0 , gj, we have

<5'([<7o], 0) = b0 , gj.

Likewise,

*'(fool 1) = foil 0) = 0, and 5%,], 1) = [q0 , q,].

Naturally, S'(0, 0) = <5'(0, 1) = 0. Lastly,

<5'([tfo> 0) = [q0 , qi\

since

<5({<7o, Qil 0) = 5(g0 , 0) u 5{q l9 0) = {g0 , tfi} u 0 = fa0 , ft},
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24 FINITE AUTOMATA AND REGULAR EXPRESSIONS

and

v(teo, Qil i) = l>o, qil

since

<%o> 9i}> 1) = S(qo, 1) u 1) = {^J u {^o, 4i} = {4o,

The set F of final states is {[gj, [g0 >

In practice, it often turns out that many states of the NFA are not accessible

from the initial state [q0]. It is therefore a good idea to start with state [q0] and add

states to the DFA only if they are the result of a transition from a previously

added state.

2.4 FINITE AUTOMATA WITH e-MOVES

We may extend our model of the nondeterministic finite automaton to include

transitions on the empty input c. The transition diagram of such an NFA accept-

ing the language consisting of any number (including zero) of O's followed by any

number of l's followed by any number of 2's is given in Fig. 2.8. As always, we say

an NFA accepts a string w if there is some path labeled w from the initial state to a

final state. Of course, edges labeled e may be included in the path, although the e's

do not appear explicitly in w. For example, the word 002 is accepted by the NFA
of Fig. 2.8 by the path q0 , q0 , q0 , qu q2 , q2 with arcs labeled 0, 0, £, e, 2.

o l

Fig. 2.8 Finite automaton with (-moves.

Formally, define a nondeterministic finite automaton with e-moves to be a

quintuple (Q, Z, 3, q0 ,
F) with all components as before, but 3, the transition

function, maps Q x (E u {e}) to 2Q . The intention is that 3(q, a) will consist of all

states p such that there is a transition labeled a from q to p, where a is either £ or a

symbol in Z.

Example 2.6 The transition function for the NFA of Fig. 2.8 is shown in Fig.

2.9.

We shall now extend the transition function 3 to a function 3 that maps

Q x X* to 2Q . Our expectation is that w) will be all states p such that one can
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States 0

Inputs

2 £

40 Wo)
0
0

0
{<7i}

0

0
0

{*}

0

Fig. 2.9 %, a) for the NFA of Fig. 2.8.

go from q to p along a path labeled w, perhaps including edges labeled e. In

constructing 3 it will be important to compute the set of states reachable from a

given state q using e transitions only. This question is equivalent to the question of

what vertices can be reached from a given (source) vertex in.a directed graph. The

source vertex is the vertex for state q in the transition diagram, and the directed

graph in question consists of all and only the arcs labeled e. We use £-

CWSURE(q) to denote the set of all vertices p such that there is a path from q to p
labeled e.

Example 2.7 In Fig. 2.8, £-CLOSURE(g0 ) = {q0 , qu q2\ That is, the path con-

sisting of q0 alone (there are no arcs on the path), is a path from q0 to q0 with all

arcs labeled £.f Path q0 , q x
shows that q x

is in £-CLOSURE(g0 ) and path q0 , q t , q2

shows that q2 is in £-CLOSURE(g0 ).

We may naturally let £-CLOSURE(P), where P is a set of states, be

[j qinP £-CLOSURE(g). Now we define 5 as follows.

1) S(q, e) = 6-CLOSURE(g).

2) For w in X* and a in Z, d(q, wa) = £-CLOSURE(P), where P = {p |
for some r

in S(q, w), p is in <5(r, a)}.

It is convenient to extend S and 3 to sets of states by

for sets of states R. Note that in this case, d(q, a) is not necessarily equal to S(q, a),

since S(q, a) includes all states reachable from q by paths labeled a (including

paths with arcs labeled e), while S(q, a) includes only those states reachable from q
by arcs labeled a. Similarly, d(q, e) is not necessarily equal to S(q, c). Therefore it is

necessary to distinguish S from S when we talk about an NFA with £-transitions.

We define L(M), the language accepted by M = (Q, Z, 3, q0 ,
F) to be

{w|<5(g0 ,
w) contains a state in F}.

3) 6(R, a)=\J 9inR d(q, a\ and

4) S(R, w)=\J qinR S(q, w)

t Remember that a path of length zero has no arcs, and therefore trivially all its arcs are labeled c.
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26 FINITE AUTOMATA AND REGULAR EXPRESSIONS

Example 2.8 Consider again the NFA of Fig. 2.8,

d(q0 ,
e) = c-CLOSUREfoo) = {q0 , q» q2 ).

Thus

S(q09 0) = £-CLOSURE(<5(%0 ,
e), 0))

= £-CLOSURE(5(fa0 , q l9 q2\ 0))

= £-CLOSURE(<5(oo, 0) u 6{q l9 0) u 5(q2 , 0))

= £-CLOSURE({^0} u 0 u 0)

= £-CLOSURE(fo0}) = ^ a2 }.

Equivalence of NFA's with and without e-moves

Like nondeterminism, the ability to make transitions on £ does not allow the NFA
to accept nonregular sets. We show this by simulating an NFA with ^transitions

by an NFA without such transitions.

Theorem 2.2 If L is accepted by an NFA with ^transitions, then L is accepted by

an NFA without ^transitions.

Proof Let M = (Q, E, <5, q0 ,
F) be an NFA with ^transitions. Construct AT =

and d'(q, a) is d(q, a) for q in Q and a in X. Note that M' has no ^transitions. Thus

we may use <5' for 3', but we must continue to distinguish between S and S.

We wish to show by induction on |x
|
that d'{q0 >

x) = S(q0 ,
x). However, this

statement may not be true for x = £, since 8'(q0 ,
e) = {q0}, while d(q0 ,

e) =
£-CLOSURE(g0 ). We therefore begin our induction at 1.

Basis |x
|

= 1. Then x is a symbol a, and S'(q0 ,
a) = S(q0 >

a) by definition of 6'.

Induction \x\> 1. Let x = wa for symbol a in X. Then

Then

d(q09 01) = £-CLOSURE(<5(%0 > 0), 1))

= £-CLOSURE(S(fo0 , q l9 q2} 9 1))

= £-CLOSURE({a
1 }) = {a 1 , q2 ).

(Q, £, 3\ qQy F') where

F u {q0 } if £-CLOSURE(g0 ) contains a state of F,

F otherwise,

5'{q0 ,
wa) = 5'(5'(q0 ,

w), a).
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2.4 | FINITE AUTOMATA WITH € -MOVES 27

By the inductive hypothesis, d'(q0 ,
w) = S(q0 ,

w). Let S(q0 ,
w) = P. We must show

that <5'(P, a) = §(q0 ,
wa). But

V(P,a)= U U %4
4 in P q in P

Then as P = 3(<70 ,
w) we have

qinP

by rule (2) in the definition of 5. Thus

<5'(4o> w") = %o> mi).

To complete the proof we shall show that S'(q0y x) contains a state of F' if and

only if S(q0 ,
x) contains a state of F. Ifx = £, this statement is immediate from the

definition of F". That is, d'(q0 ,
e) = {q0}, and q0 is placed in F whenever d(q0 ,

c),

which is £-CLOSURE(g0 ), contains a state (possibly q0 ) in F. Ifx ^ £, then x = wa
for some symbol a. If <5(g0 ,

x) contains a state of F, then surely S'(q0 ,
x) contains

the same state in F'. Conversely, if S'(q0y x) contains a state in F' other than q0 ,

then 3(g0 ,
x) contains a state in F. If S'(q0 ,

x) contains q09 and q0 is not in F, then

as 5(q0 ,
x) = £-CLOSURE(<5(<5(g0 ,

vv), a)), the state in £-CLOSURE(g0 ) and in F
must be in S(q0 ,

x).

Example 2.9 Let us apply the construction of Theorem 2.2 to the NFA of Fig.

2.8. In Fig. 2.10 we summarize d(q, a). We may also regard Fig. 2.10 as the

transition function d' of the NFA without ^transitions constructed by Theorem
2.2. The set of final states F includes q2 because that is in F and also includes g0 ,

because £-CLOSURE(g0 ) and F have a state q 2 in common. The transition dia-

gram for M' is shown in Fig. 2.11.

States

>

12

0

Inputs

1

{go, qu qi] {qu qi} {qi}

0 {qn qi} {qi}

0 0 {q 2 }

Fig. 2.10 l(q, a) for Fig. 2.8.

0, I. 2

Fig. 2.11 NFA without (-transitions.
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28 FINITE AUTOMATA AND REGULAR EXPRESSIONS

2.5 REGULAR EXPRESSIONS

The languages accepted by finite automata are easily described by simple expres-

sions called regular expressions. In this section we introduce the operations of

concatenation and closure on sets of strings, define regular expressions, and prove

that the class of languages accepted by finite automata is precisely the class of

languages describable by regular expressions.

Let X be a finite set of symbols and let L, Lu and L2 be sets of strings from X*.

The concatenation ofL
x
and L 2 , denoted L XL 2 , is the set {xy \x is in L x

and y is in

L 2 }. That is, the strings in L
XL 2 are formed by choosing a string L

t
and following

it by a string in L2 , in all possible combinations. Define L° = {e} and L = LL~ 1
for

i > 1. The Kleene closure (or just closure) of L, denoted L*, is the set

L*= Q IL

i = 0

and the positive closure of L, denoted L+ , is the set

00

v = u i-

That is, L* denotes words constructed by concatenating any number of words

from L. L+ is the same, but the case of zero words, whose "concatenation" is

defined to be c, is excluded. Note that L+ contains c if and only if L does.

Example 2.10 Let L
x
= {10, 1} and L 2 = {Oil, 11}. Then LjL 2 = {10011, 1011,

111}. Also,

{10, 11}* = {(, 10, 11, 1010, 1011, 1110, 1111, ...}.

If X is an alphabet, then X* denotes all strings of symbols in X, as we have

previously stated. Note that we are not distinguishing X as an alphabet from X as

a language of strings of length 1.

Let X be an alphabet. The regular expressions over X and the sets that they

denote are defined recursively as follows.

1) 0 is a regular expression and denotes the empty set.

2) c is a regular expression and denotes the set {c}.

3) For each a in X, at is a regular expression and denotes the set {a}.

4) If r and 5 are regular expressions denoting the languages R and 5, respectively,

then (r + 5), (rs), and (r*) are regular expressions that denote the sets RuS,
RS, and R*, respectively.

t To remind the reader when a symbol is part of a regular expression, we shall write it in boldface.

However, we view a and a as the same symbol.
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In writing regular expressions we can omit many parentheses if we assume
that * has higher precedence than concatenation or + , and that concatenation has

higher precedence than + . For example, ((0(1*)) + 0) may be written 01* + 0. We
may also abbreviate the expression rr* by r

+
. When necessary to distinguish

between a regular expression r and the language denoted by r, we use L(r) for the

latter. When no confusion is possible we use r for both the regular expression and
the language denoted by the regular expression.

Example 2.11 00 is a regular expression representing {00}. The expression

(0+1)* denotes all strings of 0's and l's. Thus, (0 + 1)*00(0 + 1)* denotes all

strings of 0's and l's with at least two consecutive 0's. The regular expression

(1 + 10)* denotes all strings of 0's and l's beginning with 1 and not having two
consecutive 0's. In proof, it is an easy induction on i that (1 + 10)' does not have
two consecutive 0's.t Furthermore, given any string beginning with 1 and not

having consecutive 0's, one can partition the string into l's, with a following 0 if

there is one. For example, 1101011 is partitioned 1-10-10-1-1. This partition

shows that any such string is in (1 -h 10)% where i is the number of l's. The regular

expression (0 + e)(l + 10)* denotes all strings of 0's and l's whatsoever that do
not have two consecutive 0's.

For some additional examples, (0 + 1)*011 denotes all strings of 0's and l's

ending in 01 1. Also, 0*1*2* denotes any number of 0's followed by any number of

l's followed by any number of 2's. This is the language of the NFA of Fig. 2.8.

00*11*22* denotes those strings in 0*1*2* with at least one of each symbol. We
may use the shorthand 0

+
l
+
2
+

for 00*11*22*.

Equivalence of finite automata and regular expressions

We now turn to showing that the languages accepted by finite automata are

precisely the languages denoted by regular expressions. This equivalence was the

motivation for calling finite automaton languages regular sets. Our plan will be to

show by induction on the size of (number of operators in) a regular expression

that there is an NFA with t-transitions denoting the same language. Finally, we
show that for every DFA there is a regular expression denoting its language. These
constructions, together with Theorems 2.1 and 2.2, show that all four language

defining mechanisms discussed in this chapter define the same class of languages,

the regular sets. Figure 2.12 shows the constructions we shall perform or have
performed, where an arrow from A to B means that for any descriptor of type A a

construction yields an equivalent descriptor of type B.

We proceed to prove that for every regular expression there is an equivalent

NFA with £-transitions.

t If r is a regular expression, r' stands for rr • - r (/ times).
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30 FINITE AUTOMATA AND REGULAR EXPRESSIONS

Fig. 2.12 Constructions of this chapter.

Theorem 2.3 Let r be a regular expression. Then there exists an NFA with

£-transitions that accepts L(r).

Proof We show by induction on the number of operators in the regular expres-

sion r that there is an NFA M with £-transitions, having one final state and no

transitions out of this final state, such that L(M) = L(r).

Basis (Zero operators) The expression r must be £, 0, or a for some a in S. The

NFA's in Fig. 2.13(a), (b), and (c) clearly satisfy the conditions.

(a) r = e (b) r = 0 (c) r = a

Fig. 2.13 Finite automata for basis step of Theorem 2.3.

Induction (One or more operators) Assume that the theorem is true for regular

expressions with fewer than i operators, i > 1. Let r have i operators. There are

three cases depending on the form of r.

case 1 r = r
x + r2 . Both r

x
and r2 must have fewer than i operators. Thus there

are NFA's M, = (Qu Z lf 5 l9 q l9 {fx }) and M 2 = (Q 2 ,
I 2 , 5 2 , g2 , {/2}) with

L(M
t )
= L(rj) and L(M 2 ) = L(r2 ). Since we may rename states of an NFA at will,

we may assume Q x
and Q 2 are disjoint. Let q0 be a new initial state andf0 a new

final state. Construct

M = (Q t
u Q 2 u {^o,/o}» u £ 2 > 5, g0 > {/o})>

where 3 is defined by

i) %)> 0 = fai»^2}.

ii) <5(g, a) = Si(q, a) for g in Q i
— {/j} and a in Z

x
u {e},
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iii) S(q, a) = 32 (q, a) for q in Q2 - {f2} and a in I 2 u {<:},

iv) = *) = {/o}-

Recall by the inductive hypothesis that there are no transitions out of/j or/2 in

M
x
or M 2 . Thus all the moves ofM

x
and M 2 are present in M.

The construction ofM is depicted in Fig 2.14(a). Any path in the transition

diagram ofM from q0 tof0 must begin by going to either q t
or q2 on e. If the path

goes to q l9 it may follow any path in M x to/j and then go tof0 on t. Similarly,

paths that begin by going to q2 may follow any path in M 2 to/2 and then go tof0
on e. These are the only paths from q0 tof0 . It follows immediately that there is a

path labeled x in M from q0 to

/

0 if and only if there is a path labeled x in M
t
from

(h to/i or a path in M 2 from q2 to/2 . Hence L(M) = L(M
X ) u L(JH)^ as desired.

(c)

Fig. 2.14 Constructions used in induction of Theorem 2.3. (a) For union, (b) For con-

catenation, (c) For closure.

case 2 r = r
1
r2 . Let M

t
and M 2 be as in Case 1 and construct

M = (6i u Q 2 ,
X, u S 2 , 5, fo}, {/2}),

where (5 is given by

i) <5(g, a) = ^(g, a) for g in Qj — {/J and a in JL
l
u {c},

«) = {92}

iii) (5(g, a) = (5 2 (g, a) for g in Q 2 and a in I 2 u {e}.
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The construction ofM is given in Fig. 2.14(b). Every path inM from q x tof2 is

a path labeled by some string x from q x tofx , followed by the edge fromfx to q2

labeled e, followed by a path labeled by some string y from q2 tof2 . Thus L(M) =
{xy\x is in L(M

t ) and y is in L(M 2 )} and L(M) = L(M
1 )L(M 2 ) as desired.

case 3 r = r*. Let Mj = (Qi, 2 ls <5 l5 tfi, {/i}) and L{M X ) = Construct

M = (0! u {q09f0}9 S lf <5, g0 > {/o})>

where (5 is given by

i) %o.0 = 5(/i» £
) = fei»/o}.

ii) <5(g, a) = d
x (q, a) for g in Q x

- {fx } and a in Z
t
u {e}.

The construction of M is depicted in Fig. 2.14(c). Any path from q0 to f0
consists either of a path from q0 tof0 on £ or a path from q0 to q x

on c, followed by

some number (possibly zero) of paths from q i
tofx , then back to q t

on 6, each

labeled by a string in L(M
X \ followed by a path from q x

to

/

t
on a string in L(MJ,

then tof0 on e. Thus there is a path in M from g0 tof0 labeled x if and only if we
can write x = x

x
x 2

• • • x
}
for some 7 > 0 (the case 7 = 0 means x = c) such that

each x
(

is in L(M
x ). Hence L(M) = L(Mj)* as desired.

Example 2.12 Let us construct an NFA for the regular expression 01* + 1. By
our precedence rules, this expression is really (0(1*)) + 1, so it is of the form

r \ + r2> where r
x
=01* and r2 = 1. The automaton for r2 is easy; it is

Stait

We may express r
x
as r3 r4 , where r3 = 0 and r4 = 1*. The automaton for r3 is also

easy:

Stan—\jy
In turn, r4 is r*, where r5 is 1. An NFA for r 5 is

Start—( V5 ^
1

Note that the need to keep states of different automata disjoint prohibits us from

using the same NFA for r2 and r 5 ,
although they are the same expression.

To construct an NFA for r4 = r| use the construction of Fig. 2.14(c). Create
\

states q n and qs playing the roles of q0 and

/

0 ,
respectively. The resulting NFA for

r4 is shown in Fig. 2.15(a). Then, for r
x
= r3 r4 use the construction of Fig. 2.14(b).

The result is shown in Fig. 2.15(b). Finally, use the construction of Fig. 2.14(a) to

find the NFA for r = r
x + r2 . Two states q9 and q l0 are created to fill the roles of

q0 and f0 in that construction, and the result is shown in Fig. 2.15(c).
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e

Start

(a)

€

Start-

(b)

Start

(c)

Fig. 2.15 Constructing an NFA from a regular expression, (a) For r4 = 1*. (b) For

r, = 01*. (c) For r = 01* + 1.

The proof of Theorem 2.3 is in essence an algorithm for converting a regular

expression to a finite automaton. However, the algorithm implicitly assumes that

the regular expression is fully parenthesized. For regular expressions without

redundant parentheses, we must determine whether the expression is of the form

p + q, pq, or p*. This is equivalent to parsing a string in a context-free language,

and thus such an algorithm will be delayed until Chapter 5 where it can be done

more elegantly.

Now we must show that every set accepted by a finite automaton is denoted

by some regular expression. This result will complete the circle shown in Fig. 2.12.

Theorem 2.4 If L is accepted by a DFA, then L is denoted by a regular expres-

sion.

Proof Let L be the set accepted by the DFA

Let Rlj denote the set of all strings x such that d(qiJ x) = qp and if 3(qh y) — qr , for

any y that is a prefix (initial segment) of x, other than x or £, then { < k. That is,

Ry is the set of all strings that take the finite automaton from state q {
to state qi

without going through any state numbered higher than k. Note that by "going

through a state," we mean both entering and then leaving. Thus i or j may be

greater than k. Since there is no state numbered greater than m, R"j denotes all

M = {fa, <?„}, 2, 5, q l9
F).
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strings that take

(2.1)

\{a\6(q
i9 a) = qj)

\{a\S(qh a) = qj)

if if;,

u{£} if 1=7.

Informally, the definition of above means that the inputs that causeM to

go from q {
to qs without passing through a state higher than qk are either

1) in R^j'
1
(that is, they never pass through a state as high as qk ); or

2) composed of a string in R*[k

~ 1 (which takes M to qk for the first time) followed

by zero or more strings in Rlk
1 (which take M from qk back to qk without

passing through qk or a higher-numbered state) followed by a string in R^J
1

(which takes M from state qk to q}).

We must show that for each z, j, and /c, there exists a regular expression rjj

denoting the language R^. We proceed by induction on /c.

Basis (k = 0). is a finite set of strings each of which is either £ or a single

symbol. Thus r°- can be written as a x -f a 2 + "
' + ap (or a 1 + a 2 + '

' + ap + e if

1 = j), where {a^ a 2 ,
ap} is the set of all symbols a such that 5(qh a) = qy If

there are no such a's, then 0 (or e in the case i = j) serves as r°-.

Induction The recursive formula for R^ given in (2.1) clearly involves only the

regular expression operators: union, concatenation, and closure. By the induction

hypothesis, for each f and m there exists a regular expression rj~
1 such that

L(r*~
!

) = R*~ 1
. Thus for rfy

we may select the regular expression

since R"j denotes the labels of all paths from q x
to qj . Thus L(M) is denoted by the

regular expression

Example 2.13 Let M be the FA shown in Fig. 2.16. The values of rjj for all i and j

and for k = 0, 1, or 2 are tabulated in Fig. 2.17. Certain equivalences among
regular expressions such as (r -f s)t = rt 4- st and (e -4- r)* =? r* have been used to

simplify the expressions (see Exercise 2.16). For example, strictly speaking, the

expression for r\ 2 is given by

qj in F

where F = {g,v qj2 ,

= ^ 1
(r?

1
)*r?2 + rL = 0(£)*0 + £.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


2.5
| REGULAR EXPRESSIONS 35

1

Fig. 2.16 FA for Example 2.13.

k = 0 k= 1 fc = 2

e e (00)*

0 0 0(00)*

/i 3 1 1 0*1

0 0 0(00)*

e 6+00 (00)*

A, 1 1+01 0*1

r*3, 0 0 (0 + 1)(00)*0

^32 0+1 0+1 (0 + 1)(00)*

As e £ e + (0+1)0*1

Fig. 2.17 Tabulation of rf, for FA of Fig. 2.16.

Similarly,

rh = r\ 2 (r22)*r23 + r} 3 = 0(6 + 00)*(1 + 01) + 1.

Recognizing that (6 + 00)* is equivalent to (00)* and that 1 + 01 is equivalent to

(e + 0)1, we have

r?3 = 0(00)*(6 + 0)1 + 1.

Observe that (00)*(6 + 0) is equivalent to 0*. Thus 0(00)*(6 + 0)1 + 1 is equiv-

alent to 00*1 + 1 and hence to 0*1.

To complete the construction of the regular expression for M, which is

r i2 + ^13, we write

r l2 = r i3(r33)*r32 + rl2

= 0*1(6 + (0 + 1)0*1)*(0 + 1)(00)* + 0(00)*

= 0*1((0 + 1)0*1)*(0 + 1)(00)* + 0(00)*

and

rh = rUrh)*rh + r
2
13

= 0*1(6 + (0 + 1)0*1)*(6 + (0 + 1)0*1) + 0*1

= 0*1((0 + 1)0*1)*.

Hence

r\ 2 + r
3
i3 = 0*1((0 + 1)0*1)*(6 + (0 + 1)(00)*) + 0(00)*.
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36 FINITE AUTOMATA AND REGULAR EXPRESSIONS

2.6 TWO-WAY FINITE AUTOMATA

We have viewed the finite automaton as a control unit that reads a tape, moving

one square right at each move. We added nondeterminism to the model, which

allowed many "copies" of the control unit to exist and scan the tape simulta-

neously. Next we added e-transitions, which allowed change of state without read-

ing the input symbol or moving the tape head. Another interesting extension is to

allow the tape head the ability to move left as well as right. Such a finite automa-

ton is called a two-way finite automaton. It accepts an input string if it moves the

tape head off the right end of the tape, at the same time entering an accepting state.

We shall see that even this generalization does not increase the power of the finite

automaton; two-way FA accept only regular sets. We give a proof only for a

special case of a two-way FA that is deterministic and whose tape head must move
left or right (not remain stationary) at each move. A more general model is

considered in the exercises.

A two-way deterministic finite automaton (2DFA) is a quintuple M = (Q, X, S y

qQy F), where Q y X, qQy and F are as before, and 3 is a map from Q x X to

Q x {L, R}. If 3(q, a) = (p, L), then in state q, scanning input symbol a, the 2DFA
enters state p and moves its head left one square. If S(q, a) = (p, R)y the 2DFA
enters state p and moves its head right one square.

In describing the behavior of a one-way FA, we extended S to Q x £*. This

corresponds to thinking of the FA as receiving a symbol on an input channel,

processing the symbol and requesting the next. This notion is insufficient for the

two-way FA, since the 2DFA may move left. Thus the notion of the input being

written on the tape is crucial. Instead of trying to extend 3 y we introduce the

notion of #n instantaneous description (ID) of a 2DFA, which describes the input

string, current state, and current position of the input head. Then we introduce

the relation 1^ on ID's such that l
x \jfl 2 if and only if M can go from

the instantaneous description I
{
to I 2 in one move.

An ID ofM is a string in The ID wqx y where w and x are in X* and q

is in Q, is intended to represent the facts that

1) wx is the input string,

2) q is the current state, and

3) the input head is scanning the first symbol of x.

If x = c, then the input head has moved off the right end of the input.

We define the relation \jf or just f— if M is understood, by

1) a
x
a 2 flf-i^fli

•• an {—a l
a 2

' ' a
i
.

l
a

i
pai+l

••• an whenever 3(q, a,) =

(p, R), and

2) a
x a2

• •

2 a,_ ,
qa,

?

• • • an |— a, a 2
• • • a,_ 2 pa,-_

{
a

i
,

• • • an whenever d(q, a
t )
=

(p, L) and i > 1

.

The condition i > 1 prevents any action in the event that the tape head would move
off the left end of the tape. Note that no move is possible if i = n + 1 (the tape
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2.6 | TWO-WAY FINITE AUTOMATA 37

head has moved off the right end). Let P5- be the reflexive and transitive closure of

f—. That is, / p- / for all ID's /, and l
x

Ik whenever /ih /2h'"h /i for

some 7 2 ,

We define

L(M) = {w
| q0 w wp for some p in F}.

That is, w is accepted byM if, starting in state q0 with w on the input tape and the

head at the left end of w, M eventually enters a final state at the same time it falls

off the right end of the input tape.

Example 2.14 Consider a 2DFA M that behaves as follows: Starting in state q0 ,

M repeats a cycle of moves wherein the tape head moves right until two l's have

been encountered, then left until encountering a 0, at which point state q0 is

reentered and the cycle repeated. More precisely, M has three states, all of which

are final; 3 is given in Fig. 2.18.

0 1

qo fao, R) fai, R)

q x (qu R) (q2 ,
L)

qi (qo, R) (qi, L)

Fig. 2.18 The transition function for the 2DFA of Example 2.14.

Consider the input 101001. Since q0 is the initial state, the first ID is q0 10 1001.

To obtain the second ID, note that the symbol to the immediate right of the state

q0 in the first ID is a 1 and 3(q0 , 1) is (q l9 R). Thus the second ID is l^OlOOl.

Continuing in this fashion we get the result shown in Table 2.1. Hence M even-

tually moves off the right end of the tape in an accepting state. Thus 101001 is in

L(M).

Table 2.1

g0 101001 |— 1^01001

|— 10gi 1001

|— lg201001

|— 10^o 1001

\— 101(7,001

f— 1010(7,01

\— 10100(7,1

|— 1010(7 201

|— 10100(7o 1

f— lOlOOlg,
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38 FINITE AUTOMATA AND REGULAR EXPRESSIONS

Crossing sequences

A useful picture of the behavior of a 2DFA consists of the input, the path followed

by the head, and the state each time the boundary between two tape squares is

crossed, with the assumption that the control enters its new state prior to moving

the head. For example, the behavior of the 2DFAM ofExample 2.14 on 101001 is

shown in Fig. 2.19.

10 10 0 1

% - 1\ - Ch -N

Fig. 2.19 Behavior of the 2DFA of Example 2.14.

The list of states below each boundary between squares is termeJ a crossing

sequence. Note that if a 2DFA accepts its input, no crossing sequence may have a

repeated state with the head moving in the same direction, otherwise the 2DFA,
being deterministic, would be in a loop and thus could never fall off the right end.

Another important observation about crossing sequences is that the first time

a boundary is crossed, the head must be moving right. Subsequent crossings must

be in alternate directions. Thus odd-numbered elements of a crossing sequence

represent right moves and even-numbered elements represent left moves. If the

input is accepted, it follows that all crossing sequences are of odd length.

A crossing sequence q Y ,q 2 , • • • , tf* is said to be valid if it is of odd length, and

no two odd- and no two even-numbered elements are identical. A 2DFA with s

states can have valid crossing sequences of length at most 2s, so the number of

valid crossing sequences is finite.

Our strategy for showing that any set accepted by a 2DFA M is regular is to

construct an equivalent NFA whose states are the valid crossing sequences of M.
To construct the transition function of the NFA we first examine the relationship

between adjacent crossing sequences.

Suppose we are given an isolated tape square holding the symbol a and are

also given valid crossing sequences q l3 q2 , . .
. , qk and p l9 p2 > . .

. , pf at the left and

right boundaries of the square, respectively. Note that there may be no input

strings that could be attached to the left and right of symbol a to actually produce

these two crossing sequences. Nevertheless we can test the two sequences for local

compatibility as follows. If the tape head moves left from the square holding a in

state qh restart the automaton on the square holding a in state qi+v Similarly,

whenever the tape head moves right from the square in state ph restart the autom-
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2.6 | TWO-WAY FINITE AUTOMATA 39

aton on the square in state pi+1 . By this method we can test the two crossing

sequences to be sure that they are locally consistent. These ideas are made precise

below.

We define right-matching and left-matching pairs of crossing sequences recur-

sively in (i) through (v) below. The intention is for qu q2 ,
. .

. , qk to right-match p 1?

Pi-> Ve on a ^ these sequences are consistent, assuming we initially reach a in

state q t moving right, and for the two crossing sequences to left-match if the

sequences are consistent, assuming we initially reach a in state p l
moving left. In

each case, we take qu q2 , . .
. , qk to appear at the left boundary of a and p 1? p2 , . .

.

,

pe at the right boundary.

i) The null sequence left- and right-matches the null sequence. That is, if we
never reach the square holding a, then it is consistent that the boundaries on

neither side should be crossed.

ii) If q3 , qk right-matches p l9 pe and S(q l9 a)= (q2 ,
L), then qu ..., qk

right-matches pu . .
. , pf . That is, if the first crossing of the left boundary is in

state q l
and the head immediately moves left in state q2i then if we follow

these two crossings by any consistent behavior starting from another crossing

of the left boundary, we obtain a consistent pair of sequences with first cross-

ing moving right, i.e., a right-matched pair.

iii) If q2 , qk left-matches p2 , p( and 5{q x ,
a) — (p 1? R\ then q l9 qk

right-matches pu ... y pr That is, if the first crossing of the left boundary is in

state q x
and the head immediately moves right in state p l7

then if we follow

these two crossings by any consistent behavior starting from a crossing of the

right boundary, we obtain a consistent pair of sequences with the first cross-

ing from the left, i.e., a right-matched pair. Note that this case introduces the

need for left-matched sequences, even though we are really only interested in

right-matched pairs.

iv) If q l3 qk left-matches p3 , pf and 5(p 1 ,
a) = (p2 ,

R), then qu qk

left-matches p 1? pf . The justification is similar to that for rule (ii).

v) If q2 , qk right-matches p2 , pf and 5(p ly a) = (qu L), then qu qk

left-matches p l3 pr . The justification is similar to rule (iii).

Example 2.15 Consider the 2DFA M of Example 2.14 and a tape square con-

taining the symbol 1. The null sequence left-matches the null sequence, and

^(^o» 0 = (qi, R)- Thus qQ right-matches q x
on 1 by rule (iii). Since S(q ly 1) =

(q2 , L), q l9 ql9 q0 right-matches q x
on 1 by rule (ii). This must be the case, since

there is in fact an accepting computation in which this pair of sequences actually

occurs to the left and right of a square holding a 1. Note, however, that a pair of

sequences could match, yet there could be no computation in which they appeared

adjacent, as it could be impossible to find strings to place to the left and right that

would "turn the computation around" in the correct states.
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40 FINITE AUTOMATA AND REGULAR EXPRESSIONS

Equivalence of one-way and two-way finite automata

Theorem 2.5 If L is accepted by a 2DFA, then L is a regular set.

Proof Let M = (Q, Z, <5, q0 ,
F) be a 2DFA. The proof consists of constructing an

NFA M' which accepts L(M). Define M' to be (Q\ Z, <5\ q'
0 ,

F'), where

1) g' consists of all valid crossing sequences for M.

2) q'
Q is the crossing sequence consisting of q0 alone.

3) F' is the set of all crossing sequences of length one consisting of a state in F.

4) (5'(c, a) = {d\d is a. valid crossing sequence that is right-matched by c on input

a}. Note that as d is valid it must be of odd length.

The intuitive idea is that M' puts together pieces of the computation ofM as it

scans the input string. This is done by guessing successive crossing sequences. If

M' has guessed that c is the crossing sequence at a boundary, and a is the next

input symbol, then M' can guess any valid crossing sequence that c right-matches

on input a. If the guessed computation results in M moving off the right end of the

input in an accepting state, then M' accepts.

We now show that L(M') = L(M). Let w be in L(M). Look at the crossing

sequences generated by an accepting computation of M on w. Each crossing

sequence right-matches the one at the next boundary, so M' can guess the proper

crossing sequences (among other guesses) and accept.

Conversely, if w is in L(M'), consider the crossing sequences c0 ,
c I? . . ., cn ofM

corresponding to the states of M' as M' scans w = a
l
a 2

"' a„. For each i,

0 < i < n, c, right-matches c, + l
on a

{
. We can construct an accepting computation

of M on input w by determining when the head reverses direction. In particular,

we prove by induction on i that M' on reading a
l
a 2

** a, can enter state

Ci = [<7i, - qk] only if

1) M started in state q0 on a
l
a 2

"' a
{
will first move right from position i in state

q l9
and

2) for j = 2, 4, . .
.
, ifM is started at position i in state qpM will eventually move

right from position / in state qj+ t
(this implies that k must be odd).

Basis (i = 0). As c0 = [q0], ( 1
) is satisfied since M begins its computation by

"moving right" from position 0 in state q0 . Condition (2) holds vacuously.

Induction Assume the hypothesis true for i — 1. Suppose that M' on reading

a
l
a 1

••• a, can enter state c, = [p t , #J from state c,_! = <5fJ. Since /c

and ^ are odd, and c, _ x
right-matches c, on ah there must exist an odd j such that

in state qj on input ahM moves right. Let j 1
be the smallest such j. By definition of

"right-matches" it follows that S(q
jl ,

a
x ) = (p x ,

R). This proves (1). Also by the

definition of "right-matches" (rule iii) [qh + ls . .
. , qk] left-matches [p2 , . .

. , p,]. Now
if 5(pj, a

t )
= (pi+ 1? R) for all even j, then (2) follows immediately. In the case that
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2.6 | TWO-WAY FINITE AUTOMATA 41

for some smallest even j2i S(p
j2 ,

a
t)
=

(q> L), then by the definition of "left-

matches" (rule v) q must be qjl + 1
and [qjl + 2 , . .

. , qk] right-matches [pj2 + x , . . . , pj.

The argument then repeats with the latter sequences in place of c
f_ x and c

f
.

With the induction hypothesis for all i established, the fact that c„ = [p] for

some p in F implies that M accepts a l a2 " an .

Example 2.16 Consider the construction of an NFA M' equivalent to the 2DFA
M of Example 2.14. Since q2 is only entered on a left move, and q l

and q2 are only

entered on right moves, all even-numbered components of valid crossing se-

quences must be q2 . Since a valid crossing sequence must be of odd length, and no

two odd-numbered states can be the same, nor can two even-numbered states be

the same, there are only four crossing sequences of interest; these are listed in Fig.

2.20 along with their right matches.

Valid crossing

sequences

[%]

[</.]

92, qo]

Right matches Right matches

on 0 on 1

M [9.]

[ill qo]

[9,]

Fig. 2.20 Valid crossing sequences along with their right matches.

We note immediately that state [q0 , q 2y q { ]
may be removed from the con-

structed NFA M', since it has no right match. The resulting M' is shown in Fig.

2.21. Note that L(M') = (c + 1)(0 + 01)*, that is, all strings of O's and l's without

two consecutive l's.

Consider the input 1001, which is accepted by M' using the sequence of states

[tfoL [<lu <?2> 4o]> We can visualize the crossing sequences as in Fig.

2.22. Note that S(q0 , 1) = (q i3 R) justifies the first move and that 3(q l , 0) = (qu R)

0 0

Fig. 2.21 The NFA M' constructed from the 2DFA M.
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10 0 1

% - </i - </i - ^1

Fig. 2.22 Crossing sequences of 2DFA on input 1001.

justifies the second and third. Since <%,, 1) = (q2 ,
L) we see the justification for

the fourth move, which reverses the direction of travel. Then 3(q2i 0) = (q0 ,
R)

again reverses the direction, and finally 3(q0 , 1) = (qu R) explains the last

move.

2.7 FINITE AUTOMATA WITH OUTPUT

One limitation of the finite automaton as we have defined it is that its output is

limited to a binary signal: "accept'V'don't accept." Models in which the output is

chosen from some other alphabet have been considered. There are two distinct

approaches; the output may be associated with the state (called a Moore machine)

or with the transition (called a Mealy machine). We shall define each formally and

then show that the two machine types produce the same input-output mappings.

Moore machines

A Moore machine is a six-tuple (Q, X, A, <5, X, q0 ), where Q, Z, 3y and q0 are as in

the DFA. A is the output alphabet and X is a mapping from Q to A giving the

output associated with each state. The output ofM in response to input a
t a 2

"'

an > n > 0, is A(g0)A(4i)
'

'

' X(q„), where q0 , qu . .
. , q„ is the sequence of states such

that <5(<ft_ ls a,) = q{
for 1 < i < n. Note that any Moore machine gives output

k(qQ ) in response to input e. The DFA may be viewed as a special case of a Moore
machine where the output alphabet is {0, 1} and state q is "accepting" if and only if

;-(<?)= i-

Example 2.17 Suppose we wish to determine the residue mod 3 for each binary

string treated as a binary integer. To begin, observe that if i written in binary is

followed by a 0, the resulting string has value 2z, and if i in binary is followed by a

1, the resulting string has value 2i + 1. If the remainder of i/3 is p, then the

remainder of 2//3 is 2p mod 3. If p = 0, 1, or 2, then 2p mod 3 is 0, 2, or 1,

respectively. Similarly, the remainder of (2i -h l)/3 is 1, 0, or 2, respectively.

It suffices therefore to design a Moore machine with three states, q0y qu and

q2 , where q} is entered if and only if the input seen so far has residue j. We define
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0 110 2

0 1

Fig. 2.23 A Moore machine calculating residues.

X(qj) = j for j = 0, 1, and 2. In Fig. 2.23 we show the transition diagram, where

outputs label the states. The transition function S is designed to reflect the rules

regarding calculation of residues described above.

On input 1010 the sequence of states entered is q0 , qu q2 , q2 , <?i, giving output

sequence 01221. That is, e (which has "value" 0) has residue 0, 1 has residue 1, 2 (in

decimal) has residue 2, 5 has residue 2, and 10 (in decimal) has residue 1.

Mealy machines

A Mealy machine is also a six-tuple M = (Q, Z, A, d, A, q0 )9
where all is as in the

Moore machine, except that X maps Q x £ to A. That is, X(q, a) gives the output

associated with the transition from state q on input a. The output ofM in response

to input a 1 a2
••• an is X(q0 ,

a
x
)k(qu a2)-- A(qn- l9 an\ where q0y qu ...,qn is the

sequence of states such that <5(gf _ l9 a,) = qt
for 1 < i < n. Note that this sequence

has length n rather than length n + 1 as for the Moore machine, and on input e a

Mealy machine gives output c.

Example 2.18 Even if the output alphabet has only two symbols, the Mealy

machine model can save states when compared with a finite automaton. Consider

the language (0 + 1)*(00 + 11) of all strings of 0's and Ts whose last two symbols

are the same. In the next chapter we shall develop the tools necessary to show that

this language is accepted by no DFA with fewer than five states. However, we may
define a three-state Mealy machine that uses its state to remember the last symbol

read, emits output y whenever the current input matches the previous one, and

emits n otherwise. The sequence of ys and ns emitted by the Mealy machine

corresponds to the sequence of accepting and nonaccepting states entered by a

DFA on the same input; however, the Mealy machine does not make an output

prior to any input, while the DFA rejects the string 6, as its initial state is nonfinal.

The Mealy machine M = ({q0 , p0 , pj, {0, 1}, {y, n}, S, A, q0 ) is shown in Fig.

2.24. We use the label a/b on an arc from state p to state q to indicate that

Hp* a) = q and A(p, a) = b. The response ofM to input 01100 is nnyny, with the

sequence of states entered being q0 PoPi Pi PoPo- Note how p0 remembers a zero

and p x remembers a one. State q0 is initial and "remembers" that no input has yet

been received.
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Fig. 2.24 A Mealy machine.

Equivalence of Moore and Mealy machines

Let M be a Mealy or Moore machine. Define TM (w), for input string w, to be the

output produced by M on input w. There can never be exact identity between the

functions TM and TM . ifM is a Mealy machine and M' a Moore machine, because

|

^(w)
j

is one less than |rM -(w)| for each w. However, we may neglect

the response of a Moore machine to input e and say that Mealy machine M and

Moore machine M' are equivalent if for all inputs w, bTM (w) = TM (w), where b is

the output of M' for its initial state. We may then prove the following theorems,

equating the Mealy and Moore models.

Theorem 2.6 IfM
x
= (Q, E, A, 3, X, q0 ) is a Moore machine, then there is a Mealy

machine M 2 equivalent to M v

Proof Let M 2 = (Q, 1, A, 3, X\ q0 ) and define X'(q, a) to be X(3(q, a)) for all states

q and input symbols a. Then M
x
and M 2 enter the same sequence of states on the

same input, and with each transition M 2 emits the output that Mj associates with

the state entered.

Theorem 2.7 Let M
x
= (Q, Z, A, 3, X, q0 ) be a Mealy machine. Then there is a

Moore machine M 2 equivalent to M
l

.

Proof Let M 2 = (Q x A, E, A, 3', X, [q0 ,
b0]), where b0 is an arbitrarily selected

member of A. That is, the states ofM 2 are pairs [q, b] consisting of a state of Mj
and an output symbol. Define 3'([qy b\ a) = [3(q, a), X(q, a)] and X'([q, b]) = b.

The second component of a state [q, b] ofM 2 is the output made by Mi on some
transition into state q. Only the first components of M 2 's states determine the

moves made by M 2 . An easy induction on n shows that ifM
y
enters states q0 ,

q ly qn on input a
xa2

•• an , and emits outputs b l9 b2 ,
bn , then M 2 enters

states [g0 ,
b0] t [q x ,

b^, [qn ,
bn] and emits outputs b0 ,

bu b 2 ,
b„.

Example 2.19 Let M
x
be the Mealy machine of Fig. 2.24. The states ofM 2 are

[<7o, yl [q<» 4 bo> yl [Po, n], [pu y] 9
and [pu n\ Choose b0 = «, making [g0 , "]
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1

1

Fig. 2.25 Moore machine constructed from Mealy machine.

M 2's start state. The transitions and outputs ofM 2 are shown in Fig. 2.25. Note
that state [q0i y] can never be entered and may be removed.

2.8 APPLICATIONS OF FINITE AUTOMATA

There are a variety of software design problems that are simplified by automatic

conversion of regular expression notation to an efficient computer implementa-

tion of the corresponding finite automaton. We mention two such applications

here; the bibliographic notes contain references to some other applications.

Lexical analyzers

The tokens of a programming language are almost without exception expressible

as regular sets. For example, ALGOL identifiers, which are upper- or lower-case

letters followed by any sequence of letters and digits, with no limit on length, may
be expressed as

(letter)(letter + digit)*

where "letter" stands forA + B + -" + Z + a + b+ -- - + z, an(j "digit" stands

for 0 + 1 + •• + 9. FORTRAN identifiers, with length limit six and letters re-

stricted to upper case and the symbol $, may be expressed as

(letter)(c + letter + digit)
5

where "letter" now stands for ($ + A + B + • • + Z). SNOBOL arithmetic con-

stants (which do not permit the exponential notation present in many other

languages) may be expressed as

(e + -)(digit
+
(- digit* + e) + • digit*)

A number of lexical-analyzer generators take as input a sequence of regular

expressions describing the tokens and produce a single finite automaton recogniz-
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ing any token. Usually, they convert the regular expression to an NFA with

6-transitions and then construct subsets of states to produce a DFA directly,

rather than first eliminating 6-transitions. Each final state indicates the particular

token found, so the automaton is really a Moore machine. The transition function

of the FA is encoded in one of several ways to take less space than the transition

table would take if represented as a two-dimensional array. The lexical analyzer

produced by the generator is a fixed program that interprets coded tables,

together with the particular table that represents the FA recognizing the tokens

(specified to the generator in regular expression notation). This lexical analyzer

may then be used as a module in a compiler. Examples of lexical analyzer generators

that follow the above approach are found in Johnson et al [1968] and Lesk [1975].

Text editors

Certain text editors and similar programs permit the substitution of a string for

any string matching a given regular expression. For example, the UNIX text

editor allows a command such as

s/bt>t>*/b/

that substitutes a single blank for the first string of two or more blanks found in a

given line. Let "any" denote the expression a
t + a2 + • • + an , where the a^s are

all of a computer's characters except the "newline" character. We could convert a

regular expression r to a DFA that accepts any*r. Note that the presence of any*

allows us to recognize a member of L(r) beginning anywhere in the line. However,

the conversion of a regular expression to a DFA takes far more time than it takes

to scan a single short line using the DFA, and the DFA could have a number of

states that is an exponential function of the length of the regular expression.

What actually happens in the UNIX text editor is that the regular expression

any*r is converted to an NFA with (-transitions, and the NFA is then simulated

directly, as suggested in Fig. 2.6. However, once a column has been constructed

listing all the states the NFA can enter on a particular prefix of the input, the

previous column is no longer needed and is thrown away to save space. This

approach to regular set recognition was first expressed in Thompson [1968].

EXERCISES

*S 2.1 Find a finite automaton whose behavior corresponds to the circuit in Fig. 2.26, in the

sense that final states correspond to a 1-output. A circle with a dot represents an AND-gate,

whose output is 1 only if both inputs have value 1. A circle with a + represents an OR-gate,

whose output is 1 whenever either input has value 1. A circle with a ~ represents an

inverter, whose output is 1 for input 0 and 0 for input 1. Assume there is sufficient time

between changes in input values for signals to propagate and for the network to reach a

stable configuration.
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2.2 Historically, finite automata were first used to model neuron nets. Find a finite

automaton whose behavior is equivalent to the neuron net in Fig. 2.27. Final states of the

automaton correspond to a 1 -output of the network. Each neuron has excitatory (circles)

and inhibitory (dots) synapses. A neuron produces-a 1-output if the number of excitatory

synapses with 1-inputs exceeds the number of inhibitory synapses with 1-inputs by at least

the threshold of the neuron (number inside the triangle). Assume there is sufficient time

between changes in input value for signals to propagate and for the network to reach a

stable configuration. Further assume that initially the values of y l9 y2 » and y3 are all 0.

2.3 Consider the toy shown in Fig. 2.28. A marble is dropped in at A or B. Levers x u x 2 ,

and x 3 cause the marble to fall either to the left or right. Whenever a marble encounters a
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C D

Fig. 2.28 A toy.

lever, it causes the lever to change state, so that the next marble to encounter the lever will

take the opposite branch.

a) Model this toy by a finite automaton. Denote a marble in at A by a 0-input and a

marble in at B by a 1 -input. A sequence of inputs is accepted if the last marble comes

out at D.

b) Describe the set accepted by the finite automaton.

c) Model the toy as a Mealy machine whose output is the sequence of Cs and £>'s out of

which successive marbles fall.

2.4 Suppose d is the transition function of a DFA. Prove that for any input strings x and

y, 5(q, xy) — d(6(q, x), y). [Hint: Use induction on |y|.]

2.5 Give deterministic finite automata accepting the following languages over the

alphabet {0, 1}.

a) The set of all strings ending in 00.

b) The set of all strings with three consecutive O's.

c) The set of all strings such that every block of five consecutive symbols contains at least

two O's.

d) The set of all strings beginning with a 1 which, interpreted as the binary representation

of an integer, is congruent to zero modulo 5.

e) The set of all strings such that the 10th symbol from the right end is 1.

* 2.6 Describe in English the sets accepted by the finite automata whose transition diagrams

are given in Fig. 2.29(a) through (c).

'S 2.7 Prove that the FA whose transition diagram is given in Fig. 2.30 accepts the set of all

strings over the alphabet {0, 1} with an equal number of 0's and Ts, such that each prefix

has at most one more 0 than l's and at most one more 1 than 0's.

2.8 Give nondeterministic finite automata accepting the following languages.

a) The set of strings in (0 + 1)* such that some two 0's are separated by a string whose

length is 4i, for some i > 0.

b) The set of all strings over the alphabet {a, b, c} that have the same value when eval-

uated left to right as right to left by multiplying according to the table in Fig. 2.31.
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Fig. 2.31 Nonassociative multiplication table.
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c) The set of all strings of O's and l's such that the 10th symbol from the right end is a 1.

How does your answer compare with the DFA of Problem 2.5(e)?

2.9 Construct DFA's equivalent to the NFA's.

a) ({p, q, r, s}, {0, 1}, S u p, {s}), b) ({p, q, r, s}, {0, 1}, 5 2(p, {q, s})

where 5
1
and S 2 are given in Fig. 2.32.

\ 0 1 \ 0 1

p P, <\ P P q, s

<\ r r r

r s r s p

s 5 s s p

s 1

Fig. 2.32 Two transition functions.

2.10 Write regular expressions for each of the following languages over the alphabet

{0, 1}. Provide justification that your regular expression is correct.

* a) The set of all strings with at most one pair of consecutive CTs and at most one pair

of consecutive Ts.
'

b) The set of all strings in which every pair of adjacent 0*s appears before any pair of

adjacent l's.

c) The set of all strings not containing 101 as a substring.

* d) The set of all strings with an equal number of 0's and Ts such that no prefix has two

more 0's than l's nor two more l's than 0's.

2.11 Describe in English the sets denoted by the following regular expressions.

a) (11 +0)*(00+ 1)*

b) (1 +01 + 001)*(< +0 + 00)

c) [00 + 11 + (01 + 10)(00 + 11)*(01 + 10)]*

2.12 Construct finite automata equivalent to the following regular expressions.

a) 10+ (0+ 11)0*1

b) 01[((10)* + 111)* +0]*1

c) ((0 +l)(0+l))* + ((0+l)(0+l)(0+l))*

2.13 Construct regular expressions corresponding to the state diagrams given in Fig. 2.33.

2.14 Use the ideas in the proof of Theorem 2.4 to construct algorithms for the following

problems.

a) Find the lowest-cost path between two vertices in a directed graph where each edge is

labeled with a nonnegative cost.

b) Determine the number of strings of length n accepted by an FA.

2.15 Construct an NFA equivalent to the 2DFA ({g0 , q5 } y {0, 1}, 6, q0 , {q2}), where 8 is

given by Fig. 2.34.
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\ 0 1

40 (4o, R) (4., *)

41 (<?.. R) (42, H)

42 (92. R) (43, L)

43 (94, L) (43, L)

44 (*>, R) (44, L)

Fig. 2.34 A transition function for a 2DFA.

2.16 Prove the following identities for regular expressions r, s, and f. Here r = s means

4r) = L(s).

a) r + 5 = s + r b) (r + .s) + f = r + (5 + f)

c) (rs)f = r(sf) d) r(s + f) = rs +
e) (r + 5)f = rf + st f ) 0* = £

g) (r*)* = r* h) (£ + r)* = r* i) (r*5*)* = (r + s)*

2.17 Prove or disprove the following for regular expressions r, s, and r.

a) (rs + r)*r = r(sr + r)* b) s(r5 + s)*r = rr*5(rr*s)*

c) (r + s)* = r* + 5*

2.18 A fwo-way nondeterministicfinite automaton (2NFA) is defined in the same manner as

the 2DFA, except that the 2NFA has a set of possible moves for each state and input

symbol. Prove that the set accepted by any 2NFA is regular. [Hint: The observation in the

proof of Theorem 2.5 that no state may repeat with the same direction in a valid crossing

sequence is no longer true. However, for each accepted input we may consider a shortest

computation leading to acceptance.]

2.19 Show that adding the capability of the 2NFA to keep its head stationary (and change

state) on a move does not increase the class of languages accepted by 2NFA.
* 2.20 A 2NFA with endmarkers is a 2NFA with special symbols <^ and $ marking the left

and right ends of the input. We say that input x, which contains no $ or $ symbols, is
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accepted if the 2NFA started with on its tape and with the tape head scanning $ enters

an accepting state anywhere on its input. Show that the 2NFA with endmarkers accepts only

regular sets.

2.21 Consider a 2DFA M = (Q y
E, (5, q0 ,

F). For each string x construct a mapping/from

Q to Q u {<):}, wheref(q) — p if the 2DFA started on the rightmost symbol of x eventually

moves off x to the right, in state p.f(q) = $ means that the 2DFA when started on the

rightmost symbol of x either never leaves x or moves off the left end. Construct a DFA
which simulates M by storing in its finite control a table / instead of a crossing sequence.

** 2.22 Let r and s be regular expressions. Consider the equation X = rX + 5, where rX
denotes the concatenation of r and X, and -I- denotes union. Under the assumption that the

set denoted by r does not contain c, find the solution for X and prove that it is unique. What
is the solution if L(r) contains cl

** 2.23 One can construct a regular expression from a finite automaton by solving a set of

linear equations of the form

where a
XJ
and c, are sets of strings denoted by regular expressions, + denotes set union, and

multiplication denotes concatenation. Give an algorithm for solving such equations.

2.24 Give Mealy and Moore machines for the following processes:

a) For input from (0 + 1)*, if the input ends in 101, output A ; if the input ends in 110,

output B\ otherwise output C.

b) For input from (0 + 1 + 2)* print the residue modulo 5 of the input treated as a

ternary (base 3, with digits 0, 1, and 2) number.

Solutions to Sample Exercises

2.1 Note that the gate output at y x
affects the gate output at y 2 and conversely. We shall

assume values for y {
and y 2 and use these assumed values to compute new values. Then we

repeat the process with the new values until we reach a stable state of the system. In Fig.

2.35 we have tabulated the stable values of yi and y2 for each possible assumed values for Vi

and y2 and for input values 0 and 1.

Input

0 1 \ 0 1

00 00 01 <7o 01

01 11 01 Qi 12 Qi

11 11 10 <]2 12 43

10 00 10 03

(a) (b)

Fig. 2.35 Transitions of switching circuit.
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If y x and y 2 are both assumed to have value 0, then gates A and B have output 0 and

gate C has output equal to the value of the input x. Since both inputs to gate D are 0, the

output of gate D is 0. The output of gate E has the value of the input x. Thus the top row in

Fig. 2.35(a) has entries 00 and 01. The remaining entries are computed in a similar manner.

We can model the circuit by assigning a state to each pair of values for y x y 2 . This is

done in Fig. 2.35(b). Since Vi = y 2 = 1 produces a 1-output, q 2 is a final state. The circuit

can be seen to record the parity of pulses (1-inputs) and produce an output pulse for every

odd-numbered input pulse.

2.7 We are asked to prove that a set informally described in English is the set accepted by

the FA. Clearly we cannot give a completely formal proof. We must either argue intuitively

that some formal description of the set is equivalent to the English description and then

proceed formally or else simply give an informal proof. We choose the latter.

The proof consists of deducing the properties of strings, taking the automaton to each

of the four states, and then proving by induction on the length of a string that our inter-

pretation is correct.

We say that a string x is proper if each prefix of x has at most one more 0 than 1 and at

most one more 1 than 0. We argue by induction on the length of a string x that

1) S(q0 ,
x) = q0 if and only if x is proper and contains an equal number of 0's and l's,

2) S(q0 ,
x) = q x

if and only if x is proper and contains one more 0 than l's,

3) S(qQ ,
x) = q 2 if and only if x is proper and contains one more 1 than 0's,

4) 3(q0 ,
x) = q3 if and only if x is not proper.

Observe that the induction hypothesis is stronger than the desired theorem. Conditions (2),

(3), and (4) are added to allow the induction to go through.

We prove the "if" portions of (1) through (4) first. The basis of the induction, |x
|

=0,

follows since the empty string has an equal number of 0's and l's and S(qQy c) = q0 .

Assume the induction hypothesis is true for all x,
|
x

|
< n, n > 1. Consider a string y of

length n, such that y is proper and has an equal number of 0's and l's. First consider the

case that y ends in 0. Then y = xO, where x is proper and has one more 1 than 0's. Thus

<%o> x)= q 2 . Hence

<5(<7o, v) = S(q0j xO) =% 2 , 0) = q0 .

The case where y ends in a 1 is handled similarly.

Next consider a string y, \y \

= n such that y is proper and has one more 0 than 1. If

y = xO, then x has two more 0's than l's, contradicting the fact that y is proper. Thus

y = xl, where x is proper and has an equal number of 0's and l's. By the induction

hypothesis, d(q0 ,
x) = q0 ', hence d(q0 , y) = q x

.

The situation where y is proper and has one more 1 than 0, and the situation where y is

not proper are treated similarly.

We must now show that strings reaching each state have the interpretations given in ( 1

)

through (4). Suppose that S(q0 , y) = qQ and \y \
> 1. If y = xO, then 3(q0y x) = q 2 , since q 2

is the only state with a 0-transition to state q0 . Thus by the induction hypothesis x is proper

and has one more 1 than 0. Thus y is proper and has an equal number of 0's and l's. The

case where y ends in a 1 is similar, as are the cases S(q0 , y) = qu q2 , or q 3 .
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BIBLIOGRAPHIC NOTES

The original formal study of finite state systems (neural nets similar to that appearing in

Exercise 2.2) is by McCulloch and Pitts [1943]. Kleene [1956] considered regular expres-

sions and modeled the neural nets of McCulloch and Pitts by finite automata, proving the

equivalence of the two concepts. Similar models were considered about that time by Huff-

man [1954], Moore [1956], and Mealy [1955], the latter two being the sources for the terms

"Moore machine" and "Mealy machine." Nondeterministic finite automata were in-

troduced by Rabin and Scott [1959], who proved their equivalence to deterministic autom-

ata. The notion of a two-way finite automaton and its equivalence to the one-way variety

was the independent work of Rabin and Scott [1959] and Shepherdson [1959].

The proof of the equivalence of regular expressions and finite automata as presented

here (via NFA's with ^-transitions) is patterned after McNaughton and Yamada [I960].

Brzozowski [1962, 1964] developed the theory of regular expressions. The fact that the

unique solution to X = rX + s (Exercise 2.22) is r*s if L(r) does not contain e is known as

Arden's [1960] lemma. Floyd [1967] applies the idea of nondeterminism to programs.

Salomaa [1966] gives axiomatizations of regular expressions.

Applications of finite automata to switching circuit design can be found in Kohavi

[1970] and Friedman [1975]. The use of the theory to design lexical analyzers is treated by

Johnson et ai [1968] and Lesk [1975]. Other uses of finite automata theory to design text

editors and other text processing programs are discussed in Thompson [1968], Bullen and

Millen [1972], Aho and Corasick [1975], Knuth, Morris, and Pratt [1977], and Aho and

Ullman [1977].

Some additional works treating finite automata are by Arbib [1970], Conway [1971],

Minsky [1967], Moore [1964], and Shannon and McCarthy [1956].
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CHAPTER

3
PROPERTIES OF

REGULAR
SETS

There are several questions one can ask concerning regular sets. One important

question is: given a language L specified in some manner, is L a regular set? We
also might want to know whether the regular sets denoted by different regular

expressions are the same, or find the finite automaton with fewest states that

denotes the same language as a given FA.

In this chapter we provide tools to deal with questions such as these regarding

regular sets. We prove a "pumping lemma" to show that certain languages are

nonregular. We provide "closure properties" of regular sets; the fact that lan-

guages constructed from regular sets in certain specified ways must also be regular

can be used to prove or disprove that certain other languages are regular. The issue

of regularity or nonregularity can also be resolved sometimes with the aid of the

Myhill-Nerode Theorem of Section 3.4. In addition, we give algorithms to answer

a number of other questions about regular expressions and finite automata such

as whether a given FA accepts an infinite language.

3.1 THE PUMPING LEMMA FOR REGULAR SETS

In this section we prove a basic result, called the pumping lemma, which is a

powerful tool for proving certain languages nonregular. It is also useful in the

development of algorithms to answer certain questions concerning finite autom-

ata, such as whether the language accepted by a given FA is finite or infinite.

If a language is regular, it is accepted by a DFA M = (Q, X, 6, q0 ,
F) with

some particular number of states, say n. Consider an input of n or more symbols

ai^2"' am , m>n, and for /= 1, 2,..., m let d(q0 ,
a

x
a 2

'" fl
f )
= q x

. It is not

55
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possible for each of the n + 1 states q0 , q x , .. .
. , qn to be distinct, since there are only

n different states. Thus there are two integers j and k, 0 < j < k < n, such that

qi = qk . The path labeled a
x
a 2

•
•

' am in the transition diagram ofM is illustrated

in Fig. 3.1. Since j < /c, the string aj+ x
• • • ak is of length at least 1, and since k < n,

its length is no more than n.

Fig. 3.1 Path in transition diagram of DFA M.

If qm is in F, that is, a
x
a 2

'" am is in L(M), then a
x
a 2

"' a
}
ak + x

ak + 2
"' am ls

also in L(M), since there is a path from q0 to qm that goes through qj but not

around the loop labeled aj+i
•• ak . Formally, by Exercise 2.4,

(5(<7o, 0i ajak+l
- am ) = S(S(q0 ,

a
x

ak+1 ••• am )

Similarly, we could go around the loop of Fig. 3.1 more than once— in fact, as

many times as we like. Thus, a
x

•• cij(aj+x
• • am is in L(M) for any

z > 0. What we have proved is that given any sufficiently long string accepted by

an FA, we can find a substring near the beginning of the string that may be

"pumped," i.e., repeated as many times as we like, and the resulting string will be

accepted by the FA. The formal statement of the pumping lemma follows.

Lemma 3.1 Let L be a regular set. Then there is a constant n such that if z is any

word in L, and \z\ > n, we may write z = uvw in such a way that
|
uv

\
< n,

\v
\
> 1, and for all i > 0, uv'w is in L. Furthermore, n is no greater than the

number of states of the smallest FA accepting L.

Proof See the discussion preceding the statement of the lemma. There, z is

a
x
a 2

••• am , u = a
x
a 2

- • ap v = aj+l • ak , and w = ak+ t
• am .

Note that the pumping lemma states that if a regular set contains a long string

z, then it contains an infinite set of strings of the form zzzj'w. The lemma does not

state that every sufficiently long string in a regular set is of the form uv
lw for some

large z. In fact, (0 + 1)* contains arbitrarily long strings in which no substring

appears three times consecutively. (The proof is left as an exercise.)
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Applications of the pumping lemma

The pumping lemma is extremely useful in proving that certain sets are not

regular. The general methodology in its application is an "adversary argument" of

the following form.

1) Select the language L you wish to prove nonregular.

2) The "adversary" picks n, the constant mentioned in the pumping lemma. You
must be prepared in what follows for any finite integer n to be picked, but

once the adversary has picked n, he may not change it.

3) Select a string z in L. Your choice may depend implicitly on the value of n

chosen in (2).

4) The adversary breaks z into i/, i\ and w, subject to the constraints that

|
wi)

|

< n and
|
v

\
> 1.

5) You achieve a contradiction to the pumping lemma by showing, for any t/, r,

and w determined by the adversary, that there exists an i for which ur'vv is not

in L. It may then be concluded that L is not regular. Your selection of /' may
depend on m, u, v, and w.

It is interesting to note that your choice in the above "game" corresponds to

the universal quantifiers (V, or "for all") and the "adversary's" choices correspond

to the existential quantifiers (3. or "there exists") in the formal statement of the

pumping lemma:

(VL)(3//)(Vz)[z in L and |z| > n implies that

(3i/, r, n)(z = t/rvv, \ur\ < //, |r| > 1 and (V/)(i/r'\v is in L))].

Example 3.1 The set L = {0'
2

1
i is an integer, i> 1], which consists of all strings

of O's whose length is a perfect square, is not regular. Assume L is regular and let n

be the integer in the pumping lemma. Let z = 0" 2

. By the pumping lemma, 0" 2 may
be written as i/rw, where 1 < |r| < n and uv'w is in L for all /'. In particular, let

i ~ 2. However, n
2 < \uv

2w\ < n
2

-f n < (n -h l)
2

. That is, the length of uv
2
\v lies

properly between n
2 and (n -f l)

2
, and is thus not a perfect square. Thus ur

2
\v is

not in L, a contradiction. We conclude that L is not regular.

Example 3.2 Let L be the set of strings of CVs and l's. beginning with a 1, whose

value treated as a binary number is a prime. We shall make use of the pumping

lemma to prove that L is not regular. We need two results from number theory.

The first is that the number of primes is infinite and that there are therefore

arbitrarily large primes. The second, due to Fermat, is that 2 P ~
1 — 1 is divisible by

P for any prime p > 2. Stated another way, 2 P ~
1 = 1 mod p (see Hardy and

Wright [1938]).
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58 PROPERTIES OF REGULAR SETS

Suppose L were regular, and let n be the integer in the pumping lemma. Let z

be the binary representation of a prime p such that p > 2". Such a prime exists

since there are infinitely many primes. By the pumping lemma we may write

z = uvw, where
|
v

\
> 1 and uv

lw is the binary representation of a prime for all i.

Let nu ,
nv , and nw be the values of u, v, and w treated as binary numbers. If u or w

are £, then nu or nWJ respectively, is 0. Choose i = p. Then uvpw is the binary

representation of a prime q. The numerical value of q is

„m
2M + pM + „y2H(i + 2M + + 2 ('- 1)M) 4- nw .

By Fermat's theorem, 2 (p
"

1] = 1 mod p. If we raise both sides to the power

1 1? |, we get 2(P_1)M = 1 mod p. Thus

2
p\v\ = 2(p- DM2M = 2 |y| mod p.

Let 5 = 1 + 2H 4- • • • + 2{p~ Then

(2
|y| - l)s = 2pM - 1,

which is 2H - 1 mod p. Thus (2
|y| - l)(s - 1) is divisible by p. But 1 < \v\ <n,

so 2 < 2 |y| < 2M < p. Therefore p cannot divide 2 |y| - 1, so it divides s — 1. That is,

5 = 1 mod p. But

<7 = «u
2H + pM + „

i;

2Hs + w>v ,

so

q = MM
2'w l

+
'

y
l + «y

2»w » + nw mod p. (3.1)

But the right-hand side of (3.1) is the numerical value of p. Thus q = p mod p,

which is to say q is divisible by p. Since q > p > 1, q cannot be prime. But by the

pumping lemma, the binary representation of q is in L, a contradiction. We
conclude that L is not regular.

3.2 CLOSURE PROPERTIES OF REGULAR SETS

There are many operations on languages that preserve regular sets, in the sense

that the operations applied to regular sets result in regular sets. For example, the

union of two regular sets is a regular set, since if r
x
and r2 are regular expressions

denoting regular sets ^ and L2 , then r
t + r2 denotes L Y

u L2 , so L x
u L2 is also

regular. Similarly, the concatenation of regular sets is a regular set and the Kleene

closure of a regular set is regular.

If a class of languages is closed under a particular operation, we call that fact a

closure property of the class of languages. We are particularly interested in effective

closure properties where, given descriptors for languages in the class, there is an

algorithm to construct a representation for the language that results by applying

the operation to these languages. For example, we just gave an algorithm to
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3.2 | CLOSURE PROPERTIES OF REGULAR SETS 59

construct a regular expression for the union of two languages denoted by regular

expressions, so the class of regular sets is effectively closed under union. Closure

properties given in this book are effective unless otherwise stated.

It should be observed that the equivalences shown in Chapter 2 between the

various models of finite automata and regular expressions were effective equiv-

alences, in the sense that algorithms were given to translate from one representa-

tion to another. Thus in proving effective closure properties we may choose the

representation that suits us best, usually regular expressions or deterministic finite

automata. We now consider a sequence of closure properties of regular sets;

additional closure properties are given in the exercises.

Theorem 3.1 The regular sets are closed under union, concatenation, and Kleene

closure.

Proof Immediate from the definition of regular expressions.

Boolean operations

Theorem 3.2 The class of regular sets is closed under complementation. That is,

if L is a regular set and L c X*, then Z* — L is a regular set.

Proof Let L be L(M) for DFA M = (Q, Z lf 3, q0t F) and let L c Z* First, we
may assume Z

1
= Z, for if there are symbols in Z

{
not in Z, we may delete all

transitions ofM on symbols not in Z. The fact that L ^ Z* assures us that we shall

not thereby change the language of M. If there are symbols in Z not in Z 1? then

none of these symbols appear in words of L We may therefore introduce a "dead

state" d into M with S(d, a) = d for all a in Z and S(q, a) = d for all q in Q and a in

Z-Zp
Now, to accept Z* — L, complement the final states of M. That is, let M' = (Q,

<5, <7o> Q ~ F)- Then M' accepts a word w if and only if d(q0 ,
w) is in Q - F, that

is, w is in Z* — L. Note that it is essential to the proof that M is deterministic and

without e moves.

Theorem 3.3 The regular sets are closed under intersection.

Proof L
x
n L2

= L, u L 2 , where the overbar denotes complementation with

respect to an alphabet including the alphabets of L
t
and L2 . Closure under inter-

section then follows from closure under union and complementation.

It is worth noting that a direct construction of a DFA for the intersection of

two regular sets exists. The construction involves taking the Cartesian product of

states, and we sketch the construction as follows.

Let Mj = (Q lJ Y. 9 8 l9 qu F 1
)andM 2 = (6 2 »

Z,5 2j q 2,F2 ) be two deterministic

finite automata. Let

M = (Qt x Q29 Z, 5, [q l9 q2\ F, x F2 ),
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60 PROPERTIES OF REGULAR SETS

where for all p x
in Q l9 p2 in Q 2 , and a in E,

<5([Pi, p2], a) = [<MPi> 4 <52(P2 »
a)].

It is easily shown that £(M) = n £(M 2 ).

Substitutions and homomorphisms

The class of regular sets has the interesting property that it is closed under substi-

tution in the following sense. For each symbol a in the alphabet of some regular

set R, let Ra be a particular regular set. Suppose that we replace each word

a
i
a 2

"' an m R °y tne set °f words of the form Wj w 2
••• w„, where w

f
is an

arbitrary word in jRa .. Then the result is always a regular set. More formally, a

substitution/ is a mapping of an alphabet S onto subsets of A*, for some alphabet

A. Thus/associates a language with each symbol of S. The mapping/is extended

to strings as follows:

1) /(<) = <;

2) f(xa)=f(x)f(a).

The mapping/ is extended to languages by defining

f(L)= 1J /(*)•
x in L

Example 3.3 Let/(0) = a and/(l) = b*. That is,/(0) is the language {a} and/(l)

is the language of all strings of Vs. Then /(010) is the regular set ab*a. If L is the

language 0*(0 + 1)1*, then/(L) is a*(a + b*)(b*)* = a*b*.

Theorem 3.4 The class of regular sets is closed under substitution.

Proof Let R c X* be a regular set and for each a in S let Ra
c A* be a regular

set. Let /: Z -> A* be the substitution defined by f(a) = Ka . Select regular expres-

sions denoting R and each Ra . Replace each occurrence of the symbol a in the

regular expression for R by the regular expression for Ra . To prove that the

resulting regular expression denotes/(K), observe that the substitution of a union,

product, or closure is the union, product, or closure of the substitution. [Thus, for

example, f(L {
u L2)=/(L 1 )

vj /(L2 ).] A simple induction on the number of

operators in the regular expression completes the proof.

Note that in Example 3.3 we computed f(L) by taking L's regular expression

0*(1 + 0)1* and substituting a for 0 and b* for 1. The fact that the resulting

regular expression is equivalent to the simpler regular expression a*b* is a

coincidence.

A type of substitution that is of special interest is the homomorphism. A
homomorphism h is a substitution such that h(a) contains a single string for each a.
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We generally take h(a) to be the string itself, rather than the set containing that

string. It is useful to define the inverse homomorphic image of a language L to be

h~ l
(L) = {x\h(x) is inL}.

We also use, for string w;

h~ 1
(w) = {x\h(x) = w}.

Example 3.4 Let h(0) = aa and h(\) = aba. Then /i(010) = aaabaaa. If Lj is

(01)*, then ^(Lj) is (aaaba)*. Let L2 = (ab + ba)*a. Then h~ 1
(L2 ) consists only of

the string 1. To see this, observe that a string in L2 that begins with b cannot be

h(x) for any string x of O's and l's, since h(0) and /i(l)each begin with an a. Thus if

h~ 1
(w) is nonempty and w is in L2 , then w begins with a. Now either w = a, in

which case h~ l
(w) is surely empty, or w is abW for some w' in (ab + ba)*a. We

conclude that every word in h~ 1
(w) begins with a 1, and since h(\) = aba, W must

begin with a. If w' = a, we have w = aba and /z

_1
(w) = {1}. However, if W ± a,

then W = abW and hence w = ababW . But no string x in (0 + 1)* has h(x) begin-

ning abab. Consequently we conclude that h~
1
(w) is empty in this case. Thus the

only string in L2 which has an inverse image under h is aba, and therefore

r'(L2 ) = {i}.

Observe that h(h
1 (L2 )) = {aba} j= L2 . On the other hand, it is easily shown

that h(h~ l
(L)) c L and h~ l

(h(L)) 3 L for any language L.

Theorem 3.5 The class of regular sets is closed under homomorphisms and in-

verse homomorphisms.

Proof Closure under homomorphisms follows immediately from closure under

substitution, since every homomorphism is a substitution, in which h(a) has one

member.

To show closure under inverse homomorphism, let M = (Q, Z, 3, q0 ,
F) be a

DFA accepting L, and let h be a homomorphism from A to Z*. We construct a

DFA M' that accepts h~ 1
(L) by reading symbol a in A and simulating M on h(a).

Formally, let M' = (Q, A, 3\ q0 ,
F) and define d'(q, a), for q in g and a in A to be

<5(g, /i(a)). Note that h(a) may be a long string, or £, but 3 is defined on all strings by

extension. It is easy to show by induction on |x| that 3'{q0 ,
x) = 3(q0 ,

h(x)).

Therefore M' accepts x if and only if M accepts h(x). That is, L(M') =
h- l

{HM)).
"

Example 3.5 The importance of homomorphisms and inverse homomorphisms
comes in simplifying proofs. We know for example that {0"P

|
n > 1} is not regular.

Intuitively, {a
n
ba

n \n> 1} is not regular for the same reasons. That is, if we had an

FA M accepting {a"ba
n \n> 1}, we could accept {0T \n> 1} by simulating M on

input a for each 0. When the first 1 is seen, simulate M on ba and thereafter

simulate M on a for each 1 seen. However, to be rigorous it is necessary to
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formally prove that {a"ba
n

\
n > 1} is not regular. This is done by showing that

{a
nban

|
n > 1} can be converted to {CI"

|
« > 1} by use of operations that preserve

regularity. Thus {a"ba"
\
> 1} cannot be regular.

Let /ij and h2 be the homomorphisms

h
l
(a) = a, h 2 (a)

h
1 (b) = bai h2(b)

h
t
(c) = a, h2 (c)

Then

h 2 (hi
l
({a

nban
\
n > 1}) n a*bc*) = {0

n
l
n

|
n > 1}. (3.2)

That is,
1
({a

nban
\
n > 1}) consists of all strings in (a + c)*b(a 4- c)* such that the

number of symbols preceding the b is one greater than the number of symbols

following the b. Thus

h~
x
\{a

nban
\
n > 1}) n a*bc* = {a"bc"-

1

1
n > 1}.

Line (3.2) then follows immediately by applying homomorphism /i2 .

If {a"ba
n
\n > 1} were regular, then since homomorphisms, inverse homomor-

phisms, and intersection with a regular set all preserve the property of being

regular, it would follow that {0
n r|« > 1} is regular, a contradiction.

Quotients of languages

Now let us turn to the last closure property of regular sets to be proved in this

section. A number of additional closure properties are given in the exercises.

Define the quotient of languages L
x
and L2 , written L

x
/L2 , to be

{x
|
there exists y in L2 such that xy is in L x ).

Example 3.6 Let Lj be 0*10* and L2 be 10*1. Then L
x
/L2 is empty. Since every y

in L2 has two l's and every string xy which is in L
Y
can have only one 1, there is no

x such that xy is in Lj and y is in L2 .

Let L3 be 0*1. Then L
x
/L3 is 0*, since for any x in 0* we may choose y = 1.

Clearly xy is in L
x
= 0*10* and y is in L3 = 0*1. Since words in L

x
and L3 each

have one 1, it is not possible that words not in 0* are in L
{
/L3 . As another

example, L2 /L3 = 10*, since for each x in 10* we may again choose y = 1 from L3

and xy will be in L2 = 10*1. If xy is in L2 and y is in L3 , then evidently, x is in

10*.

Theorem 3.6 The class of regular sets is closed under quotient with arbitrary

sets.f

t In this theorem the closure is not effective.

= 0,

= 1,

= 1.
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Proof Let M = (Q, Z, S, q0 ,
F) be a finite automaton accepting some regular set

R, and let L be an arbitrary language. The quotient R/L is accepted by a finite

automaton M' = (Q, Z, S, q0 ,
F), which behaves likeM except that the final states

of M' are all states q ofM such that there exists y in L for which d(q, y) is in F.

Then S(q0 ,
x) is in F' if and only if there exists y such that (5(g0 >

xy) is in F. Thus
M' accepts #/L.

One should observe that the construction in Theorem 3.6 is different from all

other constructions in this chapter in that it is not effective. Since L is an arbitrary

set, there may be no algorithm to determine whether there exists y in L such that

S(q, y) is in F. Even ifwe restrict L to some finitely representable class, we still may
not have an effective construction unless there is an algorithm to test for the

existence of such a y. In effect we are saying that for any L, there is surely some F'

such that M with F' as the set of final states accepts R/L However, we may not be

able to tell which subset of Q should be chosen as F'. In the next section we shall

see that if L is a regular set, we can determine F, so the regular sets are effectively

closed under quotient with a regular set.

3.3 DECISION ALGORITHMS FOR REGULAR SETS

It is important to have algorithms to answer various questions concerning regular

sets. The types of questions we are concerned with include: is a given language

empty, finite, or infinite? Is one regular set equivalent to another? and so on.

Before we can establish the existence of algorithms for answering such questions

we must decide on a representation. For our purposes we shall assume regular sets

are represented by finite automata. We could just as well have assumed that

regular sets were represented by regular expressions or some other notation, since

there exist mechanical translations from these notations into finite automata.

However, one can imagine representations for which no such translation algo-

rithm exists, and for such representations there may be no algorithm to determine

whether or not a particular language is empty.

The reader at this stage may feel that it is obvious that we can determine

whether a regular set is empty. We shall see in Chapter 8, however, that for many
interesting classes of languages the question cannot be answered.

Emptiness, finiteness, and infiniteness

Algorithms to determine whether a regular set is empty, finite, or infinite may be

based on the following theorem. We shall discuss efficient algorithms after

presenting the theorem.

Theorem 3.7 The set of sentences accepted by a finite automaton M with n states

is:

1) nonempty if and only if the finite automaton accepts a sentence of length less

than n.
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2) infinite if and only if the automaton accepts some sentence of length <f, where

n < £ < In.

Thus there is an algorithm to determine whether a finite automaton accepts zero,

a finite number, or an infinite number of sentences.

Proof

1) The "if" portion is obvious. Suppose M accepts a nonempty set. Let w be a

word as short as any other word accepted. By the pumping lemma,
|
w

|
< n y

for if w were the shortest and
|
w

|
> n9 then w = uvyf and uy is a shorter word

in the language.

2) If w is in L(M) and n < |w| < In, then by the pumping lemma, L(M) is

infinite. That is, w = w
x
w2 w3 , and for all i, w

x
w2 w 3 is in L Conversely if

L(M) is infinite, then there exists w in L(M), where
|
w

|
> n. If

|
w

|
< 2n, we

are done. If no word is of length between n and In — 1, let w be of length at

least 2n, but as short as any word in L(M) whose length is greater than or

equal to In. Again by the pumping lemma, we can write w = w
t
w2 w3 with

1 <
|

w 2 |
< n and Wj w3 in L(M). Either w was not a shortest word of length

2n or more, or
|

w, w3 |
is between n and 2n — 1, a contradiction in either case.

In part (1), the algorithm to decide whether L(M) is empty is: "See if any word

of length up to n is in L(M )." Clearly there is such a procedure that is guaranteed

to halt. In part (2), the algorithm to decide whether L(M) is infinite is: "See if any

word of length between n and In — 1 is in L(M)." Again, clearly there is such a

procedure that is guaranteed to halt.

It should be appreciated that the algorithms suggested in Theorem 3.7 are

highly inefficient. However, one can easily test whether a DFA accepts the empty

set by taking its transition diagram and deleting all states that are not reachable

on any input from the start state. If one or more final states remain, the language is

nonempty. Then without changing the language accepted, we may delete all states

that are not final and from which one cannot reach a final state. The DFA accepts

an infinite language if and only if the resulting transition diagram has a cycle. The

same method works for NFA's, but we must check that there is a cycle labeled by

something besides c.

Equivalence

Next we show that there is an algorithm to determine if two finite automata accept

the same set.

Theorem 3.8 There is an algorithm to determine if two finite automata are

equivalent (i.e., if they accept the same language).

Proof Let M
x
and M 2 be FA accepting Lx and L2 ,

respectively. By Theorems 3.1,

3.2, and 3.3, (L
x
n L 2 ) u (Lj n L 2 ) is accepted by some finite automation, M 3 . It
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is easy to see that M 3 accepts a word if and only if L
x

L2 . Hence, by Theorem

3.7, there is an algorithm to determine if Lt
= L2 .

3.4 THE MYHILL-NERODE THEOREM AND MINIMIZATION OF
FINITE AUTOMATA

Recall from Section 1.5 our discussion of equivalence relations and equivalence

classes. We may associate with an arbitrary language L a natural equivalence

relation RL ;
namely, xRL y if and only if for each z, either both or neither ofxz and

yz is in L. In the worst case, each string is in an equivalence class by itself, but there

may be fewer classes. In particular, the index (number of equivalence classes) is

always finite if L is a regular set.

There is also a natural equivalence relation on strings associated with a finite

automaton. Let M = (Q, £, S, q0i F) be a DFA. For x and y in Z* let xRM y if and

only if S(q0 ,
x) = S(q0 , y). The relation RM is reflexive, symmetric, and transitive,

since "= " has these properties, and thus RM is an equivalence relation. RM divides

the set X* into equivalence classes, one for each state that is reachable from q0 . In

addition, if xRM y, then xzRM yz for all z in £*, since by Exercise 2.4,

6(q0 ,
xz) = S(S(q0y x), z) = S(S(q0y y), z) = S(qQy yz).

An equivalence relation R such that xRy implies xzRyz is said to be right invariant

(with respect to concatenation). We see that every finite automaton induces a right

invariant equivalence relation, defined as RM was defined, on its set of input

strings. This result is formalized in the following theorem.

Theorem 3.9 (The Myhill-Nerode theorem). The following three statements are

equivalent:

1) The set L ^ is accepted by some finite automaton.

2) L is the union of some of the equivalence classes of a right invariant equiv-

alence relation of finite index.

3) Let equivalence relation RL be defined by: xRL y if and only if for all z in X*,

xz is in L exactly when yz is in L. Then RL is of finite index.

Proof

(1) - (2) Assume that L is accepted by some DFA M = (Q y £, (5, q0y F). Let RM
be the equivalence relation xRM y if and only if S(qQy x) = S(qQy y). RM is right

invariant since, for any z, if d(q0y x) = S(qQy y), then S(qQy xz) = S(qQy yz). The

index of RM is finite, since the index is at most the number of states in Q. Further-

more, L is the union of those equivalence classes that include a string x such that

H%y *) is in Fy that is, the equivalence classes corresponding to final states.

(2) - (3) We show that any equivalence relation E satisfying (2) is a refinement of

RL ; that is, every equivalence class of E is entirely contained in some equivalence

class of RL . Thus the index of RL cannot be greater than the index of E and so is
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finite. Assume that xEy. Then since E is right invariant, for each z in X*, xzEyz,

and thus yz is in L if and only if xz is in L Thus xRL y, and hence the equivalence

class of x in £ is contained in the equivalence class of x in RL . We conclude that

each equivalence class of E is contained within some equivalence class of R L .

(3) -> (1) We must first show that RL is right invariant. Suppose xRL y, and let w
be in E*. We must prove that xwRL yw; that is, for any z, xwz is in L exactly when

ywz is in L But since x#L y, we know by definition of RL that for any v, xv is in L
exactly when yv is in L. Let v = wz to prove that KL is right invariant.

Now let Q be the finite set of equivalence classes of RL and [x] the element of

Q' containing x. Define S'([x], a) = \xa\ The definition is consistent, since RL is

right invariant. Had we chosen y instead of x from the equivalence class [x], we
would have obtained (5'([x], a) = [ya]. But xRL y, so xz is in L exactly when yz is in

L In particular, if z = az\ xaz' is in L exactly when yaz' is in L, so xaRL ya, and

[xa] = [ya]. Let ^ =
[
£] and let F = {[x]

|
x is in L}. The finite automaton

M' = (Q\ Z, <5', accepts L, since d'(q'0> x) = [x], and thus x is in L(M') if and

only if [x] is in F.

Example 3.7 Let L be the language 0*10*. L is accepted by the DFA M of Fig.

3.2. Consider the relation RM defined by M. As all states are reachable from the

start state, RM has six equivalence classes, which are

Ca = (00)*, Cd = (00)*01,

Cb
= (00)*0, Ce = 0*100*,

Cc
= (00)*1, Cf = 0*10*1(0 4- 1)*

L is the union of three of these classes, Cc , Cd , and Ce .

The relation R L for L has xi?L y if and only if either

i) x and y each have no Ts,

o

Fig. 3.2 DFA M accepting L.
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Fig. 3.3 Diagram showing RM is a refinement of RL .

ii) x and y each have one 1, or

iii) x and y each have more than one 1.

For example, ifx = 010 and y = 1000, then xz is in L ifand only if z is in 0*. But yz

is in L under exactly the same conditions. As another example, if x = 01 and

y = 00, then we might choose z = 0 to show that xRLy is false. That is, xz = 010

is in L, but yz = 000 is not.

We may denote the three equivalence classes of RL by C t
= 0*, C2 = 0*10*,

and C3 = 0*10*1(0 -f 1)*. L is the language consisting of only one of these classes,

C2 . The relationship of C
fl

,

C

7 to C l9 C2 , and C3 is illustrated in Fig. 3.3.

For example Ca u Cb
= (00)* + (00)*0 = 0* = C v

From KL we may construct a DFA as follows. Pick representatives for C i9 C 2 ,

and C3 ,
say e> 1, and 1 1. Then let M' be the DFA shown in Fig. 3.4. For example,

0) = [1], since if w is any string in [1] (note [1] is C
x \ say O'lO7

, then wO is

0*10^ \ which is also in C, = 0*10*.

Fig. 3.4 The DFA M\

Minimizing finite automata

The Myhill-Nerode theorem has, among other consequences, the implication that

there is an essentially unique minimum state DFA for every regular set.

Theorem 3.10 The minimum state automaton accepting a set L is unique up to

an isomorphism (i.e., a renaming of the states) and is given by M' in the proof of

Theorem 3.9.
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Proof In the proof of Theorem 3.9 we saw that any DFA M = (Q, Z, d, q0 ,
F)

accepting L defines an equivalence relation that is a refinement of RL . Thus the

number of states ofM is greater than or equal to the number of states of M' of

Theorem 3.9. If equality holds, then each of the states ofM can be identified with

one of the states of M'. That is, let q be a state of M. There must be some x in Z*,

such that S(q0 ,
x) = q, otherwise q could be removed from Q, and a smaller

automaton found. Identify q with the state d'(q'09 x), of M'. This identification will

be consistent. If S(qQy x) = S(q0 , y) = q, then, by the proof ofTheorem 3.9, x and y
are in the same equivalence class of RL . Thus 5'(q'0y x) = d'(q'0 , y).

A minimization algorithm

There is a simple method for finding the minimum state DFAM ofTheorems 3.9

and 3.10 equivalent to a given DFA M = (Q, Z, S, q0 ,
F). Let = be the equivalence

relation on the states of M such that p = q if and only if for each input string x,

S(p, x) is an accepting state if and only if S(qy x) is an accepting state. Observe that

there is an isomorphism between those equivalence classes of = that contain a

state reachable from q0 by some input string and the states of the minimum state

FA M'. Thus the states of M' may be identified with these classes.

Rather than give a formal algorithm for computing the equivalence classes of

= we first work through an example. First some terminology is needed. If p = q,

we say p is equivalent to q. We say that p is distinguishable from q if there exists an

x such that S(p> x) is in F and S(q, x) is not, or vice versa.

Example 3.8 Let M be the finite automaton of Fig. 3.5. In Fig. 3.6 we have

constructed a table with an entry for each pair of states. An X is placed in the table

each time we discover a pair of states that cannot be equivalent. Initially an X is

placed in each entry corresponding to one final state and one nonfinal state. In our

example, we place an X in the entries (a, c), (fr, c), (c, d), (c, e), (c,/), (c, g\ and

(c h).

Fig. 3.5 Finite automaton.
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X

X X

X X X

X X X

X X X X

X X X X X X

X X X X X X

a b c (1 e f g

Fig. 3.6 Calculation of equivalent states.

Next for each pair of states p and q that are not already known to be distin-

guishable we consider the pairs of states r = S(py a) and s = S(qy a) for each input

symbol a. If states r and s have been shown to be distinguishable by some string x,

then p and q are distinguishable by string ax. Thus if the entry (r, s) in the table

has an X, an X is also placed at the entry (p, q). If the entry (r, s) does not yet have

an X, then the pair (p, q) is placed on a list associated with the (r, s)-entry. At

some future time, if the (r, 5) entry receives an X y then each pair on the list

associated with the (r, s)-entry also receives an X.

Continuing with the example, we place an X in the entry (a, b), since the entry

(S(b, 1), d(a, 1)) = (cy f) already has an X. Similarly, the (a, d)-entry receives an X
since the entry (S(a, 0), 3(d, 0)) = (b, c) has an X. Consideration of the (a, e)-entry

on input 0 results in the pair (a, e) being placed on the list associated with (6, h).

Observe that on input 1, both a and e go to the same state/and hence no string

starting with a 1 can distinguish a from e. Because of the 0-input, the pair (a, g) is

placed on the list associated with (b, g). When the (fr, gr)-entry is considered, it

receives an X on account of a 1 -input, and hence the pair (a, g) receives an X since

it was on the list for (b, g). The string 01 distinguishes a from g.

On completion of the table in Fig. 3.6, we conclude that the equivalent states

are a = e, b = h, and d = f. The minimum-state finite automaton is given in Fig.

3.7.

The formal algorithm for marking pairs of inequivalent states is shown in Fig.

3.8. Lemma 3.2 proves that the method outlined does indeed mark all pairs of

inequivalent states.

Lemma 3.2 Let M = (Q, I, d y q0y F) be a DFA. Then p is distinguishable from

q if and only if the entry corresponding to the pair (p, q) is marked in the above

procedure.
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Start

Fig. 3.7 Minimum state finite automaton.

begin

1) for p in F and q in Q — F do mark (p, q);

2) for each pair of distinct states (p, q) in F x F or (Q - F) x (Q — F) do

3) if for some input symbol a, (S(p> a), S(q> a)) is marked then

begin

4) mark (p, q)\

5) recursively mark all unmarked pairs on the list for (p, q) and on the lists

of other pairs that are marked at this step.

end

else /* no pair (<5(p, a), 5(q, a)) is marked */

6) for all input symbols a do

7) put (p, 4) on the list for (<5(p, a\ S(q, a)) unless

<5(p, a) = d(q, a)

end

Fig. 3.8 Algorithm for marking pairs of inequivalent states.

Proof Assume p is distinguishable from qy and let x be a shortest string distin-

guishing p from q. We prove by induction on the length of x that the entry

corresponding to the pair (/?, q) is marked. If x = c then exactly one of p and q
is a final state and hence the entry is marked in line (1). Assume that the hypothesis

is true for |x| < i > 1, and let |x| = i. Write x = ay and let t = S(p, a) and

u = S(qy a). Now y distinguishes t from u and \y\ = 1 — 1. Thus by the induction

hypothesis the entry corresponding to the pair (r, u) eventually is marked. If this

event occurs after the pair (p, q) has been considered, then either the (p, q) entry

has already been marked when (t, u) is considered, or the pair (p, q) is on the

list associated with (r, u), in which case it is marked at line (5). If (p, q) is con-

sidered after (t, u) then (p, q) is marked at the time it is considered. In any event

the entry (p, q) is marked. A similar induction on the number of pairs marked

shows that if the entry (p, q) is marked then p and q are distinguishable.
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The algorithm of Fig. 3.8 is more efficient than the obvious marking algo-

rithm, although it is not the most efficient possible. Let E have k symbols and Q
have n states. Line 1 takes 0(n

2
)
steps.t The loop of lines 2 through 7 is executed

0(n
2
) times, at most once for each pair of states. The total time spent on lines 2

through 4, 6, and 7 is 0(kn
2
). The time spent on line 5 is the sum of the length of all

lists. But each pair (r, s) is put on at most k lists, at line 7. Thus the time spent on

line 5 is 0(kn2
), so the total time is also 0(kn

2
).

Theorem 3.11 The DFA constructed by the algorithm of Fig. 3.8, with inacces-

sible states removed, is the minimum state DFA for its language.

Proof Let M = (Q, X, S, q0 ,
F) be the DFA to which the algorithm is applied and

M' = (Q\ I, S\ [q0], F) be the DFA constructed. That is,

Q =
{[q] |

q is accessible from q0 },

*" = {Mk is inF
)

and

S'([q], a) -[%«)].

It is easy to show that S' is consistently defined, since if q = p, then S(q, a) =
<5(p, a). That is, if d(qy a) is distinguished from (5(p, a) by x, then ax distinguishes q
from p. It is also easy to show that <5'([g0]> w) = [$(q0 >

vv)] by induction on |w|.

Thus L(M') = L(M).

Now we must show that M' has no more states than RL has equivalence

classes, where L = L(M). Suppose it did; then there are two accessible states q and

p in Q such that [q] [p], yet there are x and y such that d(q0 ,
x) = q, d(q0 , y) = p,

and xRL y. We claim that p = q, for if not, then some w in E* distinguishes p from

But then xwRL yw is false, for we may let z = e and observe that exactly one of

xwz and ywz is in L. But since RL is right invariant, xwRL yw is true. Hence g and p
do not exist, and M' has no more states than the index of RL . Thus M' is the

minimum state DFA for L

EXERCISES

3.1 Which of the following languages are regular sets? Prove your answer.

a) {0
2n \n> 1}

b) {0
m
l"0

m + n |m > 1 and n > 1}

c) {0
n

|
n is a prime}

d) the set of all strings that do not have three consecutive O's.

e) the set of all strings with an equal number of O's and l's.

f) {x\x in (0 + 1)*, and x = xR } x
R

is x written backward; for example, (Oil)* = 110.

g) {xwxR \x, w in (0 + 1)
+

}

*h) {xxRw\x f win (0 + 1)
+

}

t We say that g(n) is 0(/(n)) if there exist constants c and n0 such that g(n) < cf(n) for all n > n0 .
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3.2 Prove the following extension of the pumping lemma for regular sets. Let L be a

regular set. Then there exists a constant n such that for each z x , z2 > z3y with z
t
z2 z 3 in Land

I

z i |

= n,z 2 can be written z 2 = uvw such that
|
v

\
> 1 and for each i > 0, z

x
uv*wz 3 is in L

3.3 Use Exercise 3.2 to prove that {0
l

l
m
2m |i > 1, m > 1} is nonregular.

3.4 Let L be a regular set. Which of the following sets are regular? Justify your answers,

a) {a x a3 a 5
-- a2n - 1 1

a x a 2 a 3 aA • • a2n is in L}

S b) {a2 aiaA az a2n a2n-i \a x a2
•• a2n is in L}

c) CYCLE(L) = {x t x 2 \x 2 x x is in L for strings x r
and x 2 }

d) MAX(L) = {x in L|for no y other than e is xy in L}

e) MIN(L) = {x in L|no proper prefix of x is in L}

f) INIT(L) = {x|for some y, xy is in L}

g) LR = {x
|
xR is in L}

h) {x
|
xxR is in L]

3.5 Let value(x) be the result when the symbols of x are multiplied from left to right

according to the table of Fig. 2.31.

a) Is L = {xy ||x| = \y \
and value(x) = value(y)} regular?

b) Is L = {xyjvalue(x) = value(y)} regular?

Justify your answers.

3.6 Show that {WV\gcd(uj) = 1} is not regular.

3.7 Let L be any subset of 0*. Prove that L* is regular.

3.8 A set of integers is linear if it is of the form {c + pi
\
i = 0, 1, 2, . . .}. A set is semilinear if

it is the finite union of linear sets. Let R ^ 0* be regular. Prove that {/|0' is in R} is

semilinear.

3.9 Is the class of regular sets closed under infinite union?

3.10 What is the relationship between the class of regular sets and the least class of

languages closed under union, intersection, and complement containing all finite sets?

3.11 Give a finite automaton construction to prove that the class of regular sets is closed

under substitution.

3.12 Is the class of regular sets closed under inverse substitution?

3.13 Let h be the homomorphism h(a) = 01, h(b) = 0.

a) Find /r 1 ^), where L
x
= (10 + 1)*

b) Find h(L2 \ where L2 = (a + b)*

c) Find h~ ! (L3 ), where L3 is the set of all strings of 0's and Ts with an equal number of 0's

and Ts.

3.14 Show that 2DFA with endmarkers (see Exercise 2.20) accept only regular sets by

making use of closure properties developed in this chapter.

3.15 The use of n with regular expressions does not allow representation of new sets.

However it does allow more compact expression. Show that n can shorten a regular

expression by an exponential amount. [Hint: What is the regular expression of shortest

length describing the set consisting of the one sentence (. .. ((al a x )

2a 2 )

2
•

)

2
^]
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** 3.16 Let L be a language. Define \(L) to be

{x | for some y such that |x
|
=

\y |, xy is in L}.

That is, \(L) is the first halves of strings in L. Prove for each regular L that \(L) is regular.

** 3.17 If L is regular, is the set of first thirds of strings in L regular? What about the last

third? Middle third? Is the set

{xz
|
for some y with

|
x

|
= |y| = \z\, xyz is in L}

regular?

** 3.18 Show that if L is regular, so are

a) SQRT(L) = {x|for some y with |y| = |x|
2

, xy is in L}

b) LOG(L) = {x|for some y with |y| = 2
|JC|

, xy is in L}

* 3.19 A one-pebble 2DFA is a 2DFA with the added capability of marking a tape square by

placing a pebble on it. The next state function depends on the present state, the tape symbol

scanned, and the presence or absence of a pebble on the tape square scanned. A move
consists of a change of state, a direction of head motion, and possibly placing or removing

the pebble from the scanned tape cell. The automaton "jams" if it attempts to place a

second pebble on the input. Prove that one-pebble 2DFA's accept only regular sets. [Hint:

Add two additional tracks to the input that contain tables indicating for each state p, the

state q in which the 2DFA will return if it moves left or right from the tape cell in state p,

under the assumption that the pebble is not encountered. Observe that the one-pebble

2DFA operating on the augmented tape need never leave its pebble. Then make use of a

homomorphic mapping to remove the additional tracks.]

* 3.20 In converting an NFA to a DFA the number of states may increase substantially.

Give upper and lower bounds on the maximum increase in number of states for an n-state

NFA. [Hint: Consider Exercises 2.5(e) and 2.8(c).]

3.21 Give a decision procedure to determine if the set accepted by a DFA is

a) the set of all strings over a given alphabet,

b) cofinite (a set whose complement is finite).

** 3.22 Consider a DFA M. Suppose you are told that M has at most n states and you wish

to determine the transition diagram of M. Suppose further that the only way you can obtain

information concerning M is by supplying an input sequence x and observing the prefixes

of x which are accepted.

a) What assumptions must you make concerning the transition diagram ofM in order to

be able to determine the transition diagram?

b) Give an algorithm for determining the transition diagram ofM (except for the start state)

including the construction of x under your assumptions in part (a).

**S 3.23 Give an efficient decision procedure to determine if x is in the language denoted by

an extended regular expression (a regular expression with operators u, (concatenation),

*, n, and that is complement).

3.24 Give an efficient decision procedure for determining if a semi-extended regular ex-

pression r (a regular expression with u, •, *, n) denotes a nonempty set. [Hint: Space 0( |
r

|

)

and time 0(2
|r|

) are sufficient.]
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1 o 1

Fig. 3.9 A finite automaton.

3.25 Find the minimum-state finite automaton equivalent to the transition diagram of

Fig. 3.9.

3.26

a) What are the equivalence classes of RL in the Myhill-Nerode theorem (Theorem 3.9)

forL = {0"r|>7> 1}?

b) Use your answer in (a) to show {0T \n > 1} not regular.

c) Repeat (a) for {x\x has an equal number of O's and l's}.

3.27 R is a congruence relation if xRy implies wxzRwyz for all w and z. Prove that a set is

regular if and only if it is the union of some of the congruence classes of a congruence

relation of finite index.

3.28 Let M be a finite automaton with n states. Let p and q be distinguishable states ofM
and let x be a shortest string distinguishing p and q. How long can the string x be as a

function of n?

3.29 In a two-tape FA each state is designated as reading tape 1 or tape 2. A pair of strings

(x, y) is accepted if the FA, when presented with strings x and y on its respective tapes,

reaches a final state with the tape heads immediately to the right of x and y. Let L be the set

of pairs accepted by a two-tape FA M. Give algorithms to answer the following questions.

a) Is L empty? b) Is L finite?

c) Do there exist L
x
and L2 such that L = L x

x L2 ?

3.30

a) Prove that there exists a constant c> 0 such that the algorithm of Fig. 3.8 requires time

greater than cn
1
for infinitely many DFA where n is the number of states and the input

alphabet has two symbols.

* b) Give an algorithm for minimizing states in a DFA whose execution time is

0( 1
1 \n log n). Here I is the input alphabet. [Hint: Instead of asking for each pair of

states (p, q) and each input a if <5(p, a) and S(q, a) are distinguishable, partition the

states into final and nonfinal states. Then refine the partition by considering all states

whose next state under some input symbol is in one particular block of the partition.

Each time a block is partitioned, refine the partition further by using the smaller sub-

block. Use list processing to make the algorithm as efficient as possible.]

Solutions to Selected Exercises

3.4(b) L = {a2 axaA a 3
••• a 2n a 2„-i \

aia 2
•• a2n is in L} is regular. Let M = (Q, I, (5, qQy F)

be a DFA accepting L. We construct a DFA M' that accepts L. M' will process tape

symbols in pairs. On seeing the first symbol a in a pair, M' stores a in its finite control. Then
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on seeing the second symbol b, M' behaves like M on the input ba. More formally

M' = (Q u Q x Z, Z, 5', 9o ,
F)

where

i) (5'(g, a) = [g, a], and

ii)
<5'(fa, a], b) = fra).

To prove that M' accepts L we show by induction on even i that

<5'(g, a2 aiaA a3
••• flffl,-!) = (5(<7, a,)-

Clearly, for i = 0, d'(q, e) = q = (5(qr, £). Assume the hypothesis is true for all even j < i. By
the induction hypothesis,

6'(q, a2 a 1
•••

fl
i
_ 2 fl

l
_ 3 ) = 5{q, cna2

*- 0,-2)

= p for some p.

Thus

<5'(g, a2 a !
• • a,- a,- _ !

) = a
t
a

{r
_

,

)

= (5(p,

Therefore a 2 a x aA a^ ••• 0^,-1 is in L(M') if and only if a x a 2
•" a,- is in L(M), and thus

L(M') = L.

3.23 One can clearly construct a finite automaton equivalent to R by combining finite

automata corresponding to subexpressions of R and then simulating the automaton on x.

We must examine the combining process to see how it affects the size of the resulting

automaton. If we work with DFA's then the number of states for a union or intersection

grows as the product. However, concatenation and closure may increase the number of

states exponentially, as we need to convert DFA's to NFA's and then perform the subset

construction. If we work with NFA's, then the number of states is additive for union,

concatenation, and closure and increases as the product for intersection. However, comple-

ments require a conversion from an NFA to a DFA and hence an exponential increase in

the number of states. Since operators can be nested, the number of states can be exponen-

tiated on the order of n times for an expression with n operators, and thus this technique is

not in general feasible.

A more efficient method based on a dynamic programming technique (see Aho,

Hopcroft, and Ullman [1974]) yields an algorithm whose execution time is polynomial in

the length of the input w and the length of the regular expression s. Let n = |w| + \s\.

Construct a table which for each subexpression r of s and each substring xu of w gives the

answer to the question: Is xi} in L(r), where x0 is the substring of w of length j beginning at

position /?The table is of size at most h
3

, since there are at most n subexpressions of s and

n(n + l)/2 substrings of w. Fill in the table starting with entries for small subexpressions

(those without operators, that is, a, £, or 0). Then fill in entries for x and r, where r is of one

of the forms r
x
n r 2 , r

x + r 2 ,
r

x
r2 , rf, or ir

x . We handle only the case r?. We proceed in

order of the length of x. To determine tf_x is in rf, given that we already know for each
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proper substring y of x whether y is in r x or in rf, we need only check for each Xi and x 2

such that x = Xix 2 and Xi e, whether x t is in rj and x 2 is in rf. Thus to calculate the

table entry for x and r requires time 0( |
x

\
+

|
r

|

). Hence the time to fill in the entire table is

0(h4 ). To determine if w is in s we need only consult the entry for s and w, noting that

w = x lk , where k =
|

w|.
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CHAPTER

4
CONTEXT-FREE
GRAMMARS

4.1 MOTIVATION AND INTRODUCTION

In this chapter we introduce context-free grammars and the languages they

describe—the context-free languages. The context-free languages, like the regular

sets, are of great practical importance, notably in defining programming lan-

guages, in formalizing the notion of parsing, simplifying translation of program-

ming languages, and in other string-processing applications. As an example,

context-free grammars are useful for describing arithmetic expressions, with arbi-

trary nesting of balanced parentheses, and block structure in programming lan-

guages (that is, begin's and end's matched like parentheses). Neither of these aspects

of programming languages can be represented by regular expressions.

A context-free grammar is a finite sef\>f variables (also called nonterminals or

syntactic categories) each of which represents a language. The languages repre-

sented by the variables are described recursively in terms of each other and

primitive symbols called terminals. The rules relating the variables are called

productions. A typical production states that the language associated with a given

variable contains strings that are formed by concatenating strings from the lan-

guages of certain other variables, possibly along with some terminals.

The original motivation for context-free grammars was the description of

natural languages. We may write rules such as

(sentence) -> (noun phrase)(verb phrase)

(noun phrase) -> (adjective)(noun phrase)

(noun phrase) -> (noun)

(noun) -* boy

(adjective) -> little (4.1)

77
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where the syntactic categories! are denoted by angle brackets and terminals by

unbracketed words like "boy" and "little."

The meaning of

(sentence) -> (noun phrase)(verb phrase)

is that one way to form a sentence (a string in the language of the syntactic

category (sentence)) is to take a noun phrase and follow it by a verb phrase. The
meaning of

(noun) -> boy

is that the string consisting of the one-terminal symbol "boy" is in the language of

the syntactic category (noun). Note that "boy" is a single terminal symbol, not a

string of three symbols.

For a number of reasons, context-free grammars are not in general regarded

as adequate for the description of natural languages like English. For example, if

we extended the productions of (4.1) to encompass all of English, we would be

able to derive "rock" as a noun phrase and "runs" as a verb phrase. Thus "rock

runs" would be a sentence, which is nonsense. Clearly some semantic information

is necessary to rule out meaningless strings that are syntactically correct. More
subtle problems arise when attempts are made to associate the meaning of the

sentence with its derivation. Nevertheless context-free grammars play an impor-

tant role in computer linguistics.

While linguists were studying context-free grammars, computer scientists

began to describe programming languages by a notation called Backus-Naur

Form (BNF), which is the context-free grammar notation with minor changes in

format and some shorthand. This use of context-free grammars has greatly

simplified the definition of programming languages and the construction of com-

pilers. The reason for this success is undoubtedly due in part to the natural way in

which most programming language constructs are described by grammars. For

example, consider the set of productions

1) (expression) -» (expression) + (expression)

2) (expression) -* (expression) * (expression)

3) (expression) -> ((expression))

4) (expression) -> id (4.2)

which defines the arithmetic expressions with operators 4- and * and operands

represented by the symbol id. Here (expression) is the only variable, and the

terminals are +,*,(, ), and id. The first two productions say that an expression

t Recall that the term "syntactic category" is a synonym for "variable." It is preferred when dealing

with natural languages.
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can be composed of two expressions connected by an addition or multiplication

sign. The third production says that an expression may be another expression

surrounded by parentheses. The last says a single operand is an expression.

By applying productions repeatedly we can obtain more and more com-
plicated expressions. For example,

(expression) => (expression) * (expression)

=> ((expression)) * (expression)

=> ((expression)) * id

=> ((expression) 4- (expression)) * id

=> ((expression) + id) * id

=> (id + id) * id (4.3)

The symbol => denotes the act of deriving, that is, replacing a variable by the

right-hand side of a production for that variable. The first line of (4.3) is obtained

from the second production. The second line is obtained by replacing the first

(expression) in line 1 by the right-hand side of the third production. The remain-

ing lines are the results of applying productions (4), (1), (4), and (4). The last line,

(id 4- id) * id, consists solely of terminal symbols and thus is a word in the lan-

guage of (expression).

4.2 CONTEXT-FREE GRAMMARS

Now we shall formalize the intuitive notions introduced in the previous section. A
context-free grammar (CFG or just grammar) is denoted G = (V, T, P, S), where

V and T are finite sets of variables and terminals, respectively. We assume that V
and T are disjoint. P is a finite set of productions; each production is of the form

A -> a, where A is a variable and a is a string of symbols from (V u T)*. Finally, S
is a special variable called the start symbol.

Example 4.1 Suppose we use £ instead of (expression) for the variable in the

grammar (4.2). Then we could formally express this grammar as ({£}, { + , *,(,),

id}, P, £), where P consists of

£->£ + £

£->£*£

£-(£)

£-*id
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In this and the next two chapters we use the following conventions regarding

grammars.

1) The capital letters A, B, C, D9 E, and S denote variables; S is the start symbol

unless otherwise stated.

2) The lower-case letters a, b, c, d, ey digits, and boldface strings are terminals.

3) The capital letters X, Y, and Z denote symbols that may be either terminals or

variables.

4) The lower-case letters u, v, w, x, v, and z denote strings of terminals.

5) The lower-case Greek letters a, p, and y denote strings of variables and

terminals.

By adhering to the above conventions, we can deduce the variables, terminals,

and the start symbol of a grammar solely by examining the productions. Thus we

often present a grammar by simply listing its productions. If A -> olu A -> a2 , . .
.

,

A->ak are the productions for the variable A of some grammar, then we may
express them by the notation

i4->a,|a2 |---|ak ,

where the vertical line is read "or." The entire grammar of Example 4.1 could be

written

£->£ + £(£* E|(£:) | id

Derivations and languages

We now formally define the language generated by a grammar G = (V, T, P,
(
S).

To do so, we develop notation to represent a derivation. First we define two

relations =g> and %- between strings in (V u T)*. IfA -> P is a production ofP and

a and y are any strings in (V u T)*, then aAy ^> a/fy. We say that the production

A -+ P is applied to the string ccAy to obtain a/fy or that cuAy directly derives ccfiy in

grammar G. Two strings are related by =?> exactly when the second is obtained

from the first by one application of some production.

Suppose that a l9 a2 ,
aOT

are strings in (Ku 7*)*, m > 1, and

«1 ^ «2> <*2 ^ «3» • • • >
am- 1 ? «m-

Then we say aj ^> am or aj derives am in grammar G. That is, is the reflexive and

transitive closure of => (see Section 1.5 for a discussion of closures of relations).

Alternatively, a =?> p ifp follows from a by application of zero or more productions

of P. Note that a =?> a for each string a. Usually, if it is clear which grammar G is

involved, we use => for =» and ^> for If a derives P by exactly i steps, we say

The language generated by G [denoted L(G)] is {w
|
w is in T* and S => w}. That
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is, a string is in L(G) if:

1) The string consists solely of terminals.

2) The string can be derived from S.

We call L a context-free language (CFL) if it is L(G) for some CFG G. A string of

terminals and variables a is called a sententialform if S ^> a. We define grammars

G
x
and G 2 to be equivalent if L(G

t ) = L(G2 ).

Example 4.2 Consider a grammar G = (F, T, P, 5), where K = {S}, 7 = {a, b}

and P = {S->flS6, S-+ab). Here, S is the only variable; a and 6 are terminals.

There are two productions, S -> aSfr and S -> ab. By applying the first production

n — 1 times, followed by an application of the second production, we have

S => aSb => aaSbb => a3Sb3 =>•••=> a
n ~ 1S^n ~ 1 => <rt

n
.

Furthermore, the only strings in L(G) are a
n
b
n
for rc > 1. Each time S -> aS6 is

used, the number of S's remains the same. After using the production S-+abwe
find that the number of S's in the sentential form decreases by one. Thus, after

using S -> ab, no S's remain in the resulting string. Since both productions have an

S on the left, the only order in which the productions can be applied is S -> aSb

some number of times followed by one application of S -* ab. Thus, L(G) =
{a

n
b
n
\n > 1}.

Example 4.2 was a simple example of a grammar. It was relatively easy to

determine which words were derivable and which were not. In general, it may be

exceedingly hard to determine what is generated by the grammar. Here is another,

more difficult example. *

Example 4.3 Consider G = (V, T, P, S), where V = {Sy A, £}, T = {a, b}
y
and P

consists of the following:

aB A -> bAA

bA B-+b

A-> a B->bS

A-> aS B -> aBB

The language L(G) is the set of all words in T+
consisting of an equal number

of a's and fr's. We shall prove this statement by induction on the length of a word.

Inductive hypothesis For w in T +
,

1) S^> vv if and only if w consists of an equal number of a's and Vs.

2) A ^> w if and only if w has one more a than it has fr's.

3) B^>w if and only if w has one more b than it has a\
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The inductive hypothesis is certainly true if
|
w

|
= 1, since A ^> a, B b, and

no terminal string oflength one is derivable from S. Also, since all productions but

A -> a and B -> b increase the length of a string, no strings of length one other than

a and b are derivable from A and 5, respectively. Also, no strings of length one are

derivable from S.

Suppose that the inductive hypothesis is true for all w of length k — 1 or less.

We shall show that it is true for
|
w

|

= k. First, if S ^> w, then the derivation must

begin with either S -> aB or S -> bA. In the first case, w is of the form awu where

\w
1 1
= k — 1 and B^> wv By the inductive hypothesis, the number of Vs in w

1
is

one more than the number of a's, so w consists of an equal number of a's and Vs. A
similar argument prevails if the derivation begins with S -> bA.

We must now prove the "only if" of part (1), that is, if
|
w

|
= k and w consists

of an equal number of a's and tfs, then S^ w. Either the first symbol ofw is a or it

is b. Assume that w = awv Now |

Wj
|
= k — 1, and w t

has one more b than it has

a's. By the inductive hypothesis, B^>Wj. But then S=> aB^>aw
t
= w. A similar

argument prevails if the first symbol of w is b.

Our task is not done. To complete the proof, we must prove parts (2) and (3)

of the inductive hypothesis for w oflength k. We do this in a manner similar to our

method of prpof for part (1); this part is left to the reader.

4.3 DERIVATION TREES

It is useful to display derivations as trees. These pictures, called derivation (or

parse) trees, superimpose a structure on the words of a language that is useful in

applications such as the compilation of programming languages. The vertices of a

derivation tree are labeled with terminal or variable symbols of the grammar or

possibly with c. If an interior vertex n is labeled A, and the sons of n are labeled X lt

X 2 , • . • , Xk from the left, then A-+X
l
X 2

"' Xk must be a production. Figure 4.1

shows the parse tree for derivation (4.3). Note that if we read the leaves, in

left-to-right order, we get the last line of (4.3), (id + id) * id.

<expression>

<expression> * <exprcssion>

( <expression> ) id

<expression> + <expression>

I I

id id

Fig. 4.1 Derivation tree.
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More formally, let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse)

tree for G if:

1) Every vertex has a tafce/, which is a symbol of Fu Tu {e}.

2) The label of the root is S.

3) If a vertex is interior and has label A, then A must be in V.

4) If n has label A and vertices n l9 n2i are the sons of vertex w, in order

from the left, with labels Xu X2t Xk ,
respectively, then

A * -^2 * * *
"^Jfc

must be a production in P.

5) If vertex n has label e, then n is a leaf and is the only son of its father.

Example 4.4 Consider the grammar G = ({S, A), {a, b\ P, S), where P consists of

S -> a>4S
|
a

We draw a tree, just this once, with circles instead of points for the vertices.

The vertices will be numbered for reference. The labels will be adjacent to the

vertices. See Fig. 4.2.

The interior vertices are 1, 3, 4, 5, and 7. Vertex 1 has label S, and its sons,

from the left, have labels a, A, and S. Note that S aAS is a production. Likewise,

vertex 3 has label A, and the labels o&its sons are S, b, and A from the left.

A SbA is also a production. Vertices 4 and 5 each have label S. Their only sons

each have label a, and S -> a is a production. Lastly, vertex 7 has label A and its

sons, from the left, have labels b and a. A^ba is also a production. Thus, the

conditions for Fig. 4.2 to be a derivation tree for G have been met.

Fig. 4.2 Example of a derivation tree.
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We may extend the "from the left" ordering of sons to produce a left-to-right

ordering of all the leaves. In fact, for any two vertices, neither of which is an

ancestor of the other, one is to the left of the other. Given vertices v
l
and v2 , follow

the paths from these vertices toward the root until they meet at some vertex w. Let

Xj and x 2 be the sons of w on the paths from v
x
and v 2 ,

respectively. If i\ is not an

ancestor of v2 , or vice versa, then x
1 j= x2 .

Suppose x
x

is to the left of x 2 in the

ordering of the sons of w. Then v l
is to the left of v 2 . In the opposite case, v 2 is to

the left of vv For example, if v
1
and v2 are 9 and 1 1 in Fig. 4.2, then w is 3, x 1

= 5,

and x 2 = 7. As 5 is to the left of 7, it follows that 9 is to the left of 11.

We shall see that a derivation tree is a natural description of the derivation of

a particular sentential form of the grammar G. If we read the labels of the leaves

from left to right, we have a sentential form. We call this string the yield of the

derivation tree. Later, we shall see that if a is the yield of some derivation tree for

grammar G = (V, T, P, S), then S => a, and conversely.

We need one additional concept, that of a subtree. A subtree of a derivation

tree is a particular vertex of the tree together with all its descendants, the edges

connecting them, and their labels. It looks just like a derivation tree, except that

the label of the root may not be the start symbol of the grammar. If variable A
labels the root, then we call the subtree an A-tree. Thus "S-tree" is a synonym for

"derivation tree" if S is the start symbol.

Example 4.5 Consider the grammar and derivation tree of Example 4.4. The

derivation tree of Fig. 4.2 is reproduced without numbered vertices as Fig. 4.3(a).

The yield of the tree in Fig. 4.3(a) is aabbaa. Referring to Fig. 4.2 again, we see that

the leaves are the vertices numbered 2, 9, 6, 10, 1 1, and 8, in that order, from the

left. These vertices have labels a, a, b, b, a, a, respectively. Note that in this case all

leaves had terminals for labels, but there is no reason why this should always be

so; some leaves could be labeled by c or by a variable. Note that S|> aabbaa by

the derivation

S => aAS => aSbAS => aabAS => aabbaS => aabbaa.

Figure 4.3(b) shows a subtree of the tree illustrated in part (a). It is vertex 3 of

Fig. 4.2, together with its descendants. The yield'of the subtree is abba. The label of

the root of the subtree is A, and A ^> abba. A derivation in this case is

A => SbA => abA => abba.

The relationship between derivation trees and derivations

Theorem 4.1 Let G = (V, T, P, S) be a context-free grammar. Then S ^> a if and

only if there is a derivation tree in grammar G with yield a.

Proof We shall find it easier to prove something in excess of the theorem. What

we shall prove is that for any A in V, A ^> a if and only if there is an /1-tree with a

as the yield.
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Suppose, first, that a is the yield of an ,4-tree. We prove, by induction on the

number of interior vertices in the tree, that A ^> a. If there is only one interior

vertex, the tree must look like the one in Fig. 4.4. In that case, X
1
X 2

• • Xn must
be a, and A -> a must be a production of P, by definition of a derivation tree.

A

Fig. 4.4 Tree with one interior vertex.

Now, suppose that the result is true for trees with up to k — 1 interior vertices.

Also, suppose that a is the yield of an ,4-tree with k interior vertices for some
k> 1. Consider the sons of the root. These could not all be leaves. Let the labels of

the sons be X u X 2 , . -
. , Xn in order from the left. Then surely, A -> X

X
X 2

' '

' Xn is

a production in P. Note that n may be any integer greater than or equal to one in

the argument that follows.

If the ith son is not a leaf, it is the root of a subtree, and X
f
must be a variable.

The subtree must be an X,-tree and has some yield a,. If vertex i is a leaf, let

a,- = X
t
. It is easy to see that if j < /, vertex j and all of its descendants are to the

left of vertex i and all of its descendants. Thus a = a, a2
• • • a„. A subtree must have

fewer interior vertices than its tree does, unless the subtree is the entire tree. By the

inductive hypothesis, for each vertex i that is not a leaf, X
s
^> ah since the subtree

with root Xi is not the entire tree. If X
t
= a„ then surely X

t
^> a,. We can put all

these partial derivations together, to see that

A=>X
X
X2 Xn ^>oc 1

X2
••• Xn *><x l

*2X 3
•• Xn *>--*>cx l

<x2
• an

= a.

(4.4)

Thus A^xx. Note that (4.4) is only one of many possible derivations we could

produce from the given parse tree.
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Now, suppose that A ^> a. We must show that there is an yl-tree with yield a.

If A ^> a by a single step, then A -» a is a production in P, and there is a tree with

yield a, of the form shown in Fig. 4.4.

Now, assume that for any variable A if A ^> a by a derivation of fewer than /c

steps, then there is an ,4-tree with yield a. Suppose that A ^> a by a derivation of k

steps. Let the first step be A-* X l
X 2

'- Xn . It should be clear that any symbol in

a must either be one ofXu X 2 >
Xn or be derived from one of these. Also, the

portion of a derived from X
t
must lie to the left of the symbols derived from X

jy
if

i < j. Thus, we can write a as ol
x

ol 2
••• a„, where for each i between 1 and n,

1) a
t
= X

(
if X

{
is a terminal, and

2) Xi^xxi if X, is a variable.

If X
f

is a variable, then the derivation of a
f
from AT, must take fewer than k

steps, since the entire derivation A ^> a takes /c steps, and the first step is surely not

part of the derivation X
t
^> a

f
. Thus, by the inductive hypothesis, for each X

{
that

is a variable, there is an Xrtree with yield a
f
. Let this tree be 7J.

We begin by constructing an ,4-tree with n leaves labeled X lf X2 , . .
. , Xn , and

no other vertices. This tree is shown in Fig. 4.5(a). Each vertex with label Xh

where X
t
is not terminal, is replaced by the tree 7J. IfX

t
is a terminal, no replace-

ment is made. An example appears in Fig. 4.5(b). The yield of this tree is a.

A A

(a) (b)

Fig. 4.5 Derivation trees.

Example 4.6 Consider the derivation S ^> aabbaa of Example 4.5. The first step

is S -> aAS. If we follow the derivation, we see that A eventually is replaced by

SbA, then by abA, and finally, by abba. Figure 4.3(b) is a parse tree for this

derivation. The only symbol derived from S in aAS is a. (This replacement is the

last step.) Figure 4.6(a) is a tree for the latter derivation.

Figure 4.6(b) is the derivation tree for 5 -> aAS. If we replace the vertex with

label A in Fig. 4.6(b) by the tree of Fig. 4.3(b) and the vertex with label S in Fig.

4.6(b) with the tree of Fig. 4.6(a), we get the tree of Fig. 4.3(a), whose yield is

aabbaa.
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S S

a aAS
(a) (b)

Fig. 4.6 Derivation trees.

Leftmost and rightmost derivations; ambiguity

If at each step in a derivation a production is applied to the leftmost variable, then

the derivation is said to be leftmost. Similarly a derivation in which the rightmost

variable is replaced at each step is said to be rightmost. If w is in L(G) for CFG G,

then w has at least one parse tree, and corresponding to a particular parse tree, w
has a unique leftmost and a unique rightmost derivation. In the proof ofTheorem

4.1, the derivation of a from A corresponding to the parse tree in question is

leftmost, provided the derivations X
{
^> a

{
are made leftmost. If instead of deriva-

tion (4.4) we (recursively) made the derivation X
t
^> a

f
be rightmost and replaced

the Xi's by a,- from the right rather than the left, we would obtain the rightmost

derivation corresponding to the parse tree.

Of course, w may have several rightmost or leftmost derivations since there

may be more than one parse tree for w. However, it is easy to show that from each

derivation tree, only one leftmost and one rightmost derivation may be obtained.

Also, the construction of Theorem 4.1 produces different derivation trees from

different leftmost or different rightmost derivations.

Example 4.7 The leftmost derivation corresponding to the tree of Fig. 4.3(a) is

S => aAS => aSbAS => aabAS => aabbaS => aabbaa.

The corresponding rightmost derivation is

S => aAS => aAa => aSbAa => aSbbaa => aabbaa.

A context-free grammar G such that some word has two parse trees is said to

be ambiguous. From what we have said above, an equivalent definition of ambigu-

ity is that some word has more than one leftmost derivation or more than one

rightmost derivation. A CFL for which every CFG is ambiguous is said to be an

inherently ambiguous CFL. We shall show in Section 4.7 that inherently ambi-

guous CFL's exist.

4.4 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS

There are several ways in which one can restrict the format of productions without

reducing the generative power of context-free grammars. If L is a nonempty
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context-free language then it can be generated by a context-free grammar G with

the following properties.

1) Each variable and each terminal of G appears in the derivation ofsome word

in L.

2) There are no productions of the form A -> B where A and B are variables.

Furthermore, if e is not in L, there need be no productions of the form A -> e. In

fact, if e is not in L, we can require that every production of G be of one of the

forms A-> BC and A -> a, where A, B, and C are arbitrary variables and a is an

arbitrary terminal. Alternatively, we could make every production of G be of the

form A -> aoi, where a is a string of variables (perhaps empty). These two special

forms are called Chomsky normal form and Greibach normal form, respectively.

Useless symbols

We now undertake the task of eliminating useless symbols from a grammar. Let

G = (V, T, P, S) be a grammar. A symbol X is useful if there is a derivation

S^xxX($^>w for some a, and w, where w is in 7* (recall our convention

regarding names of symbols and strings). Otherwise X is useless. There are two

aspects to usefulness. First some terminal string must be derivable from X and

second, X must occur in some string derivable from S. These two conditions are

not, however, sufficient to guarantee that X is useful, since X may occur only in

sentential forms that contain a variable from which no terminal string can be

derived.

Lemma 4.1 Given a CFG G = (V, T, P, S\ with L(G) + 0, we can effectively

find an equivalent CFG G' = (V, T, F, S) such that for each A in V there is some

w in T* for which A^>w.

Proof Each variable A with production A -> w in P clearly belongs in V. If

A -> XjA^ • • • Xn is a production, where each X
f
is either a terminal or a variable

already placed in V\ then a terminal string can be derived from A by a derivation

beginning /4=>X
1
X 2

•• Xn , and thus /I belongs in V. The set K' can be

computed by a straightforward iterative algorithm. F is the set of all productions

whose symbols are in V u T.

The algorithm of Fig. 4.7 finds all variables A that belong to V. Surely ifA is

added to NEWV at line (2) or (5), then A derives a terminal string. To show

NEWV is not too small, we must show that ifA derives a terminal string w, then A
is eventually added to NEWV. We do so by induction on the length of the

derivation A ^> w.

Basis If the length is one, then A -* w is a production, and A is added to NEWV
in step (2).

Induction Let A=>X X
X 2

"' Xn ^>w by a derivation of /c steps. Then we may
write w = w

l
w2

-• w„, where X
f
^> w

f ,
for 1 < i < n, by a derivation of fewer than
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begin

1) OLDV:= 0;
2) NEWV:= {A

\
A -* w for some w in 7*};

3) while OLDV + NEWV do

begin

4) OLDV:= NEWV;
5) NEWV:= OLDV u {A

|
A -> a for some a in (7 u OLDV)*}

end;

6) K':= NEWV
end

Fig. 4.7 Calculation of V

.

k steps. By the inductive hypothesis, those X
{
that are variables are eventually

added to NEWV. At the while-loop test of line (3), immediately after the last of the

X
t

y

s is added to NEWV, we cannot have NEWV = OLDV, for the last of these

X^s is not in OLDV. Thus the while-loop iterates at least once more, and A will be

added to NEWV at line (5).

Take V to be the set computed at line (6) and F to be all productions whose

symbols are in V u 7. Surely G' = (V, 7, F, S) satisfies the property that if A is

in V, then A ^> w for some w. Also, as every derivation in G' is a derivation of G,

we know L(G') £ L(G). But if there is some w in L(G) not in L(G'), then any

derivation of w in G must involve a variable in V — V or a production in P — P'

(which implies there is a variable in V — V used). But then there is a variable in

V — V that derives a terminal string, a contradiction.

Lemma 4.2 Given a CFG G = (V, T, Pf S) we can effectively find an equivalent

CFG G' = (V, T, F, S) such that for each X in V u T there exist a and £ in

(r u r)*for which S:S>aX0.

Proof The set V u 7' of symbols appearing in sentential forms of G is con-

structed by an iterative algorithm. Place S in V . If A is placed in V and

A-±u.
x |a2 1

• - - |a„, then add all variables of a
x ,

a2 , a„ to the set F and all

terminals of o^, a2 ,

a

n to 7\ P' is the set of productions of P containing only

symbols of V u T.

By first applying Lemma 4.1 and then Lemma 4.2, we can convert a grammar
to an equivalent one with no useless symbols. It is interesting to note that applying

Lemma 4.2 first and Lemma 4.1 second may fail to eliminate all useless symbols.

Theorem 4.2 Every nonempty CFL is generated by a CFG with no useless sym-
bols.

Proof Let L = Jjfi) be a nonempty CFL. Let G
x
be the result of applying the

construction of Lemma 4.1 to G and let G2 be the result of applying the construc-

tion of Lemma 4.2 to G v Suppose G2 has a useless symbol X. By Lemma 4.2, there

is a derivation S §> aXp. Since all symbols ofG2 are symbols of G 1? it follows from
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Lemma 4.1 that S §> ctXf} |> w for some terminal string w. Therefore, no symbol in

the derivation aXf$=>w is eliminated by Lemma 4.2. Thus, X derives a terminal

string in G 2 , and hence X is not useless as supposed.

Example 4.8 Consider the grammar

S-*AB\a

A^a (4.5)

Applying Lemma 4.1, we find that no terminal string is derivable from B. We
therefore eliminate B and the production S -> AB. Applying Lemma 4.2 to the

grammar

S-+a

A->a (4.6)

we find that only S and a appear in sentential forms. Thus ({S}, {a}, {S -* a}, S) is an

equivalent grammar with no useless symbols.

Suppose we first applied Lemma 4.2 to (4.5). We would find that all symbols

appeared in sentential forms. Then applying Lemma 4.1 we would be left with

(4.6), which has a useless symbol, A.

e-Productions

We now turn our attention to the elimination of productions of the form A-+e,

which we call e-productions. Surely if e is in L(G), we cannot eliminate all e-

productions from G, but if e is not in L(G), it turns out that we can. The method is

to determine for each variable A whether A ^> e. If so, we call A nullable. We may
replace each production B -> X X

X 2
"

' Xn by all productions formed by striking

out some subset of those X-s that are nullable, but we do not include B -> e, even if

all X-s are nullable.

Theorem 4.3 IfL = L(G) for some CFG G = (V, T,P, S), then L - {e} is L(G') for

a CFG G with no useless symbols or £-productions.

Proof We can determine the nullable symbols of G by the following iterative

algorithm. To begin, if A -> e is a production, then A is nullable. Then, if B -> a is a

production and all symbols of a have been found nullable, then B is nullable. We
repeat this process until no more nullable symbols can be found.

The set of productions F is constructed as follows. If A -> X
X
X 2

" * Xn is in

P, then add all productions A -> a t a2
* * a„ to F where

1) if is not nullable, then a
f
= X

f ;

2) if X
t
is nullable, then a

£
is either X

£
or e;

3) not all a,'s are e.
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Let G" = (V, T, P\ S). We claim that for all A'mV and w in T*,A=>w if and

only if w =j= e and A => w.

If Let A => w and w ^ 6. We prove by induction on i that A => w. The basis, i = 1,

is trivial, for ,4 -* w must be a production in P. Since w ^ £, it is also a production

of P'. For the inductive step, let i> 1. Then A^X
1
X 2

••• X„'^ w. Write

w = w
1
w2

* * • wn such that for each 7, Xj=> Wj in fewer than i steps. If vv,- ^ e and

X
;
is a variable, then by the inductive hypothesis we have Xj |> w;

-. If vv,- = £, then

Xj is nullable. Thus, A /? x /?2
• • •

/?„ is a production in P', where /?
;
. = X

}
if vv,- ^ e

and = e if vv,- = e. Since w ^ £, not all fij are e. Hence we have a derivation

A=>P 1 P2 - Pn^w i P2 '~ Pn^w^Ps- )?>--^wlW;
2 --wn = w

in G".

0n/y z/ Suppose v4
G
=^ w. Surely w # £, since G" has no e-productions. We

show by induction on i that A => w. For the basis, i = 1, observe that A -> w is a

production in P'. There must be a production ^ -> a in P such that by striking out

certain nullable symbols from a we are left with w. Then there is a derivation

A => a => w, where the derivation a ^> w involves deriving e from the nullable sym-

bols of a that were struck out in order to get w.

For the induction step, let i > 1. Then A=> X
X
X 2

"' Xn

l

=> w. There must be

some A -> /? in P such that XjA^ ••• X„ is found by striking out some nullable

symbols from p. Thus A => • • * Xn . Write w = w
1
w2

• • w„, such that for all

Xj=>Wj by fewer than i steps. By the inductive hypothesis, AT,=>vv,- if AT
;
- is a

variable. Certainly if Xj is a terminal, then vv,- = JV,-, and X
;
=> Wj is trivially true.

Thus A => w.

The last step of the proof is to apply Theorem 4.2 to G" to produce G' with no
useless symbols. Since the constructions of Lemmas 4.1 and 4.2 do not introduce

any productions, G' has neither nullable symbols nor useless symbols. Further-

more S=> w if and only if w + e and S |> w. That is, L(G') = L(G) - {c}.

From here on we assume that no grammar has useless symbols. We now turn

our attention to productions of the form A-+B whose right-hand side consists of

a single variable. We call these unit productions. All other productions, including

those of the form A -> a and e-productions, are nonunit productions.

Theorem 4.4 Every CFL without e is defined by a grammar with no useless

symbols, ^-productions, or unit productions.

Proof Let L be a CFL without e and L = L(G) for some G = (K, T, P, S). By
Theorem 4.3, assume G has no 6-productions. Construct a new set of productions

P' from P by first including all nonunit productions of P. Then, suppose that

A => for ,4 and £ in V. Add to P' all productions of the form A-*a, where B-kx
is a nonunit production of P.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


92 CONTEXT-FREE GRAMMARS

and if

Observe that we can easily test whether A => B, since G has no £-productions,

A T BiT B2T-T BmT B>

and some variable appears twice in the sequence, we can find a shorter sequence of

unit productions that results in A => B. Thus it is sufficient to consider only those

sequences of unit productions that do not repeat any of the variables of G.

We now have a modified grammar, G' = (V
y
T, F, S). Surely, if A ->a is a

production of F, then A=j>a. Thus, if there is a derivation ofw in G', then there is a

derivation of w in G.

Suppose that w is in L(G), and consider a leftmost derivation of w in G, say

If, for 0 < i < n, a, => a, + x
by a nonunit production, then a, ^> cti+1 . Suppose that

a
. ^
>ai+i by a unit production, but that a,_j =>a, by a nonunit production, or

i = 0. Also suppose that a
l + j ^> a

i + 2 ^>
•*

g> a,-, all by unit productions, and

a,=>a;+1 by a nonunit production. Then a
t ,

ai+1 ,
a, are all of the same

length, and since the derivation is leftmost, the symbol replaced in each of these

must be at the same position. But then a
f
=>a, + 1

by one of the productions of

F — P. Hence L(G') = L(G). To complete the proof, we observe that G' has no

unit productions or ^-productions. If we use Lemmas 4.1 and 4.2 to eliminate

useless symbols, we do not add any productions, so the result of applying the

constructions of these lemmas to G' is a grammar satisfying the theorem.

4.5 CHOMSKY NORMAL FORM

We now prove the first of two normal-form theorems. These each state that all

context-free grammars are equivalent to grammars with restrictions on the forms

of productions.

Theorem 4.5 (Chomsky normalform, or CNF) Any context-free language without

e is generated by a grammar in which all productions are of the form A BC or

A-*a. Here, A, £, and C, are variables and a is a terminal.

Proof Let G be a context-free grammar generating a language not containing e.

By Theorem 4.4, we can find an equivalent grammar, G
l
= (V, T, P, S), such that

P contains no unit productions or e-productions. Thus, if a production has a

single symbol on the right, that symbol is a terminal, and the production is already

in an acceptable form. v
Now consider a production in P, of the form A -+ X

x
X 2

• • • Xm , where m > 2.

IfX
t
is a terminal, a, introduce a new variable Ca and a production Ca a, which

is of an allowable form. Then replace X
t
by Ca . Let the new set of variables be V

and the new set of productions be F. Consider the grammar G 2 = (V\ T, F, S).f If

t Note that G 2 is not yet in Chomsky normal form.
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a=>& then a|>£. Thus L(G
1
)^L(G 2 ). Now we show by induction on the

number of steps in a derivation that if A => w, for AinV and w in T*, then A=>w.
The result is trivial for one-step derivations. Suppose that it is true for derivations

of up to k steps. Let A => w be a (k + l)-step derivation. The first step must be of

the form A -> B
x
B2

• • • Bm , m > 2. We can write w = w
x w2 wm , where B

(
=> w

i9

1 < i < m.

If is Ca . for some terminal ah then vv
f
must be a

{ . By the construction of P\
there is a production A^> X

l
X 2

-- Xm of P where X
£
= if is in V and

= a
t
if B

t
is in V" - V. For those £, in V, we know that the derivation Bi(f> wt

takes no more than k steps, so by the inductive hypothesis, X
t §> wt

. Hence A*> w.

We have now proved the intermediate result that any context-free language

can be generated by a grammar for which every production is either of the form

A -> a or A -> B
x
B2

' • • Bm , for m > 2. Here A and Bu B2 , . .
. , Bm are variables,

and a is a terminal.

Consider such a grammar G 2 = (V\ T, F, S). We modify G 2 by adding some
additional symbols to V and replacing some productions of F. For each produc-

tion A-* B
l
B2

- - Bm of F, where m > 3, we create new variables D u Z) 2 ,

Dm _ 2 and replace A-* B
X
B 2 -Bm by the set of productions

{A^ B
X
DU D x ^ B2D2 , Dm . 3 ^ Bm . 2Dm _ 2 ,

Dm _ 2 -> Bm _ x
Bm}.

Let K" be the new nonterminal vocabulary and P" the new set of productions. Let

G 3 = (V\ T, P", S). G 3 is in CNF. It is clear that if A§>p, then /4 1> /?, so

L(G 2 ) ^ L(G 3 ). But it is also true that L(G 3 ) ^ L(G 2 ), as can be shown in essen-

tially the same manner as it was shown that Ufii) £ The proof will be left

to the reader.

Example 4.9 Let us consider the grammar ({S, A, £}, {a, b], P, S) that has the

productions:

S^bA\aB

A->bAA\aS\a

B^aBB\bS\b

and find an equivalent grammar in CNF.
First, the only productions already in proper form are A a and B^b.

There are no unit productions, so we may begin by replacing terminals on the

right by variables, except in the case of the productions A -> a and B -> b. S -> bA
is replaced by S -> Cb A and Cb b. Similarly, A - aS is replaced by A Ca 5 and
Ca-*a; A^bAA is replaced by A-+Cb AA; S -> aB is replaced by S^Ca B;

B-*bS is replaced by £ - Cb S, and £- a££ is replaced by B - Ca BB.
In the next stage, the production A-+Cb AA is replaced by A -> C^Dj and

D
i
-* AA, and the production B^Ca BB is replaced by B - Ca Z)2 and D 2

-> ££.
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The productions for the grammar in CNF are shown below.

S->CbA\CaB D
X
->AA

i4-^CaS|Cfc
D

1
|fl D2 ->BB

B-+CbS\CaD 2 \b Ca ->a

Cb -+b

4.6 GREIBACH NORMAL FORM

We now develop a normal-form theorem that uses productions whose right-hand

sides each start with a terminal symbol perhaps followed by some variables. First

we prove two lemmas that say we can modify the productions of a CFG in certain

ways without affecting the language generated.

Lemma 4.3 Define an A-production to be a production with variable A on the

left. Let G = (V, T, P, S) be a CFG. Let A -» ol
x
Bol 2 be a production in P and

B Pi 1 Pi 1 '
• *

| pr be the set of all ^-productions. Let G
{
= (V, T, Pu S) be ob-

tained from G by deleting the production /4->a
1
Ba 2 from P and adding the

productions A -> a
1 ^ 1

a 2 |o<i/?2 a 2 I'*" |

a i/?r<*2- Then L(G) = L^).

Proof Obviously L(Gi) c L(G), since if ^4 —> o^fta^ *s usec^ *n a derivation of G lt

then A^>ct
1
Ba2 ^>0LiPi

(X2 can be used in G. To show that L(G)^L(G l \ one

simply notes that A -a 1 2fa 2 is the only production in G not in G x
. Whenever

A -+ a
1 B(x 2 is used in a derivation by G, the variable B must be rewritten at some

later step using a production of the form B /?,-. These two steps can be replaced

by the single step A => a
1
/?,a 2 .

Lemma 4.4 Let G = (K, T, P, S) be a CFG. Let A -> A(x
l
\Aol2 \'-\ Avl

t
be the set

of ^-productions for which A is the leftmost symbol of the right-hand side. Let

A -> Pi \P2 \'" \PS be the remaining /1-productions. Let G, = (Fu {£}, T, P l9 5)

be the CFG formed by adding the variable B to V and replacing all the A-

productions by the productions:

^ A ~*Pi \< ^ B-*OLi I

1) „ 1< <s, 2) 1< <r.

Then L{G
i ) = L(G).

Proof In a leftmost derivation, a sequence of productions of the form A -> AoL
t

must eventually end with a production A -»
fij.

The sequence of replacements

A=> Aa.
ix
=> AcLi2 CLh

=>--'=> AcLip CLip_ x
af|
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in G can be replaced in G
x
by

The reverse transformation can also be made. Thus L(G) = L(G,). Figure 4.8

shows this transformation on derivation trees, where we see that in G, a chain of

i4's extending to the left is replaced in G t by a chain of Fs extending to the right.

A A

(a) (b)

Fig. 4.8 Transformation of Lemma 4.4 on portion of a derivation tree.

Theorem 4.6 (Greibach normal form or GNF) Every context-free language L

without e can be generated by a grammar for which every production is of the

form A aoi, where A is a variable, a is a terminal, and a is a (possibly empty)

string of variables.

Proof Let G = (V, T, P, S) be a Chomsky normal form grammar generating the

CFL L Assume that V = {Au A 2 ,..., Am}. The first step in the construction is to

modify the productions so that if A
{
-+ A

} y is a production, then j > i. Starting

with A
x
and proceeding to Am , we do this as follows. We assume that the produc-

tions have been modified so that for I <i<k, A
{

Ap is a production only if

j > i. We now modify the /^-productions.

If A k Ajy is a production with j < /c, we generate a new set of productions

by substituting for A
}
the right-hand side of each ,4,-production according to

Lemma 4.3. By repeating the process k - 1 times at most, we obtain productions

of the form Ak
-» Ae y, £ > L The productions with £ = k are then replaced accord-

ing to Lemma 4.4, introducing a new variable Bk . The precise algorithm is given in

Fig. 4.9.
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begin

1) for 1 to m do

begin

2) for 1 to k - 1 do

3) for each production of the form Ak AjOL do

begin

4) for all productions Aj -> P do

5) add production Ak -+ /fa;

6) remove production Ak -* Ajcc

end;

7) for each production of the form Ak
-> Ak tx do

begin

8) add productions Bk a and £k a£k ;

9) remove production Ak Ak a

end;

10) for each production /lk -+ where /? does not

begin with Ak do

Hj add production A k
-* /?£k

end

end

Fig. 4.9 Step 1 in the Greibach normal-form algorithm.

By repeating the above process for each original variable, we have only pro-

ductions of the forms:

1) A^Ajy, j>U
2) Ai ay, a in T,

3) B^y, yin(Ku{B lf B2f ... f Bl
_ 1 })*

Note that the leftmost symbol on the right-hand side of any production for Am
must be a terminal, since Am is the highest-numbered variable. The leftmost

symbol on the right-hand side of any production for Am . x
must be either Am or a

terminal symbol. When it is Am , we can generate new productions by replacing Am
by the right-hand side of the productions for Am according to Lemma 4.3. These

productions must have right sides that start with a terminal symbol. We then

proceed to the productions for Am __ 2 ,
A 2 ,

A
x

until the right side of each

production for an A
x
starts with a terminal symbol.

As the last step we examine the productions for the new variables, B2 ,

Bm . Since we began with a grammar in Chomsky normal form, it is easy to prove

by induction on the number of applications of Lemmas 4.3 and 4.4 that the

right-hand side of every ^-production, 1 < i < n, begins with a terminal or AjAk

for somej and k. Thus a in line (7) of Fig. 4.9 can never be empty or begin with some

\
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Bj, so no £rproduction can start with another Bj. Therefore all ^.-productions

have right-hand sides beginning with terminals or A-s, and one more application

of Lemma 4.3 for each ^-production completes the construction.

Example 4.10 Let us convert to Greibach normal form the grammar

G=({AU A 29 A 3 } 9 {a, b},P,A x \

where P consists of the following:

Ai —> A 2 A 3

A 2 -*A 3 A t
\b

A 3
-* A

1
A 2 \a

Step 1 Since the right-hand side of the productions for A
v
and A 2 start with

terminals or higher-numbered variables, we begin with the production

A 3
-> A

x
A 2 and substitute the string A 2 A 3 for A

t
. Note that A

x
A 2 A 3 is the

only production with A
x
on the left.

The resulting set of productions is:

A
x
-» A 2 A 3

A 2 -+A 3 A x \b

A 3
- A 2 A 3 A 2 \a

Since the right side of the production A 3
-* A 2 A 3 A 2 begins with a lower-

numbered variable, we substitute for the first occurrence of A 2 both A 3 A x
and b.

Thus A 3
-> A 2 A 3 A 2 is replaced by A 3

-* A 3 A x
A 3 A 2 and A 3

-> bA 3 A 2 . The new
set is

A
X
^A 2 A 3

A 2 -+A 3 A x
\b

A 3 -+ A 3 A x
A 3 A 2 \bA 3 A 2 \a

We now apply Lemma 4.4 to the productions

A 3
-+ A 3 A x

A 3 A 2 \bA 3 A 2 \a.

Symbol B3 is introduced, and the production A 3
^> A 3 A X

A 3 A 2 is replaced by

A 3 -> bA 3 A 2 B 3 ,
A 3

-* aB 3 ,
B3

-* A
x
A 3 A 2i and B 3

-* A
x
A 3 A 2 B3 . The resulting

set is

A
X
-+A 2 A 3

A 2 -+ A 3 A x \b

A 3
-> bA 3 A 2 B3 \aB3 \bA 3 A 2 \a

B3 -+A X
A 3 A 2 \A X A 3 A2 B3
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Step 2 Now all the productions with A 3 on the left have right-hand sides that

start with terminals. These are used to replace A 3 in the production A2 -* A 3 A x

and then the productions with A 2 on the left are used to replace A 2 in the

production A
x
-> A 2 A 3 . The result is the following.

A 3
-* bA 3 A 2 B3 A 3 ->bA 3 A 2

A 3
-> 0#3 y4 3

-* a

A 2 -*bA 3 A 2 B3 A l
A 2 -+bA 3 A 2 A l

A 2 -+ aB3 A l
A 2 -^aA l

A 2 -+b

A
l
-*bA 3 A 2 B3 A l

A 3 A
x
-±bA 3 A 2 A x

A 3

A
l
-+aB3 A l

A 3 A
l
-+aA

l
A 3

Ai -* bA 3

B3
-» A

l
A 3 A 2 B3

-» A
X
A 3 A 2 B3

Step 3 The two 53-productions are converted to proper form, resulting in ^)

more productions. That is, the productions

B3 ^A 1
A 3 A 2 and B 3

^> A
l
A 3 A 2 B3

are altered by substituting the right side ofeach of the five productions with A
x
on

the left for the first occurrences of A v Thus £3 A
l
A 3 A 2 becomes

B3 -+bA 3 A 2 B3 A x
A 3 A 3 A 2 ,

B3
-* aB3 A l

A 3 A 3 A 2 .

B3 ^bA 3 A 3 A 2l B 3
-> bA 3 A 2 A x

A 3 A 3 A 2 ,
B3 -+ aA

l
A 3 A 3 A 2 .

The other production for B3 is replaced similarly. The final set of productions

is

A 3 -+bA 3 A 2 B3 A 3 -+bA 3 A 2

A 3 ^aB3 /4 3 ->fl

A 2 -*bA 3 A 2 B3 A l
A 2 ^bA 3 A 2 A l

A 2 ^aB3 A x
A 2 ^aA x

A 2 ^b

A
l
^>bA 3 A 2 B3 A l

A 3 A
l
^bA 3 A 2 A l

A 3

A
x
-+aB3 A l

A 3 A l -+aA l
A 3

A
x
-+bA 3

B3
-> bA 3 A 2 B3 A x

A 3 A 3 A 2 B3 B3
-* bA 3 A 2 B3 A x

A 3 A 3 A 2
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B3 ->aB3 A 1
A 3 A 3 A 2 B3

B3 ->bA 3A 3 A 2B3

B3 ->bA 3 A 2 A l
A 3 A 3 A 2 B3

£3 -> aA
1
A 3 A 3 A 2 B3

B3 -+aB3 A l
A 3 A 3 A 2

B3 -+bA3 A 3 A 2

B3
-> bA3 A 2 A l

A 3 A 3 A 2

B3 ->aA l
A 3 A 3 A 2

4.7 THE EXISTENCE OF INHERENTLY AMBIGUOUS
CONTEXT-FREE LANGUAGES

It is easy to exhibit ambiguous context-free grammars. For example, consider the

grammar with productions S -> A, S -* B, A -» a, and B fa. What is not so easy to

do is to exhibit a context-free language for which every CFG is ambiguous. In this

section we show that there are indeed inherently ambiguous CFL's. The proof is

somewhat tedious, and the student may skip this section without loss of continu-

ity. The existence of such a language is made use of only in Theorem 8.16.

We shall show that the language

L = {fl"ft"cV"
|
n > 1, m > 1} u {aV^d"

\
n > 1, m > 1}

is inherently ambiguous by showing that infinitely many strings of the form

fl"bVrf
n

, n > 1, must have two distinct leftmost derivations. We proceed by first

establishing two technical lemmas.

Lemma 4.5 Let (Nh M,), 1 < i < r, be pairs of sets of integers. (The sets may be

finite or infinite.) Let

Si = {(n, m)
|
n in N

i9
m in MJ

and let

S = 5, u S2 u u Sr
.

If each pair of integers («, m) is in S for all m and m, where n =f m, then (h, n) is in S

for all but some finite set of n.

Proof Assume that for all n and m, where n m, each (n, m) is in 5, and that there

are infinitely many n such that (n, n) is not in S. Let J be the set of all n such that

(n, n) is not in 5. We construct a sequence of sets Jr , Jr-u Ji such that

Jr 2 Jr_ x 2 •' 2 Ji-

Each J
f
will be infinite, and for each n and m in J„ (n, m) is not in

Si u 5£+1 u ••• u 5r .

For /I in J, either n is not in Nr or n is not in Mr ; otherwise (ny n) would be in

Sr and hence in S. Thus there is an infinite subset of J, call it Jr , such that either for

all n in Jr , n is not in Nr9 or for all n in Jr , n is not in M r . Now for n and m in Jr ,

m) is not in Sr .
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100 CONTEXT-FREE GRAMMARS

Assume that Jr9 Jr _ ly ...,Ji+l have been constructed, where i < r — 1. Then

J
t
is constructed as follows. For each n in Ji+ u either n is not in N

t
or not in M

£ ;

otherwise (n, n) would be in S, and hence in 5, a contradiction since Ji+l ^ J.

Thus, either an infinite subset ofJi+ x
is not in JV, or an infinite subset ofJi+ j is not

in M,. In either case, let the infinite subset be J
f
. Now for all n and m in Jh (n, m) is

not in Si and hence not in 5
f
u Si+ x

u ••• u Sr .

Since J
x
contains an infinite number of elements, there exist n and m in J u

m. Now (rc, m) is not in Sj u 5 2 u • • • u 5r
= 5, contradicting the assumption

that all (n, m), where w m, are in 5. Thus (n, n) is in S for all but some finite set

of n.

Lemma 4.6 Let G be an unambiguous CFG. Then we can effectively construct

an unambiguous CFG G equivalent to G, such that G' has no useless symbols or

productions, and for every variable A other than possibly the start symbol of G',

we have the derivation A Ax 2 , where x
{
and x2 are not both e.

Proof The construction of Lemmas 4.1 and 4.2, removing useless symbols and

productions, cannot convert an unambiguous grammar into an ambiguous ojje,

since the set of derivation trees for words does not change. The construction of

Theorem 4.4, removing unit productions, cannot introduce ambiguities. This is

because if we introduce production A -> a, there must be a unique B such that

A ^> B and B -> a is a production, else the original grammar was not unambig-

uous. Similarly, the construction of Theorem 4.3, removing e-productions, does

not introduce ambiguity.

Let us therefore assume that G has no useless symbols or productions, no

(-productions, and no unit productions. Suppose that for no x
x
and x 2 not both c

does A^>x
x
Ax 2 . Then replace each occurrence of A on the right side of any

production by all the right sides of ^-productions. As there are no unit produc-

tions, ^-productions or useless symbols, there cannot be a production A ctxA^,

else there is a derivation A ^> x
1
y4x 2 , with x x

and x 2 not both c. The above change

does not modify the generated language, by Lemma 4.3. Each new production

comes from a unique sequence of old productions, else G was ambiguous. Thus

the resulting grammar is unambiguous. We see that A is now useless and may be

eliminated. After removing variables violating the condition of the lemma in this

manner, the new grammar is equivalent to the old, is still unambiguous, and

satisfies the lemma.

Theorem 4.7 The CFL,

L = {a
n
b
n(Td

m
\
n > 1, m > 1} u {a

n
b
m
(Td

n
\
n > 1, m > 1},

is inherently ambiguous.

Proof Assume that there is an unambiguous grammar generating L By Lemma
4.6 we can construct an unambiguous grammar G = (K, 7, P, S) generating L with

no useless symbols, and for each A in V - {S}, A ^>x
l
Ax 2 for some x l

and x 2 in

T*, not both e.
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We note that the grammar G has the following properties

:

1) If A ^> x
l
Ax 2 , then x x

and x 2 each consist of only one type of symbol (a, b, c,

or d); otherwise

w^w^ ^> WiX^i Ax 2 x2 w3 ^ w
l
x

l
x

l
w2 x 2 x2 w 3 ,

for some w
x , w2 , and vv3 . This last terminal string is not in L.

2) If A^x^Ax^ then x
x
and x 2 consist of different symbols. Otherwise, in a

derivation involving A, we could increase the number of one type of symbol in

a sentence of L without increasing the number of any other type of symbols,

thereby generating a sentence not in L
3) If A ^>x

l
Ax 2 , then |xj

|

= |x2 |. Otherwise we could find words in L having

more of one symbol than any other.

4) If A^>x
x
Ax2 and A^>x zAx Ar , then Xj and x 3 consist of the same type of

symbol. Likewise x 2 and x4 . Otherwise Property 1 above would be violated.

5) If A^>x
x
Ax2 , then either

a) Xj consists solely of ds and x 2 solely of b
y

s or of d\
b) x

x
consists solely of 6's and x 2 solely of cs, or

c) Xj consists solely of cs and x 2 solely of d's.

In any of the other cases it is easy to derive a string not in L Thus the

variables other than 5 can be divided into four classes, Cab ,
Cad ,

Cbc , and Ccd .

Cab is the set of all A in V such that A^>x
l
Ax 2 , with Xj in a* and x 2 in b*;

Cad, Cbc> anc* Ccd are defined analogously.

6) A derivation containing a symbol in Cab or Ccd cannot contain a symbol in Cad

or Cbc or vice versa. Otherwise, we could increase the number of three types of

symbols of a sentence in L without increasing the number of the fourth type of

symbol. In that case, there would be a sentence in L for which the number

of occurrences of one type of symbol is smaller than that of any other.

We now note that if a derivation contains a variable in Cab or Ccd , then the

terminal string generated must be in {a
n
b
n
c
m
d
m
\n > 1, m > 1}. For assume that A

in Cab appears in a derivation of a sentence x not in {a
n
^
n
c
m^m \n> 1, m > 1}. Then

x must be of the form a
n
b
m
c
mdn

, m £ n. Since A is in Cab , a sentence a
n + pb

m + pc
md

n
i

*ni= h, for some p > 0, could be generated. Such a sentence is not in L A similar

argument holds for A in Ccd . Similar reasoning implies that if a derivation con-

tains a variable in or Cbc , then the sentence generated must be in

{fl
BmB |n>U>l}.
We divide G into two grammars,

Gj = ({S} yj Cab u Ccd , T, P„ S)

and

G2 = ({S} vC^u Cbc , T, P 29 S%

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


102 CONTEXT-FREE GRAMMARS

where P
1
contains all productions of P with a variable form or Ccd on either

the right or left, and P2 contains all productions ofP with a variable from Cad or

Cbc on either the right or left. In addition, P
x
contains all productions from P of

the form S - aW^cF", nj=m, and P2 contains all productions from P of the form

S -> aVc^d", nj=m. Productions ofP of the form S -+ a"b
n
c"d

n
are not in either P

x

or P2 .

Since G generates

{a
n
b
ncrdm

|
n > 1, m > 1} u {aWcfd"

\
n > 1, m > 1},

Gj must generate all sentences in

{a
n
b
n
d"d

m \n>Um>l y
nj=m}

plus possibly some sentences in {a"b"c"d"
\
n > 1}, and G 2 must generate all sen-

tences in

{fl
n&'W

|
n > 1, m > 1, n £ m}

plus possibly some sentences in {a"b"c"d"
\
n > 1}. We now show that this cannot be

the case unless Gj and G 2 both generate all but a finite number of sentences in

{aVcfd"
|
n > 1}. Thus all but a finite number of sentences in {a"b

n
c"d

n \n>l} are

generated by both G
x
and G2 and hence by two distinct derivations in G. This

contradicts the assumption that G was unambiguous.

To see that G
x
and G2 generate all but a finite number of sentences in

{a
n
b
n
c
ndn

|
n > 0}, number the productions in P

x
of the form S -* a from 1 to r. For

1 < i < r, if S -* a is the ith production, let N, be the set of all h such that

G
i G i

for some m, and let M
£
be the set of all m such that

S=xx=>an
b
n
c
m
d
m

Gi G
i

for some n. We leave it to the reader to show that for any n in N
t
and any m in Mh

S=xx*>an
b
n
c
mdm .

Gi G,

[Hint: Recall that the variables of a are in Cad or Ccd .] It follows immediately from

Lemma 4.5 that G x
must generate all but a finite number of sentences in

{a
nb"c"d"\n> 1}.

A similar argument applies to G 2 . The reader can easily show that G 2 cannot

have a right side with two or more variables. We number certain productions and

pairs of productions in a single ordering. Productions of the form S-+<x
l
Boc2 >

where B is in Cbc9 will receive a number, and if this number is z, let N
t
be the set of

all n such that for some m,

Also let M, be the set of m such that for some n,

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


EXERCISES 103

The pair of productions S -> a and A -> o^Bo^ will receive a number if a contains a

variable in C^, ^ is in Cad , and £ is in Cbc . If this pair is assigned the number i,

then define AT
f
to be the set of n such that for some m,

S => a x^x2 => x t
a

t
£a2 x 2 ^> aVcV.

Also define M, to be the set of m such that for some n,

S=>ol^> x
x
Ax 2 => x t

a
t
Ba2 x 2 ^> a

n
b
m(Tdn

.

Once again, for any n in N
f
and m in Mh

S?>anbmcmd\

and thus it follows from Lemma 4.5 that G 2 generates all but a finite number of

sentences in {a
nbn

(fd
n

\
n > 1}. We conclude that for some n, a

n
b"c

ndn
is in both

Ufii) and L(G2 ). This sentence has two leftmost derivations in G.

EXERCISES

4.1 Give context-free grammars generating the following sets.

3 a) The set of palindromes (strings that read the same forward as backward) over alphabet

{a. b}.

b) The set of all strings of balanced parentheses, i.e., each left parenthesis has a matching

right parenthesis and pairs of matching parentheses are properly nested.

* c) The set of all strings over alphabet {a, b} with exactly twice as many a's as b's.

d) The set of all strings over alphabet {a, b, •, +, *, (, ), e, 0} that are well-formed regular

expressions over alphabet {a, b). Note that we must distinguish between c as the empty

string and as a symbol in a regular expression. We use e in the latter case.

* e) The set of all strings over alphabet {a, b} not of the form ww for some string w.

f) {aWli^or;^*}.
4.2 Let G be the grammar

S-+aS\aSbS\e.

Prove that

L(G) — {x
|
each prefix of x has at least as many a's as b's}.

4.3 For i > 1, let b
t
denote the string in 1(0 + 1)* that is the binary representation oft.

Construct a CFG generating

{0, 1, #}
+ -{b

l
#b2 # ••• #bn \n> 1}.

4.4 Construct a CFG generating the set

{w#wK # |w in (0 4- 1)
+
}*.

4.5 The grammar

E-*E + E\E* £|(£)|id

generates the set of arithmetic expressions with 4- , *, parentheses and id. The grammar is

ambiguous since id + id * id can be generated by two distinct leftmost derivations,

a) Construct an equivalent unambiguous grammar.
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104 CONTEXT-FREE GRAMMARS

b) Construct an unambiguous grammar for all arithmetic expressions with no redundant

parentheses. A set of parentheses is redundant if its removal does not change the

expression, e.g., the parentheses are redundant in id + (id * id) but not in (id 4- id) * id.

* 4.6 Suppose G is a CFG with m variables and no right side of a production longer than £.

t
m — 1

Show that if A => t, then there is a derivation of no more than — steps by which A
derives c. How close to this bound can you actually come?

1

* 4.7 Show that for each CFG G there is a constant c such that if w is in L(G), and

w t, then w has a derivation of no more than c\w
\

steps.

4.8 Let G be the grammar

S-+aB\bA

A->a\aS\bAA

B-+b\bS\aBB

For the string aaabbabbba find a

a) leftmost derivation, b) rightmost derivation, c) parse tree.

* 4.9 Is the grammar in Exercise 4.8 unambiguous?

4.10 Find a CFG with no useless symbols equivalent to

S->AB\CA B-*BC\AB

A-*a C->aB\b

4.1 1 Suppose G is a CFG and w, of length /, is in L(G). How long is a derivation of w in G
if

a) G is in CNF b) G is in GNF.

4.12 Let G be the CFG generating well-formed formulas of propositional calculus with

predicates p and q:

S->~S\[S^S]\p\q.

The terminals are p, q, ~, [, ], and =>. Find a Chomsky normal-form grammar generating

L(G).

4.13 Show that conversion to Chomsky normal form can square the number of produc-

tions in a grammar. [Hint: Consider the removal of unit productions.]

4.14 Find a Greibach normal-form grammar equivalent to the following CFG:

S^AA\0

A->SS\\

4.15 Show that every CFL without e can be generated by a CFG all of whose productions

are of the form A -* a, or A~* BCt where B^C and if A -* ol^Bolj and A -* y^By2 are

productions, then = = e or a 2 = yj = £.

*S 4.16 Show that every CFL without e is generated by a CFG all of whose productions are

of the form A -> a, A -* a£, and A -* aBC.
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4.17 Show that every CFL without t is generated by a CFG all of whose productions are

of the form A -> a and A aab.

4.18 Can every CFL without e be generated by a CFG all of whose productions are of the

forms A BCD and A a?

* 4.19 Show that if all productions of a CFG are of the form A -* wB or A w, then L(G) is

a regular set.

** 4.20 A CFG is said to be linear if no right side of a production has more than one instance

of a variable. Which of the languages of Exercise 4.1 have linear grammars?

**S 4.21 An operator grammar is a CFG with no c-productions such that no consecutive

symbols on the right sides of productions are variables. Show that every CFL without e has

an operator grammar.

** 4.22 The algorithm given in Fig. 4.7 to determine which variables derive terminal strings

is not the most efficient possible. Give a computer program to perform the task in 0(n) steps

if n is the sum of the length of all the productions.

** 4.23 Is {a'Vc* \i±j and j ± k and k ± i} a CFL? [Hint: Develop a normal form similar to

that in Theorem 4.7. (A pumping lemma is developed in Section 6. 1 that makes exercises of

this type much easier. The reader may wish to compare his solution to that in Example 6.3).]

Solutions to Selected Exercises

4.1 a) The definition of "palindrome," a string reading the same forward as backward is

of no help in finding a CFG. What we must do in this and many other cases is rework the

definition into a recursive form. We may define palindromes over {0, 1} recursively, as

follows:

1) e, 0, and 1 are palindromes;

2) if w is a palindrome, so are 0h>0 and lwl;

3) nothing else is a palindrome.

We proved in Exercise 1.3 that this is a valid definition of palindromes. A CFG for

palindromes now follows immediately from (1) and (2). It is:

S-0|l|c (from 1);

S->0S0|1S1 (from 2).

4.16 Let G = (K, T, P, 5) be a GNF grammar generating L Suppose k is the length of the

longest right side of a production of G. Let V = {[a] |a is in K + and |a
|
< k}. For each

production A — gol in P and each variable [Aft] in V place [Aft] -> a[a][p] in P\ In the case

where a or ft
is 6, [e] is deleted from the right side of the production.

4.21 Let G = (K, T, P, 5) be a GNF grammar generating L By Exercise 4.16 we may

assume all productions are of the form A a, A -» aB and A -> aBC. First replace each

production A -* aBC by A a[BC\ where [BC] is a new variable. After having replaced all

productions of the form A -* aBC, then for each newly introduced variable [BC\ B-

production B -* a, and C-production C ft add production [BC] -* a/?. Note that a and p
are either single terminals or of the form bE, where E may be either a new or old variable.

The resulting grammar is an operator grammar equivalent to the original.
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BIBLIOGRAPHIC NOTES

The origin of the context-free grammar formalism is found in Chomsky [1956]; important

later writings by Chomsky on the subject appear in Chomsky [1959, 1963]. The related

Backus-Naur form notation was used for the description ofALGOL in Backus [1959] and

Naur [I960], The relationship between CFG's and BNF was perceived in Ginsburg and

Rice [1962].

Chomsky normal form is based on Chomsky [1959]. Actually, Chomsky proved the

stronger result stated in Exercise 4.15. Greibach normal form was proved by Greibach

[1965]. The method of proof used here is due to M. C. Paull. The reader should also

consider the algorithm of Rosenkrantz [1967], which has the property that it never more

than squares the number of variables, while the algorithm of Theorem 4.6 may exponen-

tiate the number. Solutions to Exercises 4.16, 4.17, and 4.21 can be found there as well.

Ambiguity in CFG's was first studied formally by Floyd [1962a], Cantor [1962],

Chomsky and Schutzenberger [1963], and Greibach [1963]. Inherent ambiguity was studied

by Gross [1964], and Ginsburg and Ullian [1966a, b].

Important applications of context-free grammar theory have been made to compiler

design. See Aho and Ullman [1972, 1973, 1977], Lewis, Rosenkrantz, and Stearns [1976],

and the bibliographic notes to Chapter 10 for a description ofsome of the work in this area.

Additional material on context-free languages can be found in Ginsburg [1966] and Salo-

maa [1973].
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CHAPTER

5
PUSHDOWN
AUTOMATA

5.1 INFORMAL DESCRIPTION

Just as the regular expressions have an equivalent automaton—the finite automa-

ton, the context-free grammars have their machine counterpart—the pushdown
automaton. Here the equivalence is somewhat less satisfactory, since the push-

down automaton is a nondeterministic device, and the deterministic version

accepts only a subset of all CFL's. Fortunately, this subset includes the syntax of

most programming languages. (See Chapter 10 for a detailed study of deter-

ministic pushdown automaton languages.)

The pushdown automaton is essentially a finite automaton with control of

both an input tape and a stack, or "first in-last out" list. That is, symbols may be

entered or removed only at the top of the list. When a symbol is entered at the top,

the symbol previously at the top becomes second from the top, the symbol

previously second from the top becomes third, and so on. Similarly, when a

symbol is removed from the top of the list, the symbol previously second from the

top becomes the top symbol, the symbol previously third from the top becomes

second, and so on.

A familiar example of a stack is the stack of plates on a spring that one sees in

cafeterias. There is a spring below the plates with just enough strength so that

exactly one plate appears above the level of the counter. When that top plate is

removed, the load on the spring is lightened, and the plate directly below appears

above the level of the counter. If a plate is then put on top of the stack, the pile is

pushed down, and only the new plate appears above the counter. For our pur-

poses, we make the assumption that the spring is arbitrarily long, so we may add
as many plates as we desire.

107

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


108 PUSHDOWN AUTOMATA

Such a stack of plates, coupled with a finite control, can be used to recognize a

nonregular set. The set L = {wcwR
\
w in (0 + 1)*} is a context-free language, gen-

erated by the grammar S -> 050 1 1S1
\
c. It is not hard to show that L cannot be

accepted by any finite automaton. To accept L, we shall make use of a finite

control with two states, q x
and q2 , and a stack on which we place blue, green, and

red plates. The device will operate by the following rules.

1) The machine starts with one red plate on the stack and with the finite control

in state q x
.

2) If the input to the device is 0 and the device is in state q l9 a blue plate is placed

on the stack. If the input to the device is 1 and the device is in state qu a green

plate is placed on the stack. In both cases the finite control remains in state q x
.

3) If the input is c and the device is in state qu it changes state to q2 while no

plates are added or removed.

4) If the input is 0 and the device is in state q2 with a blue plate, which represents

0, on top of the stack, the plate is removed. If the input is 1 and the device is in

state q2 with a green plate, which represents 1, on top of the stack, the plate is

removed. In both cases the finite control remains in state q2 .

5) If the device is in state q 2 and a red plate is on top of the stack, the plate is

removed without waiting for the next input.

6) For all cases other than those described above, the device can make no move.

The preceding rules are summarized in Fig. 5.1.

We say that the device described above accepts an input string if, on process-

ing the last symbol of the string, the stack of plates becomes completely empty.

Note that, once the stack is empty, no further moves are possible.

Essentially, the device operates in the following way. In state qu the device

makes an image of its input by placing a blue plate on top of the stack of plates

each time a 0 appears in the input, and a green plate each time a 1 appears in the

input. When c is the input, the device enters state q2 . Next, the remaining input is

compared with the stack by removing a blue plate from the top of the stack each

time the input symbol is a 0, and a green plate each time the input symbol is a 1.

Should the top plate be of the wrong color, the device halts and no further

processing of the input is possible. If all plates match the inputs, eventually the red

plate at the bottom of the stack is exposed. The red plate is immediately removed

and the device is said to accept the input string. All plates can be removed only

when the string that enters the device after the c is the reverse of what entered

before the c.

5.2 DEFINITIONS

We shall now formalize the concept of a pushdown automaton (PDA). The PDA
will have an input tape, afinite control, and a stack. The stack is a string of symbols

from some alphabet. The leftmost symbol of the stack is considered to be at the
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Input

Top _____
plate State " 0 1 c

Blue Add blue plate;

stay in state

Qi-

Add green plate;

stay in state

Qi-

Go to

state q 2 .

Remove top

plate; stay in

state q2 .

—

Green Add blue plate;

stay in state

Add green plate;

stay in state

Go to

state q 2 .

Remove top

plate; stay in

state q 2 .

Red q\ Add blue plate;

stay in state

Add green plate;

stay in state

Go to

state q 2 .

<\2 Without waiting for next input, remove top plate.

Fig. 5.1 Finite control for pushdown automaton accepting {wcwR
|
w in (0 + 1)*}.

"top" of the stack. The device will be nondeterministic, having some finite number
of choices of moves in each situation. The moves will be of two types. In the first

type of move, an input symbol is used. Depending on the input symbol, the top

symbol on the stack, and the state of the finite control, a number of choices are

possible. Each choice consists of a next state for the finite control and a (possibly

empty) string of symbols to replace the top stack symbol. After selecting a choice,

the input head is advanced one symbol.

The second type of move (called an £-move) is similar to the first, except that

the input symbol is not used, and the input head is not advanced after the move.

This type of move allows the PDA to manipulate the stack without reading input

symbols.

Finally, we must define the language accepted by a pushdown automaton.

There are two natural ways to do this. The first, which we have already seen, is to

define the language accepted to be the set of all inputs for which some sequence of

moves causes the pushdown automaton to empty its stack. This language is

referred to as the language accepted by empty stack.

The second way of defining the language accepted is similar to the way a finite

automaton accepts inputs. That is, we designate some states as final states and
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110 PUSHDOWN AUTOMATA

define the accepted language as the set of all inputs for which some choice of

moves causes the pushdown automaton to enter a final state.

As we shall see, the two definitions of acceptance are equivalent in the sense

that if a set can be accepted by empty stack by some PDA, it can be accepted by

final state by some other PDA, and vice versa.

Acceptance by final state is the more common notion, but it is easier to prove

the basic theorem of pushdown automata by using acceptance by empty stack.

This theorem is that a language is accepted by a pushdown automaton if and only

if it is a context-free language.

A pushdown automaton M is a system (Q, Z, T, 3 y qQy Z0 ,
F), where

1) Q is a finite set of states;

2) T is an alphabet called the input alphabet;

3) T is an alphabet, called the stack alphabet;

4) q0 in Q is the initial state;

5) Z0 in T is a particular stack symbol called the start symbol;

6) F ^ Q is the set offinal states;

7) 3 is a mapping from Q x (T u {e}) x T to finite subsets of Q x T*.

Unless stated otherwise, we use lower-case letters near the front of the

alphabet to denote input symbols and lower-case letters near the end of the

alphabet to denote strings of input symbols. Capital letters denote stack symbols

and Greek letters indicate strings of stack symbols.

Moves

The interpretation of

5(q, a, Z) = {(p 1? yj, (p2 , y2 ), (pm , yj}

where q and ph 1 < i < m, are states, a is in 2, Z is a stack symbol, and y {
is in T*,

1 < i < w, is that the PDA in state q, with input symbol a and Z the top symbol on

the stack can, for any i, enter state ph replace symbol Z by string y„ and advance

the input head one symbol. We adopt the convention that the leftmost symbol of

y, will be placed highest on the stack and the rightmost symbol lowest on the

stack. Note that it is not permissible to choose state p {
and string y7 for somej =fc

i

in one move.

The interpretation of

3{q9 e, Z) = {(pu y0, {p2 , 7il (pm , ym )}

is that the PDA in state q, independent of the input symbol being scanned and

with Z the top symbol on the stack, can enter state pf
and replace Z by y, for any i,

1 < / < m. In this case, the input head is not advanced. ^
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Example 5.1 Figure 5.2 gives a formal pushdown automaton that accepts

{wcw* |w in (0 + 1)*} by empty stack. Note that for a move in which the PDA
writes a symbol on the top of the stack, 3 has a value (q, y) where |y |

=2. For
example, 3{q l9 0, R) = {(q ly BR)}. If y were of length one, the PDA would simply

replace the top symbol by a new symbol and not increase the length of the stack.

This allows us to let y equal e when we wish to pop the stack.

Note that the rule 3(q2 , e, R) = {(q2 ,
e)} means that the PDA, in state q2 with

R the top stack symbol, can erase the R independently of the input symbol. In this

case, the input head is not advanced, and in fact, there need not be any remaining

input.

M =
(fo, , 92}, {0, 1, c}, {K, B, G}, 6, qu K, 0)

S(qu 0, R) = {(4.. BR)} S(qu 1, R) = {(9., GK)}

S(qi, 0, B) = {(9.. SB)} <5(9i, 1, B) = {(9., GB)}

6(q it 0, G) = {(?., BG)} 1, G) = {(9., GG)}

%!, c, R) = ««2. K»

5(q„ c, B) = {(92, B»

<5(<ji, c, G) = {(92, G)}

%2, 0, B) = {(92, 0} %2, 1, G) = {(92,

<5(<?2, U R) = {(92, £)}

Fig. 5.2 Formal pushdown automaton accepting {wcwR
\
w in (0 + 1)*} by empty stack.

Instantaneous descriptions

To formally describe the configuration of a PDA at a given instant we define an

instantaneous description (ID). The ID must, of course, record the state and stack

contents. However, we find it useful to include the "unexpended input" as well.

Thus we define an ID to be a triple (q, w, y), where q is a state, w a string of input

symbols, and y a string of stack symbols. IfM = (Q, Z, T, 3, q0 ,
Z0 ,

F) is a PDA,
we say (q, aw, Za) \jf (p, w, Pa) if 3(q, a, Z) contains (p, 0). Note that a may be £ or

an input symbol. For example, in the PDA of Fig. 5.2, the fact that (q u BG) is in

3(qu 0, G) tells us that (qu 011, GGR) (— (<?!, 11, BGGR).
We use (~ for the reflexive and transitive closure of f^-. That is, / p1- / for each

ID /, and / \~ J and J K imply / (£- X. We write / p- K if ID / can become K
after exactly / moves. The subscript is dropped from

f^-, f^,
and whenever the

particular PDA M is understood.
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Accepted languages

For PDA M = (Q, L, T, 3, q0 ,
Z0 ,

F) we define L(M), the language accepted by

final state, to be

{w
| (tfo>

w> Z0 ) Pt (p> y) for some p in F and y in T*}.

We define N(M), the language accepted by empty stack (or null stack) to be

{w
| (q0 , w, Z0 ) P1

- (p, e, e) for some p in Q}.

When acceptance is by empty stack, the set of final states is irrelevant, and, in this

case, we usually let the set of final states be the empty set.

Example 5.2 Figure 5.3 gives a PDA that accepts {wwR
|
w in (0 + 1)*}. Rules (1)

through (6) allow M to store the input on the stack. In rules (3) and (6), M has a

choice of two moves. M may decide that the middle of the input string has been

reached and make the second choice: M goes to state q2 and tries to match the

remaining input symbols with the contents of the stack. IfM guessed right, and if

the input is of the form wwR
, then the inputs will match, M will empty its stack and

thus accept the input string.

M = (fai, q 2\ {0, 1}, {R, B, G}, 5, q l9 R, 0)

1) 5(qi , 0, R) = {(«?., BR)} 6) %„ 1,G) = {(«.. GG), (q2 , £)}

2) %„ 1, R) = {(<?.. GR)) 7) d(q2 , 0, B) = {(92, 0}

3) 5(qi , 0, B) = {(<?„ BB\ (q2 , €)} 8) 6(q2 , 1, G) = {(92, 0}

4) 5(qu 0,G) = {(«». BG» 9) €, R) = {(92, 0}

5) 5{qt, l,B)~ GB)} 10) %2 , £, R) = {(92, £)}

Fig. 5.3 A nondeterministic PDA that accepts {wwR
\
w in (0 4- 1)*} by empty stack.

Like the nondeterministic finite automaton, a nondeterministic PDA M
accepts an input if any sequence of choices causes M to empty its stack. Thus M
always "guesses right," because wrong guesses, in themselves, do not cause an

input to be rejected. An input is rejected only if there is no "right guess." Figure 5.4

shows the accessible ID's of M when M processes the string 001100.

Deterministic PDA's

The PDA of Example 5.1 is deterministic in the sense that at most one move is

possible from any ID. Formally, we say that a PDA M = (Q, I, T, 5, q0 ,
Z0 ,

F), is
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Initial

I

(q ly 001 100, R) -> (q2y 001 100, e)

i

(q ly 01100, BR)

i

(qu 1 100, BBR) (£, 1 100, R) ->
(<?2 , 1 100, e)

i

hi, 100, GBBR)

I

(qu 00, GGBBR) (q2 , 00, BBK)

1

!

(qi, 0, BGGBBR) fa2 , 0, BR)

I

(qu e, BBGGBBR) (ql e, GGBBR) {q2 , c, R) - (q2 , t, c)

I

Accept

Fig. 5.4 Accessible ID's for the PDA of Fig. 5.3 with input 001100.

deterministic if:

1) for each q in Q and Z in T, whenever 3(qy £> Z) is nonempty, then S(q, a, Z) is

empty for all a in Z;

2) for no q in Q, Z in T, and a in Z u {c} does a, Z) contain more than one

element.

Condition 1 prevents the possibility of a choice between a move independent

of the input symbol (£-move) and a move involving an input symbol. Condition 2

prevents a choice of move for any (q, ay Z) or (qy £, Z). Note that unlike the finite

automaton, a PDA is assumed to be nondeterministic unless we state otherwise.

For finite automata, the deterministic and nondeterministic models were

equivalent with respect to the languages accepted. The same is not true for PDA.
In fact wwR

is accepted by a nondeterministic PDA, but not by any deterministic

PDA.
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114 PUSHDOWN AUTOMATA

5.3 PUSHDOWN AUTOMATA AND
CONTEXT-FREE LANGUAGES

We shall now prove the fundamental result that the class of languages accepted by

PDA's is precisely the class of context-free languages. We first show that the

languages accepted by PDA's by final state are exactly the languages accepted by

PDA's by empty stack. We then show that the languages accepted by empty stack

are exactly the context-free languages.

Equivalence of acceptance by final state and empty stack

Theorem 5.1 If L is L(M2 ) for some PDA M2 , then L is N(M
X ) for some PDA,

Proof In brief, we would like Mj to simulate M 2 , with the option forM
x
to erase

its stack whenever M 2 enters a final state. We use state qe ofM x
to erase the stack,

and we use a bottom of stack marker I0 for M 1} so Mj does not accidentally

accept ifM 2 empties its stack without entering a final state. Let M 2 = (Q, X, T, 5,

q0 ,
Z0 ,

F) be a PDA such that L = L(M2 ). Let

M
x
= (Q u {q„ q'ol Z, T u {X0 } y 5\ q'

0y X0 , 0),

where 3' is defined as follows.

1) Sy09 £, X0 ) = {(q0j Z0 X0 )}.

2) 3'(q, a, Z) includes the elements of 3(q, a, Z) for all q in Q, a in E or a = £, and

Z in r.

3) For all q in F, and Z in T u {X0 }, ^'(<y, £, Z) contains (^e , 6).

4) For all ZinTu {A^}, d'(qe , e, Z) contains (qey e).

Rule (1) causes M
x
to enter the initial ID ofM 2 ,

except that M
x
will have its

own bottom of the stack marker X0 , which is below the symbols ofM 2's stack.

Rule (2) allows M
1
to simulate M 2 . Should M 2 ever enter a final state, rules (3)

and (4) allow M
x
the choice of entering state qe and erasing its stack, thereby

accepting the input, or continuing to simulate M 2 . One should note that M 2 may
possibly erase its entire stack for some input jc not in L(M 2 ). This is the reason

that Mj has its own special bottom-of-stack marker. OtherwiseM
x , in simulating

M2 , would also erase its entire stack, thereby accepting x when it should not.

Let x be in L(M 2 ). Then (q0 , x, Z0 ) |^ (q, c, y) for some q in F. Now consider

Mj with input x. By rule (1),

(<?0 , x, X0 )r*M<7o> x, Z0X0 )y

By rule (2), every move of M 2 is a legal move for M u thus

(<7o> x, Z0 ) (^, £, y).
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If a PDA can make a sequence of moves from a given ID, it can make the same
sequence of moves from any ID obtained from the first by inserting a fixed string

of stack symbols below the original stack contents. Thus

(q'o, x, X0 ) (ft, x, Z0X0 )£ (q9
e

9 yX0 ).

By rules (3) and (4),

fa> ^V^oJfcSifae. £
> 4

Therefore,

fao> *o) fae. 4
and Mj accepts x by empty stack.

Conversely, if Mj accepts x by empty stack, it is easy to show that the

sequence of moves must be one move by rule (1), then a sequence ofmoves by rule

(2) in which M
x
simulates acceptance of x by M 2 , followed by the erasure ofM/s

stack using rules (3) and (4). Thus x must be in L(M2 ).

Theorem 5.2 If L is N(M
X ) for some PDA M l9

then L is L(M 2 ) for some PDA
M2 .

Proof Our plan now is to have M 2 simulate M
x
and detect when M

x
empties its

stack. M 2 enters a final state when and only when this occurs. Let M
x
= (Q, I, T,

<5> <?o, Z09 0) be a PDA such that L = N(M
t ). Let

M 2
= (Qkj {q'0 , qfl I, T u {*<>}, <5', ^, X0 , {<?,-}),

where <5' is defined as follows:

1) Sy09 6, *0 ) = {fa0 ,
z0 ^0 )}.

2) For all in Q9 a in £ u {e}
9
and Z in T,

d'(q, a9 Z) = %, a9 Z).

3) For all q in g, <5'(<?, £, X0 ) contains (qf9 e).

Rule (1) causes M 2 to enter the initial ID ofM l9 except that M 2 will have its

own bottom-of-stack marker X0 , which is below the symbols of M/s stack. Rule

(2) allows M 2 to simulate M
x

. Should M, ever erase its entire stack, then M 2 ,

when simulating M l9 will erase its entire stack except the symbol X0 at the

bottom. Rule (3) causes M 2 , when the X0 appears, to enter a final state, thereby

accepting the input x. The proof that L(M 2 ) = N(M
X ) is similar to the proof of

Theorem 5.1 and is left as an exercise.

Equivalence of PDA's and CFL's

Theorem 5.3 If L is a context-free language, then there exists a PDAM such that

L = N(M).
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Proof We assume that e is not in L(G). The reader may modify the construction

for the case where e is in L(G). Let G = (V, T, P, S) be a context-free grammar in

Greibach normal form generating L. Let

M =
({q} 9 T, V, <5, q, S, 0),

where 5(qy a, A) contains (qy y) whenever A -> ay is in P.

The PDA M simulates leftmost derivations of G. Since G is in Greibach

normal form, each sentential form in a leftmost derivation consists of a string of

terminals x followed by a string of variables a. M stores the suffix a of the left

sentential form on its stack after processing the prefix x. Formally we show that

S ^> xol by a leftmost derivation if and only if (q, x, S) (q, £, a). (5.1)

First we suppose that (q, x, S) p- (qy £, a) and show by induction on i that

S ^> xa. The basis, i = 0, is trivial since x = c and a = S. For the induction, sup-

pose i > 1, and let x = ya. Consider the next-to-last step,

bJfl,S)^fe flJ)h(^,a). (5.2)

If we remove a from the end of the input string in the first i ID's of the sequence

(5.2), we discover that (q, y, S)
\

— 1

(q, £, /?), since a can have no effect on the

moves ofM until it is actually consumed from the input. By the inductive hypoth-

esis S ^> yfl. The move (q, a, P) |— (q, £, a) implies that P = Ay for some A in K,

A -> arj is a production of G and a = 777. Hence

5 ^> yP => yarjy = xa,

and we conclude the "if" portion of (5.1).

Now suppose that 5 ±> xol by a leftmost derivation. We show by induction on i

that (q, x, 5) f-^ (q, c, a). The basis, i = 0, is again trivial. Let i > 1 and suppose

S '=> y^y => yaf/y,

where x = ya and a = rjy. By the inductive hypothesis, (q y y, 5) j-^ (q, e, Ay) and

thus (q, ya, S)\*- (q, a, Ay). Since A -* ar] is a production, it follows that d(q, a, A)

contains (q, rj). Thus

(q, x, S)\±{q,a,Ay)\-{q, £, a),

and the "only if" portion of (5.1) follows.

To conclude the proof, we have only to note that (5.1) with a = e says S ^> x if

and only if (q, x, S) (q, £, c). That is, x is in L(G) if and only if x is in N(M).

Theorem 5.4 If L is N(M) for some PDA M, then L is a context-free language.

Proof Let M be the PDA (Q, Z, T, <5, qQy Z0 , 0). Let G = (K, I, P. S) be a

context-free grammar where V is the set of objects of the form [q, A, p], q and p in
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Q, and A in T, plus the new symbol S. P is the set of productions

1) s ->
[<7o> Z0 , 4] f°r each g in Q;

2) [<?, ^, 4m+ 1] -> fl[4i> 5 i> ^Jfe. #2, ^3]
' '

' [<lm, Bmy qm+ J for each qy qu q2,...,

qm + 1 m 6> eacn a in I u {e}
y
and ,4, B x ,

B2 , . .
. , Bm in T, such that d(qy ay ,4)

contains (q l9 B X
B2

" Bm\ (If m = 0, then the production is [qy
A, q x]-> a.)

To understand the proof it helps to know that the variables and productions

of G have been defined in such a way that a leftmost derivation in G of a sentence x

is a simulation of the PDA M when fed the input x. In particular, the variables

that appear in any step of a leftmost derivation in G correspond to the symbols on

the stack ofM at a time whenM has seen as much of the input as the grammar has

already generated. Put another way, the intention is that [qy A, p] derive x if and

only if x causes M to erase an A from its stack by some sequence of moves

beginning in state q and ending in state p.

To show that L(G) = N(M), we prove by induction on the number of steps in

a derivation of G or number of moves ofM that

[q, A,p]§>x if and only if (qy x, A) (p, £, e\ (5.3)

First we show by induction on i that if (qy x, A) f-^- (p, £, e\ then [qy A, p] ^> x. If

i = 1, then S(qy x, A) must contain (p, e). (Here x is 6 or a single input symbol.)

Thus [q, A, p] -> x is a production of G.

Now suppose 1 > 1. Let x = ay and

(<?, fly, >i) \- (q l9 y,B x
B 2

" Bn ) (p, £, £).

The string y can be written y = y x y 2
"

' y„, where y7
has the effect of popping B

}

from the stack, possibly after a long sequence of moves. That is, let y x
be the prefix

ofy at the end of which the stack first becomes as short as n - 1 symbols. Let y2 be

the symbols of y following y x
such that at the end of y2 the stack first becomes as

short as n — 2 symbols, and so on. The arrangement is shown in Fig. 5.5. Note that

B
x need not be the nth stack symbol from the bottom during the entire time y x

is

being read by M, since B x
may be changed if it is at the top of stack and is replaced

by one or more symbols. However, none ofB 2 B3
• • • Bn are ever at the top while y x

is being read and so cannot be changed or influence the computation. In general,

Bj remains on the stack unchanged while y x y2
• • • y7 _ x

is read.

There exist states q2y q 2 , qn+1 , where qn + x
= p, such that

(qjf yjt Bj)\+(qj+u ef e)

by fewer than i moves (qj is the state entered when the stack first becomes as short

as n — j + 1). Thus the inductive hypothesis applies and

[qp Bjy qj+l]±>yj for 1<;<m.
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\ \
\

State = q
x |\

\

|
State = q2

\
\
\

A/
State = qn

Y

State = p

Input symbols consumed

Fig. 5.5 Height of stack as a function of input consumed.

Recalling the original move (q9 ay9 A) |— (q i9 y9 B l
B2

- Bn\ we know that

[q9 A, p]=>a[q l9 B, q2][q2 ,
B 2 , q3] ~

[qn9 Bn9 qn+l ] y

so [q, A, p]^>ay
l y2

--' y„ = x.

Now suppose [q, A, p] ±> x. We show by induction on i that (q, x, A) \±- (p, £,

e). The basis, i = 1, is immediate, since [q9 A, p] -+ x must be a production ofG and

therefore 3(q, x, A) must contain (p, £). Note x is £ or in L here.

For the induction, suppose

[q9 A, p]=>a[q l9 B l9 q2}
~

[qn9 Bn9 qn+1Y^x9

where qn+l = p. Then we may write x = ax
x x 2

• • • x„, where gJ+ x ]
i> x

}
for

1 < 7 < m, with each derivation taking fewer than i steps. By the inductive hypoth-

esis, (qj9 Xj, Bj) (qj+ !, 6, e) for 1 < j < n. If we insert Bj+ j
• • Bn at the bottom of

each stack in the above sequence of ID's we see that

(qj9 xj9 BjBj+ 1
• • • Bn ) \*- (qj+ l9 £, Bj+ 1

- Bn ). (5.4)

From the first step in the derivation of x from [q9 A 9 p] we know that

(q, x, A) [— (q l9 x l
x2 "Xn9 B l

B2 " Bn )

is a legal move of M, so from this move and (5.4) forj= 1, 2, . .
. , n9 (q9 x, A) \^ (p,

£, £) follows.
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The proof concludes with the observation that (5.3) with q = q0 and A = Z0

says

[q0 ,
Z0 , p] *> x if and only if (q0 , x, Z0 )

[±- (p, £, e).

This observation, together with rule (1) of the construction of G, says that

S^>x if and only if (q0 , x, Z0 ) p1- (p, £, c) for some state p.

That is, x is in L(G) if and only if x is in N(M).

Example 5.3 Let

M = ({flo, {0, 1}, {X, Z0 }, (5, 9ot Z0 , 0),

where £ is given by

%>, 0, Z0 ) = {(<Zo, ^Z0», %x, 1, X) = {fa lf £)},

S(q09 0, X) = {(q0i XX% S(q l9 £, X) = {fo lf £)},

<5(g0 , 1, X) = {(tfi, 0}' <5(<h> £
>
zo) = {(<7i> e)}-

To construct a CFG G = (V, T, P, S) generating N(M) let

^ = {S, [q0 , X, q0], [q0 , X, q x\ [q l9 X, q0\ [<?„ Xy q x\

[q0 ,
Z0 , q0\ [q0 ,

Z0 , q x\ [q ly Z0 , q0\ [q l9
Z0 , gj}

and T = {0, 1}. To construct the set of productions easily, we must realize that

some variables may not appear in any derivation starting from the symbol S.

Thus, we can save some effort if we start with the productions for 5, then add

productions only for those variables that appear on the right of some production

already in the set. The productions for S are

S -> [q0 , Z0 , q0]

S ->
[q0j Z0 , q Y ]

Next we add productions for the variable [q0 ,
Z0 , q0\ These are

[<?o, Z0 , q0] -> 0[qOy X, q0][q0 y
Z0 , q0]

[<?o> z0 , Qo] -> %o> X, qi][q l9
Z0 , q0]

These productions are required by d(q0y 0, Z0 ) = {(q0 ,
XZ0 )}. Next, the produc-

tions for [q0 ,
Z0 , qi ] are

[<?o> Z0 , q x ]
-> 0[q0 , X, q0][q0 ,

Z0 , q x ]

[<lo> Z0 , q x ]
-> 0[q0 , X, q x][q lr Z0 , q x ]
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These are also required by S(q0 , 0, Z0 ) = {(q0 ,
XZ0 )}. The productions for the

remaining variables and the relevant moves of the PDA are:

1) [q0 , X, q0] ->0[g0 ,
X, q0][q0 , X, q0]

[q0 , X y q0] ->0[g0 ,
X, q x][q^ X, q0]

[<7o> X, qj -> 0[<3f0 , X y qQ][q0 , Xy
q~]

[<lo, X, q{\ ->0[g0 , X, qi\[qu X, q t ]

since 5{q0 , 0, X) = {{q09 XX)}.

2) [q0 , X, q t ]
-> 1 since 5(q0 , 1, X) = {{q ly c)}.

3) fo lf Z0 , qi ]
-> 6 since ^ £, Z0 ) = £)}.

4) foi, - £ since £, X) = {(^ £)}.

5) bi, X, qi ]
-> 1 since S(qu 1, X) = {(^ £)}.

It should be noted that there are no productions for the variables [q l9 X, q0]
and [q l9

Z0 , q0]. As all productions for [q0 , X, q0] and [q0y Z0 , q0] have [g l5 X, g0]
or [q l9

Z0 , g0] on the right, no terminal string can be derived from [q0 ,
X y q0] or

[q0 ,
Z0 , q0] either. Deleting all productions involving one of these four variables

on either the right or left, we end up with the following productions.

S [q0 ,
Z0 , q x\ [q l9 Z0 , q x ]

-+ £,

[<?o> Z0 , q x ] 0[g0 , A", 4i][<?i, Z0 , <7i]> 4i] -> ^

[<?„ q x ] 0[(?0 , X, gjfo,, X, <?,], [<?„ X, -> 1.

bo, 4i] -> 1.

We summarize Theorems 5.1 through 5.4 as follows. The three statements

below are equivalent:

1) L is a context-free language.

2) L=N(M X ) for some PDA M
x

.

3) L = L(M 2 ) for some PDA M 2 .

EXERCISES

5.1 Construct pushdown automata for each of the languages in Exercise 4.1.

5.2 Construct a PDA equivalent to the following grammar.

S-+aAA, A-+aS\bS\a.

5.3 Complete the proof of Theorem 5.3 by showing that every CFL L is the set accepted

by some PDA even if e is in L. [Hint: Add a second state to the PDA for L — {e}.]

5.4 Show that if L is a CFL, then there is a PDA M accepting L by final state such that M
has at most two states and makes no amoves.
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* 5.5

a) Show that ifL is a CFL, then L is L(M) for some PDA M such that if S(q, a, X) contains

(p,y), then |y| < 2.

b) Show that M of part (a) can be further restricted so that if S(q
y a, X) contains (p, y),

then y is either e (a pop move), X (no change to the stack), or YX for some stack

symbol Y (a push move).

c) Can we put a bound on the number of states ofM in part (a) and still have a PDA for

any CFL?
d) Can we put a bound on the number of states in part (b)?

5.6 Give a grammar for the language N(M) where

M = (fe0 , <*,}, {0, 1}, {Z0 ,
X}, 6, ft, Z0 , 0 )

and 5 is given by

<5(<7o, 1, Z0 ) = {(<7o, *Z0 )}, <5(<?o, £
>
zo) = {(<?o, *)}>

%0 ,
i, x) = {foo, L *) = (toi. *

5(9o, 0, X) = {fo lf X)}, 0, Z0 ) = {toe Zo)}.

5.7 The deterministic PDA (DPDA) is not equivalent to the nondeterministic PDA. For

example, the language

L={0n
\
n \n> 1} u {0"l

2n \n> 1}

is a CFL that is not accepted by any DPDA.

a) Show that L is a CFL.
** b) Prove that L is not accepted by a DPDA.

5.8 A language L is said to have the prefix property if no word in L is a proper prefix of

another word in L. Show that if L is N(M) for DPDA M, then L has the prefix property. Is

the foregoing necessarily true if L is N(M) for a nondeterministic PDA M?
* 5.9 Show that L is N(M) for some DPDA M ifand only ifL is L(M') for some DPDA M\
and L has the prefix property.

5.10 A two-way PDA (2PDA) is a PDA that is permitted to move either way on its input.

Like the two-way FA, it accepts by moving off the right end of its input in a final state.

Show that L = {0T2n
|
n > 1} is accepted by a 2PDA. We shall show in the next chapter

that L is not a CFL, by the way, so 2PDA's are not equivalent to PDA's.

*S 5.11 Write a program to translate a regular expression to a finite automaton.

* 5.12 The grammar

E -+ E + E\E * E|(E)|id (5.5)

generates the set of arithmetic expressions with +, *, parentheses and id in infix notation

(operator between the operands). The grammar

P-+ +PP|*PP|id

generates the set of arithmetic expressions in prefix notation (operator precedes the oper-

ands). Construct a program to translate arithmetic expressions from infix to prefix notation
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122 PUSHDOWN AUTOMATA

using the following technique. Design a deterministic PDA that parses an infix expression

according to the grammar in (5.5). For each vertex in the parse tree determine the necessary

action to produce the desired prefix expression. [Hint: See the solution to Exercise 5.11.]

5.13 Construct a compiler for infix arithmetic expressions that produces an assembly

language program to evaluate the expression. Assume the assembly language has the single

address instructions: LOAD x (copy x to accumulator), ADD x (add x to accumulator),

MULT x (multiply contents of the accumulator by x) and STO x (store the contents of the

accumulator in x).

Solutions to Selected Exercises

5.11 Writing a program to translate a regular expression to a finite automaton can be

thought of as constructing a rudimentary compiler. We have already seen (Theorem 2.3)

that finite automata accepting 0, 6, 0, and 1 can be combined to obtain an automaton

equivalent to a given regular expression. The only problem is parsing the regular expression

to determine the order in which to combine the automata.

Our first step is to construct a CFG for the set of regular expressions. The next step is

to write a parser and finally the automaton-generating routines.

A grammar for regular expressions that groups subexpressions according to the con- »

ventional precedence of operations is given below. Note that € is used for the symbol e.

E-+P + E\P

P-+T- P\T

r-o|i|c|0|r*|(E)

The parsing routine is constructed directly from the grammar by writing a procedure

for each variable. A global variable STRING initially contains the following regular

expression.

procedure FIND_EXPRESSION;
begin

FINDJPRODUCT;
while first symbol of STRING is + do

begin

delete first symbol of STRING;
FINDJPRODUCT

end;

end FIND_EXPRESSION;
procedure FINDJPRODUCT;
begin

FIND_TERM;
while first symbol of STRING is do

begin

delete first symbol of STRING;
FINDJTERM

end

end FINDJPRODUCT;
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procedure FIND_TERM;
begin

if first symbol of STRING is 0, 1, e, or 0 then

delete first symbol of STRING;
else if first symbol of STRING is ( then

begin

delete first symbol of STRING;
FIND_EXPRESSION;
if first symbol of STRING is ) then

delete first symbol of STRING
else error

end

while first symbol of STRING is * do

delete first symbol of STRING
end FIND_TERM

The actual parsing program consists of a single procedure call:

FIND_EXPRESSION;

Note that the recursive procedures FINDJEXPRESSION, FIND_PRODUCT, and

FIND_TERM have no local variables. Thus they may be implemented by a stack that

pushes £, P, or T, respectively, when a procedure is called, and pops the symbol when the

procedure returns. (Although FIND.EXPRESSION has two calls to FIND_PRODUCT,
both calls return to the same point in FIND_EXPRESSION. Thus the return location

need not be stored. Similar comments apply to FIND_PRODUCT). Thus, a deterministic

PDA suffices to execute the program we have defined.

Having developed a procedure to parse a regular expression, we now add statements to

output a finite automaton. Each procedure is modified to return a finite automaton. In

procedure FIND_TERM, if the input symbol is 0, 1, e, or 0, a finite automaton accepting

0, 1, c, or 0 is created and FIND_TERM returns this automaton. If the input symbol is (,

then the finite automaton returned by FINDJEXPRESSION is the value of

FIND_TERM. In either case, if the while loop for * is executed, the automaton is modified

to accept the closure.

In procedure FIND_PRODUCT, the value of FIND_PRODUCT is assigned the

value of the first call of FIND_TERM. Each time the "while" statement is executed, the

value of FIND_PRODUCT is set to an automaton accepting the concatenation of the sets

accepted by the current value of FIND_PRODUCT and the automaton returned by

the call to FIND_TERM in the "while" loop. Similar statements are added to

the procedure FINDJEXPRESSION.

BIBLIOGRAPHIC NOTES

The pushdown automaton appears as a formal construction in Oettinger [1961] and Schut-

zenberger [1963]. Its equivalence to context-free grammars was perceived by Chomsky
[1962] and Evey [1963].

A variety of similar devices have been studied. Counter machines have only one push-

down symbol, with the exception of a bottom-of-stack marker. They are discussed in
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Fischer [1966], and Fischer, Meyer, and Rosenberg [1968]; see also the bibliographic notes

to Chapter 7. Pushdown transducers are PDA's that may print symbols at each move. They

have been studied by Evey [1963], Fischer [1963], Ginsburg and Rose [1966], Ginsburg and

Greibach [1966b], and Lewis and Stearns [1968].

The two-way PDA mentioned in Exercise 5.10 has been studied by Hartmanis, Lewis,

and Stearns [1965]. Its closure properties were considered by Gray, Harrison, and Ibarra

[1967], and characterizations of the class of languages accepted by the deterministic

(2DPDA) and nondeterministic (2NPDA) varieties have been given by Aho, Hopcroft, and

Ullman [1968], and Cook [1971c]. The latter contains the remarkable result that any

language accepted by a 2DPDA is recognizable in linear time on a computer. Thus, the

existence of a CFL requiring more than linear time to recognize on a computer, would

imply that there are CFL's not accepted by 2DPDA's. However, no one to date has proved

that such a language exists. Incidentally, the language {(yi
n2n

\n > 1} is an example of a

non-CFL accepted by a 2DPDA.
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CHAPTER

6
PROPERTIES OF
CONTEXT-FREE
LANGUAGES

To a large extent this chapter parallels Chapter 3. We shall first give a pumping
lemma for context-free languages and use it to show that certain languages are not

context free. We then consider closure properties of CFL's and finally we give

algorithms to answer certain questions about CFL's.

6.1 THE PUMPING LEMMA FOR CFL's

The pumping lemma for regular sets states that every sufficiently long string in a

regular set contains a short substring that can be pumped. That is, inserting as

many copies of the substring as we like always yields a string in the regular set.

The pumping lemma for CFL's states that there are always two short substrings

close together that can be repeated, both the same number of times, as often as we
like. The formal statement of the pumping lemma is as follows.

Lemma 6.1 (The pumping lemma for context-free languages). Let L be any CFL.
Then there is a constant n, depending only on L, such that if z is in L and \z\ >n,
then we may write z = uvwxy such that

1) \vx\ >1,

2) |
vwx

|
< n, and

3) for all i > 0 wi/wx> is in L.

Proof Let G be a Chomsky normal-form grammar generating L — {e}. Observe

that if z is in Ufi) and z is long, then any parse tree for z must contain a long path.

More precisely, we show by induction on i that if the parse tree of a word

125
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generated by a Chomsky normal-form grammar has no path of length greater

than i, then the word is of length no greater than 2 l ~ *. The basis, i = 1, is trivial,

since the tree must be of the form shown in Fig. 6.1(a). For the induction step, let

i > 1. Let the root and its sons be as shown in Fig. 6.1(b). If there are no paths of

length greater than i — 1 in trees Tx
and T2 , then the trees generate words of 2

1-2

or fewer symbols. Thus the entire tree generates a word no longer than 2
i_1

s . s

a A B

A A
(a) (b)

Fig. 6.1 Parse trees.

Let G have k variables and let n = 2*. If z is in L(G) and \z\ > w, then since

|
z

|
> 2

k ~ f

, any parse tree for z must have a path of length at least k + 1. But such

a path has at least k + 2 vertices, all but the last of which are labeled by variables.

Thus there must be some variable that appears twice on the path.

We can in fact say more. Some variable must appear twice near the bottom of

the path. In particular, let P be a path that is as long or longer than any path in the

tree. Then there must be two vertices v
x
and v2 on the path satisfying the following

conditions.

1) The vertices v
x
and v2 both have the same label, say A.

2) Vertex v
x

is closer to the root than vertex v2 .

3) The portion of the path from v x
to the leaf is of length at most k -h 1.

To see that v
x
and v2 can always be found, just proceed up path P from the

leaf, keeping track of the labels encountered. Of the first k + 2 vertices, only the

leaf has a terminal label. The remaining k + 1 vertices cannot have distinct vari-

able labels.

Now the subtree T
x
with root v

1
represents the derivation of a subword of

length at most 2*. This is true because there can be no path in T
x
of length greater

than k -h 1, since P was a path of longest length in the entire tree. Let z
x
be the

yield of the subtree T
1

. If T2 is the subtree generated by vertex v2 , and z2 is the

yield of the subtree T2 , then we can write z
x as z3 z2 z4 . Furthermore, z3 and z4

cannot both be £, since the first production used in the derivation of z x must be of

the form A^BC for some variables B and C. The subtree T2 must be completely

within either the subtree generated by B or the subtree generated by C. The above

is illustrated in Fig. 6.2.
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6.1 | THE PUMPING LEMMA FOR CFL'S 127

Zj = bba

z = bbbaba

(a) (c)

Zj = z
3
z
2
z
4 , where z

3
= bb and z

4
= e

G = ({/I, 5, C}, {a, 6}, {/i-*£C B-+BA. C-+BA, A-*a. B-+b},A)

Fig. 6.2 Illustration of subtrees T, and T2 of Lemma 6.1. (a) Tree, (b) Subtree T
x

.

(c) Subtree T2 .

We now know that

A=?z3 Az± and A^>z2 , where
|
z3 z2 z4 1

< 2* = n.

But it follows that /I => z
l

3 z2 z4 for each i > 0. (See Fig. 6.3.) The string z can

clearly be written as uz3 z2 z4 for some u and y. We let z3 = y, z2 = w, and
z4 = x, to complete the proof.

Applications of the pumping lemma

The pumping lemma can be used to prove a variety of languages not to be context

free, using the same "adversary" argument as for the regular set pumping lemma.

Example 6.1 Consider the language L
x
= {aVc 1

\
i > 1}. Suppose L were context

free and let n be the constant ofLemma 6.1. Consider z = a"b"c". Write z = uvwxy
so as to satisfy the conditions of the pumping lemma. We must ask ourselves

where v and x, the strings that get pumped, could lie in a
nbn

c". Since
|
vwx

\
< n, it

is not possible for vx to contain instances of a's and c's, because the rightmost a is

« + 1 positions away from the leftmost c. If v and x consist of cfs only, then wwy
(the string wiAvx'y with i = 0) has n b's and n c's but fewer than n a% since

\

vx\ > 1.
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i times

\
Fig. 6.3 The derivation of uv'wx'y, where u = 6, v = bb, w = a, x = £, y = ba.

Thus, uwy is not of the form a?b>d. But by the pumping lemma vwy is in L l9 a

contradiction.

The cases where u and x consist only of fr's or only of c's are disposed of

similarly. If vx has a's and b's, then uwy has more c's than a's or b% and again it is

not in Lj. If vx contains b
y

s and c's, a similar contradiction results. We conclude

that L
x

is not a context-free language.

The pumping lemma can also be used to show that certain languages similar

to Lj are not context free. Some examples are

{aVd
|
j > i} and {aW \i <j < k}.

Another type of relationship that CFG's cannot enforce is illustrated in the next

example.

Example 6.2 Let L2 = {aWtfd*
\
i > 1 and j > 1}. Suppose L2 is a CFL, and let n

be the constant in Lemma 6.1. Consider the string z = aWcfd'1

. Let z = uvwxy

satisfy the conditions of the pumping lemma. Then as
|
vwx

\

<n,vx can contain

at most two different symbols. Furthermore, if vx contains two different symbols,

they must be consecutive, for example, a and b. If vx has only a% then uwy has

fewer a's than c's and is not in L2 , a contradiction. We proceed similarly if vx

consists of only b% only c's, or only cTs. Now suppose vx has as and Vs. Then vwy

still has fewer as than c's. A similar contradiction occurs if vx consists of b's and

c's or c's and d*s. Since these are the only possibilities, we conclude that L2 is not

context free.
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Ogden's lemma

There are certain non-CFL's for which the pumping lemma is of no help. For
example,

L 3 = {fl'Vc\i'| either i = 0 or ; = k = /}

is not context free. However, if we choose z = frW, and write z = uvwxy, then it

is always possible to choose u, y, w, x, and y so that wt;
mwxmy is in L 3 for all m. For

example, choose invx to have only Vs. Ifwe choose z = cttidd*, then v and x might
consist only of a% in which case uvmwxmy is again in L 3 for all m.

What we need is a stronger version of the pumping lemma that allows us to

focus on some small number of positions in the string and pump them. Such an

extension is easy for regular sets, as any sequence of n + 1 states of an n-state FA
must contain some state twice, and the intervening string can be pumped. The
result for CFL's is much harder to obtain but can be shown. Here we state and

prove a weak version of what is known as Ogden's lemma.

Lemma 6.2 (Ogden's lemma). Let L be a CFL. Then there is a constant n (which

may in fact be the same as for the pumping lemma) such that if z is any word in L,

and we mark any n or more positions of z "distinguished," then we can write

z = uvwxy, such that:

1) i; and x together have at least one distinguished position,

2) vwx has at most n distinguished positions, and

3) for all i > 0, uv*wx?y is in L

Proof Let G be a Chomsky normal-form grammar generating L - {e}. Let G
have k variables and choose n = 2* + 1. We must construct a path P in the tree

analogous to path P in the proof of the pumping lemma. However, since we worry

only about distinguished positions here, we cannot concern ourselves with every

vertex along P, but only with branch points, which are vertices both of whose sons

have distinguished descendants.

Construct P as follows. Begin by putting the root on path P. Suppose r is the

last vertex placed on P. If r is a leaf, we end. If r has only one son with distin-

guished descendants, add that son to P and repeat the process there. If both sons

of r have distinguished descendants, call r a branch point and add the son with the

larger number of distinguished descendants to P (break a tie arbitrarily). This

process is illustrated in Fig. 6.4.

It follows that each branch point on P has at least half as many distinguished

descendants as the previous branch point. Since there are at least n distinguished

positions in z, and all of these are descendants of the root, it follows that there are

at least k + 1 branch points on P. Thus among the last k + 1 branch points are

two with the same label. We may select v
Y
and v2 to be two of these branch points

with the same label and with v x closer to the root than u2 . The proof then proceeds

exactly as for the pumping lemma.
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Fig. 6.4 The path P. Distinguished positions are marked x. Branch points are marked b.

Example 6.3 Let L4 = {a'Vc*
|
i =f jy j =fc k and i fc}. Suppose L4 were a context-

free language. Let n be the constant in Ogden's lemma and consider the string

z = a
nbn+n>c

n+2n>
. Let the positions of the as be distinguished and let z = uvwxy

satisfy the conditions of Ogden's lemma. If either v or x contains two distinct

symbols, then uv
2wx2

y is not in L4 . (For example, if v is in a
+
b
+

9
then uv

2wx2
y has

a b preceding an a.) Now at least one of v and x must contain as since only a
y

s are

in distinguished positions. Thus, if x is in b* or c*, v must be in a
+

. If x is in a
+

9

then v must be in a*, otherwise a b or c would precede an a. We consider in detail

the situation where x is in b*. The other cases are handled similarly. Suppose x is

in b* and v in a
+

. Let p = \v\. Then 1 < p < n, so p divides n ! Let q be the integer

such that pq = n \ Then

z' = «i;
2*+1wx 2*+1

y

is in L4 . But u
2 * +1 = a2pq+p = a

2n!+p
. Since wwy contains exactly (n - p) as, z'

has (2n! + n) a's. However, since v and x have no c's, z' also has (2n! + n) c's

and hence is not in L 4 , a contradiction. A similar contradiction occurs if x is in

a
+

or c*. Thus L 4 is not a context-free language.

Note that Lemma 6.1 is a special case of Ogden's lemma in which all positions

are distinguished.

6.2 CLOSURE PROPERTIES OF CFL's

We now consider some operations that preserve context-free languages. The oper-

ations are useful not only in constructing or proving that certain languages are

context free, but also in proving certain languages not to be context free. A given

language L can be shown not to be context free by constructing from L a language

that is not context free using only operations preserving CFL's.
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Theorem 6.1 Context-free languages are closed under union, concatenation

and Kleene closure.

Proof Let Lx and L2 be CFL's generated by the CFG's

= (Vl9 Tl9 P l9 SJ and G2 = (V29 T2 ,
P2 , S2 ),

respectively. Since we may rename variables at will without changing the language

generated, we assume that Vx
and V2 are disjoint. Assume also that S3 ,

S4 , and

S5 are not in Kx or V2 .

For L
x
u L2 construct grammar G3 = (V

x
u K2 u {S3 }, 7i u r2 ,

P3 ,
S3 ),

where P3 is P
x
u P 2 plus the productions S3

-* S x \

S2 . If w is in Lj, then the

derivation S3 ^>S 1 g>w is a derivation in G3 , as every production of G x is a

production of 63 . Similarly, every word in L2 has a derivation in G3 beginning

with 53 => 52 . Thus ^ uL2 9 L(G3 ).[For the converse, let w be in L(G3 ). Then
the derivation S3 =>w begins with either S3 ^S 1 ^>w or S3 =>S2 |>w. In the

former case, as Vx
and K2 are disjoint, only symbols of G t

may appear in the

derivation 5 X
=> w. As the only productions of P3 that involve only symbols of G l

are those from Pu we conclude that only productions of P t
are used in the

derivation S^vv. Thus Sj^w, and w is in Lj. Analogously, if the derivation

starts S3 => 52 , we may conclude w is in L2 . Hence L(G3 ) ^ Lj u L2 , so L(G3 )
=

Lj u L2 , as desired.

For concatenation, let G4 = (Vi u V2 u {S4}, 7j u 72 ,
P4 ,

S4 ), where P4 is

P
x
u P2 plus the production 54 -*S 1 S2 . A proof that L(Gt) = L(G

X
)L(G 2 ) is

similar to the proof for union and is omitted.

For closure, let G 5
= (V

x
u {S5 }, Tu P5 ,

55 ), where P 5 is P
1
plus the produc-

tions 55
-> 5 X 55 1

e. We again leave the proof that L(G 5 ) = L(Gj)* to the reader.

Substitution and homomorphisms

Theorem 6.2 The context-free languages are closed under substitution.

Proof Let L be a CFL, L c £* and for each a in Z let La be a CFL. Let L be L(G)

and for each a in £ let La be L(G
fl
). Without loss of generality assume that the

variables of G and the Ga's are disjoint. Construct a grammar G' as follows. The

variables of G' are all the variables of G and the G
fl
's; the terminals of G' are

the terminals of the Ga's. The start symbol of G' is the start symbol of G.

The productions of G' are all the productions of the G
fl
's together with those

productions formed by taking a production A -> a of G and substituting 5a ,

the start symbol of Ga , for each instance of an a in £ appearing in a.

Example 6.4 Let L be the set of words with an equal number of as and b%
La = {0T|n > 1} and 1+ = {ww*

|
w is in (0 + 2)*}. For G we may choose
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For Ga take

S
fl
^0S

fl
l|01

For Gb take

Sb ->0Sb0\2Sb2\e

If / is the substitution f(a) = La and f(b) = Lj,, then f(L) is generated by the

grammar

S^SaSSbS\SbSSa S\e

Sa ^0Sal\0l

Sb ^0Sb0\2Sb2\e

One should observe that since {a, b), {ab} y and a* are CFL's, the closure of

CFL's under substitution implies closure under union, concatenation, and *. The

union of La and 1+ is simply the substitution of La and into {a, b} and similarly

La Lb and L* are the substitutions into {ab} and a*, respectively. Thus Theorem 6.1

could be presented as a corollary of Theorem 6.2.

Since a homomorphism is a special type of substitution we state the following

corollary.

Corollary The CFL's are closed under homomorphism.

Theorem 6.3 The context-free languages are closed under inverse homomor-
phism.

Proof As with regular sets, a machine-based proof for closure under inverse

homomorphism is easiest to understand. Let h : £ -* A be a homomorphism and L
be a CFL. Let L = L(JVf ), where JVf is the PDA (Q, A, T, <5, q0 ,

Z0 ,
F). In analogy

with the finite-automaton construction of Theorem 3.5, we construct PDA M'
accepting h~ 1

(L) as follows. On input a,M ' generates the string h(a) and simulates

M on h(a). If JVf were a finite automaton, all it could do on a string h(a) would be

to change state, so M' could simulate such a composite move in one of its moves.

However, in the PDA case, M could pop many symbols on a string, or, since it is

nondeterministic, make moves that push an arbitrary number of symbols on the

stack. Thus JVf cannot necessarily simulate M's moves on h(a) with one (or any

finite number of) moves of its own.

What we do is give JVf a buffer, in which it may store h(a). Then JVf may
simulate any £-moves of JVf it likes and consume the symbols of h(a) one at a time,

as if they were JVfs input. As the buffer is part of JVf's finite control, it cannot be

allowed to grow arbitrarily long. We ensure that it does not, by permitting M' to

read an input symbol only when the buffer is empty. Thus the buffer holds a suffix

of h(a) for some a at all times. JVf accepts its input w if the buffer is empty and JVf is

in a final state. That is, JVf has accepted h(w). Thus L(M') = {w
|

h(w) is in L}, that is
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Input toM'

Control

ofM'

Buffer
Control

ofM

Stack ofM and M'

Fig. 6.5 Construction of a PDA accepting h~ l
(L).

L(M') = h~ *(L(M )). The arrangement is depicted in Fig: 6.5; the formal construc-

tion follows.

Let M' = (Q\ Z, T, S\ [q0 ,
e], Z0 , F x {e}), where Q' consists of pairs [q, x]

such that q is in Q and x is a (not necessarily proper) suffix ofsome h(a) for a in E.

<5' is defined as follows:

1) d'([q, x], £, 7 ) contains all ([p, x], y) such that S(q, e, 7) contains (p, y). Sim-

ulate e-moves ofM independent of the buffer contents.

2) S'([q, ax], e, Y) contains all ([p, x], y) such that d(q, a, Y) contains (p, y). Sim-

ulate moves ofM on input a in A, removing a from the front of the buffer.

3) d'([q, e], a, Y) contains ([q, h(a)], Y) for all a in I and Y in T. Load the buffer

with h(a), reading a from M"s input; the state and stack of M remain

unchanged.

To show that L(M') = h~ I (L(M)) first observe that by one application of rule

(3), followed by applications of rules (1) and (2), if (q, h(a), a) f^- (p, e, ft), then

(fa. el a
>
a

) kr (fa> H<*)1 a
) \w ilPf 4 C Ju-

nius ifM accepts fr(w), that is,

(g0f^Z0)g-(p, 6, fi)

for some p in F and /? in r* it follows that

([tf0 , 4 w, Z0)|^([p, £], e, 0),

so M' accepts w. Thus L(M') 2 ^
_1

(L(M)).

Conversely, suppose M' accepts w = a
l
a 1 - an . Then since rule (3) can be

applied only with the buffer (second component ofM"s state) empty, the sequence
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of the moves of M' leading to acceptance can be written

([<?o> 4 <*i<*2 a„> Zo)Isf([Pi» el a i a2 "' <*n , «i)>

\kf(\jPi, h(ai)l a2<i3 an,<*i\

\w(\j>2, 4 ^2^3 « 2 )>

hr ([P2, M«2)], a 3 fl4 « 2 ),

where pn is in F. The transitions from state [ph e] to ft^)] are by rule (3), the

other transitions are by rules (1) and (2). Thus, (q0 , e, Z0 ) \£f (p l £, o^), and for all i,

(pis M0»)>a.)hr(Pi+i> £
>
af+i)-

Putting these moves together, we have

(q0 ,
h(a

x
a2

"- an\ Z0 ) \%f (Pn, U «„+ i)>

so h(a
x
a2

"' an ) is in L(M). Hence L(M') ^ /i

_1
(L(M)), whereupon we conclude

L{M') = h- 1
(L(M)).

"

Boolean operations

There are several closure properties of regular sets that are not possessed by the

context-free languages. Notable among these are closure under intersection and

complementation.

Theorem 6.4 The CFL's are not closed under intersection.

Proof In Example 6.1 we showed the language L
Y
= {ctb

l

(?\i > 1} was not a

CFL. We claim that L2 = {aVd\i > 1 and ; > 1} and L3 = {flW|i > 1 and

j > 1} are both CFL's. For example, a PDA to recognize L2 stores the as on its

stack and cancels them against b% then accepts its input after seeing one or more

c's. Alternatively L2 is generated by the grammar

S-+AB

A -+ aAb
|
ab

B-+cB\c
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where A generates db x and B generates d. A similar grammar

S-+CD

C -> aC\a

D-+bDc\bc

generates L3 .

However, L2 n L3 = Lv If the CFL's were closed under intersection, Lx

would thus be a CFL, contradicting Example 6.1.

Corollary The CFL's are not closed under complementation.

Proof We know the CFL's are closed under union. If they were closed under

complementation, they would, by DeMorgan's law, L x
n L2 = Li u L 2 be

closed under intersection, contradicting Theorem 6.4.

Although the class of CFL's is not closed under intersection it is closed under

intersection with a regular set.

Theorem 6.5 If L is a CFL and R is a regular set, then L n R is a CFL.

Proof Let L be L(M) for PDA M = (QMy S, T, <5M , g0 > Zo> FM ), and let R be L(/l)

for DFA A = (Q^, Z, ^, p0 ,
F^). We construct a PDA M' for L n R by "running

M and A in parallel," as shown in Fig. 6.6. M' simulates moves ofM on input e

without changing the state of A. When M' makes a move on input symbol a, M
simulates that move and also simulates A's change of state on input a. M' accepts

if and only if both A and M accept. Formally, let

M' = (QA x QM , Z, T, (5, [p0 , ^0], Z0 ,
F^ x FM ),

Input to /I. A/, and /V/'

Z

Control Control Control

of Ml of/1 ofM

Stack of

M and /V/'

Fig. 6.6 Running an FA and a PDA in parallel.
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where 3 is defined by S([p, q], a, X), contains ([p\ q'\ y) if and only if SA (pt a) = p',

and SM (q, a, X) contains (q, y). Note that a may be £, in which case p' = p.

An easy induction on i shows that

(bo, qol w, Z0 )
|£r ([p, g], £, y)

if and only if

(<?0 , w, Z0 ) hjr (g, £, y) and <5(p0 ,
w) = p.

The basis, i = 0, is trivial, since p = p0 , g = g0 , y = Z0 , and w = £. For the induc-

tion, assume the statement for i — 1, and let

([Po» 4o]> *<*, Z0 ) f-^f- ([p', 4'], a, ^ ([p, 4 £, y),

where w = xa, and a is £ or a symbol of Z. By the inductive hypothesis,

<UPo> *) = P' and (q0 , x, Z0 ) |-^- (</, £, £).

By the definition of <5, the fact that ([p', g'], a, /?) (^r ([p, g], £, y) tells us that

<Up', a) = P and (q\ a, ft) (<?, e, y). Thus 5A (p0 ,
w) = p and

(q0 ,
w, Z0 ) [£- (<?> ^ y)-

The converse, showing that (q0 , w, Z0 ) \jf (q, t, y) and SA (p0 ,
w) = p imply

(bo, 4o], w, Z0 ) ([p, 4 £, y),

is similar and left as an exercise.

Use of closure properties

We conclude this section with an example illustrating the use of closure properties

of context-free languages to prove that certain languages are not context free.

Example 6.5 Let L = {ww
|
w is in (a + b)*}. That is, L consists of all words

whose first and last halves are the same. Suppose L were context free. Then by

Theorem 6.5, L
x
= L n a

+
b
+
a
+
b
+ would also be a CFL. But L x

=

{a
ibia

ibi \i> Uj> 1}. L 1
is almost the same as the language proved not to be

context free in Example 6.2, using the pumping lemma. The same argument shows

that L
x

is not a CFL. We thus contradict the assumption that L is a CFL.

If we did not want to use the pumping lemma on Lu we could reduce it to

L2 = {a
ibicidi

|
i > 1 and j > 1}, the exact language discussed in Example 6.2. Let h

be the homomorphism h(a) — h(c) = a and h(b) = h(d) — b. Then h~ 1
(L

l ) consists

of all words of the form x 1
x2 x3 x4 , where Xj and x 3 are of the same length and in

(a + c)
+

, and x2 and x4 are of equal length and in (b -I- d)
+

. Then h' 1^) n
a*b*c*d* = L2 . By Theorems 6.3 and 6.5, ifL

x
were a CFL, so would be L2 . Since

L2 is known not to be a CFL, we conclude that L
x

is not a CFL.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


6.3 | DECISION ALGORITHMS FOR CFL'S 137

6.3 DECISION ALGORITHMS FOR CFL's

There are a number of questions about CFL's we can answer. These include

whether a given CFL is empty, finite, or infinite and whether a given word is in a

given CFL. There are, however, certain questions about CFL's that no algorithm

can answer. These include whether two CFG's are equivalent, whether a CFL is

cofinite, whether the complement of a given CFL is also a CFL, and whether a

given CFG is ambiguous. In the next two chapters we shall develop tools for

showing that no algorithm to do a particular job exists. In Chapter 8 we shall

actually prove that the above questions and others have no algorithms. In this

chapter we shall content ourselves with giving algorithms for some of the

questions that have algorithms.

As with regular sets, we have several representations for CFL's, namely

context-free grammars and pushdown automata accepting by empty stack or by

final state. As the constructions of Chapter 5 are all effective, an algorithm that

uses one representation can be made to work for any of the others. We shall use

the CFG representation in this section.

Theorem 6.6 There are algorithms to determine if a CFL is (a) empty, (b) finite,

or (c) infinite.

Proof The theorem can be proved by the same technique (Theorem 3.7) as the

analogous result for regular sets, by making use of the pumping lemma. However,

the resulting algorithms are highly inefficient. Actually, we have already given a

better algorithm to test whether a CFL is empty. For a CFG G = (K, 7, P, S), the

test of Lemma 4.1 determines if a variable generates any string of terminals.

Clearly, L(G) is nonempty if and only if the start symbol S generates some string of

terminals.

To test whether L(G) is finite, use the algorithm ofTheorem 4.5 to find a CFG
G' = (V, T, F, S) in CNF and with no useless symbols, generating Ufi) - {e}.

L(G') is finite if and only if L(G) is finite. A simple test for finiteness of a CNF
grammar with no useless symbols is to draw a directed graph with a vertex for

each variable and an edge from A to B if there is a production of the form A -> BC
or A -> CB for any C. Then the language generated is finite if and only if this graph

has no cycles.

If there is a cycle, say A0 ,
Au An ,

A0 , then

A0 =>oc
1
A

i p i
=xx 2 A 2 P2

- " =>anAnPn =>ocn+l Ao pn+u

where the a's and /Ts are strings of variables, with
|

a, /?, |

= i. Since there are no

useless symbols, an+ 1
^> w and /?„+ 1

^> x for some terminal strings w and x of total

length at least n + 1. Since n > 0, w and x cannot both be e. Next, as there are no

useless symbols, we can find terminal strings y and z such that S ^> yA0 z, and a

terminal string v such that A0 ^> v. Then for all i,

S yA0 z ^> ywA0 xz ^> y

w

2A0 x
2
z ^>--£> yw lA 0 x

l

z ^> j/wWz.
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As
|
wx

|
> 0, ywlvx

l

z cannot equal ytfvx'z if i =fc j. Thus the grammar generates

an infinite number of strings.

Conversely, suppose the graph has no cycles. Define the rank of a variable A
to be the length of the longest path in the graph beginning at A. The absence of

cycles implies that the rank of A is finite. We also observe that if A -+ BC is a

production, then the rank of B and C must be strictly less than the rank of A,

because for every path from B or C, there is a path of length one greater from A.

We show by induction on r that if A has rank r, then no terminal string derived

from A has length greater than 2
r

.

Basis r — 0. If A has rank 0, then its vertex has no edges out. Therefore all

/l-productions have terminals on the right, and A derives only strings of length 1.

Induction r > 0. If we use a production of the form A -» a, we may derive only a

string of length 1. If we begin with A -* BC, then as B and C are of rank r — 1 or

less, by the inductive hypothesis, they derive only strings of length 2
r~ 1 or less.

Thus BC cannot derive a string of length greater than 2
r

.

Since S is of finite rank r0 , and in fact, is of rank no greater than the number of

variables, S derives strings of length no greater than 2
r
°. Thus the language is

finite.

Example 6.6 Consider the grammar

S^AB
A-+BC\a

B->CC\b

C^a
whose graph is shown in Fig. 6.7(a). This graph has no cycles. The ranks of S, A, B,

and C are 3, 2, 1, and 0, respectively. For example, the longest path from S is S, A,

B, C. Thus this grammar derives no string of length greater than 2
3 = 8 and

therefore generates a finite language. In fact, a longest string generated from S is

S => AB => BCB => CCCB => CCCCC ^> aaaaa.

(a) (b)

Fig. 6.7 Graphs corresponding to CNF grammars.
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If we add production C -> AB, we get the graph of Fig. 6.7(b). This new graph
has several cycles, such as A, B, C, A. Thus we can find a derivation A i> <x 3Ap3 , in

particular A=>BC=> CCC => CABC, where <x3 = C and p3
= BC. Since C^>a

and BC^>ba, we have /l^a/lta. Then as S£>/lb and A^>ay we now have

S ^> al

a(ba)
lb for every i. Thus the language is infinite.

Membership

Another question we may answer is: Given a CFG G = (V,Ty Py S) and string x in

T*, is x in L(G)? A simple but inefficient algorithm to do so is to convert G to

G' = (V, T, F, S), a grammar in Greibach normal form generating L(G) - {e}.

Since the algorithm of Theorem 4.3 tests whether S^>e, we need not concern

ourselves with the case x = e. Thus assume x e, so x is in L(G') if and only ifx is

in L(G). Now, as every production of a GNF grammar adds exactly one terminal

to the string being generated, we know that if x has a derivation in G', it has one

with exactly
|
x

|

steps. Ifno variable of G' has more than k productions, then there

are at most /c
|x|

leftmost derivations of strings of length
|
x

|
. We may try them all

systematically.

However, the above algorithm can take time which is exponential in
|
x

|

.

There are several algorithms known that take time proportional to the cube of

|x| or even a little less. The bibliographic notes discuss some of these. We shall

here present a simple cubic time algorithm known as the Cocke-Younger-Kasami
or CYK algorithm. It is based on the dynamic programming technique discussed

in the solution to Exercise 3.23. Given x of length n > 1, and a grammar G, which

we may assume is in Chomsky normal form, determine for each i and j and for

each variable A, whether A ^> xip where xtj
is the substring of x of length j

beginning at position i.

We proceed by induction on j. For j = 1, A^> x,7 if and only if A -* x0- is a

production, since xi}
is a string of length 1. Proceeding to higher values of j, if

j > 1, then A ^> xtj
if and only if there is some production A -> BC and some /c,

1 <k <j, such that B derives the first k symbols of x tj
and C derives the last j — k

symbols of xiy That is, B ^> x
ik
and C ^> xi+kJ- k . Since k and j - k are both less

than j, we already know whether each of the last two derivations exists. We may
thus determine whether A ==> x

fi
-. Finally, when we reach j = n, we may determine

whether S^>x ln . But x ln = x, so x is in Ufi) if and only if S^>x ln .

To state the CYK algorithm precisely, let be the set of variables A such

that A ^> Xij. Note that we may assume 1 < i < n — j + 1, for there is no string of

length greater than n — i + 1 beginning at position i. Then Fig. 6.8 gives the CYK
algorithm formally.

Steps (1) and (2) handle the case j = 1. As the grammar G is fixed, step (2)

takes a constant amount of time. Thus steps (1) and (2) take 0(n) time. The nested

for-loops of lines (3) and (4) cause steps (5) through (7) to be executed at most n
2

times, since i and j range in their respective for-loops between limits that are at
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begin

1) for i:= 1 to n do

2) Vn :={A\A-*a is2i production and the ith symbol of x is a};

3) for j:= 2 to n do

4) for /:= 1 to n — j
" + 1 do

begin

5) Ky:-0;

6) for k:= 1 toj 1 do

7) V^:= Vij u {A\A-+ BC is a production, B is in and C
is in

end

end

Fig. 6.8. The CYK algorithm.

most n apart. Step (5) takes constant time at each execution, so the aggregate time

spent at step (5) is 0(«
2

). The for-loop of line (6) causes step (7) to be executed n or

fewer times. Since step (7) takes constant time, steps (6) and (7) together take 0(«)

time. As they are executed 0(«
2
) times, the total time spent in step (7) is 0(n

3
). Thus

the entire algorithm is 0(n
3

).

Example 6.7 Consider the CFG

S-+AB\BC

A -> BA
|
a

B^CC\b

C-+AB\a

and the input string baaba. The table of J^/s is shown in Fig. 6.9. The top row is

filled in by steps (1) and (2) of the algorithm in Fig. 6.8. That is, for positions 1 and

4, which are b, we set V
x x
= K41 = {B}, since B is the only variable which derives b.

b a a

i
-*

b a

1 2 3 4 5

1 B A. C A. C B A. C

i

i 3

S. A B S. C S, A

0 B B

4 0 S. A. C

5 S, A, C

Fig. 6.9 Table of Vjs.
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1

Similarly, V2l = V31 = V51 = {A, C}, since only A and C have productions with a

on the right.

To compute V
i}
for j > 1, we must execute the for-loop of steps (6) and (7). We

must match Vik against Vi+kJ_ k for k = 1, 2, . .
. - 1, seeking variable D in Vik and

£ in such that DE is the right side of one or more productions. The left

sides of these productions are adjoined to Vu . The pattern in the table which

corresponds to visiting Vik and Vi+kJ_ k for k = 1, 2, 1 in turn is to simul-

taneously move down column i and up the diagonal extending from VV} to the

right, as shown in Fig. 6.10.

Fig. 6.10 Traversal pattern for computation of V
tJ

.

For example, let us compute K24 , assuming that the top three rows of Fig. 6.9

are filled in. We begin by looking at K21 = {A, C} and V33 = {£}. The possible

right-hand sides in V2l K33 are AB and CB. Only the first of these is actually a right

side, and it is a right side of two productions S - AB and C -» AB. Hence we add S
and C to K24 . Next we consider K22 K42 = {B}{S9

A} = {BS, BA}. Only BA is a

right side, so we add the corresponding left side A to K24 . Finally, we consider

v23 ^si = {B}{A C} = BC}. BA and £C are each right sides, with left sides A
and S, respectively. These are already in K24 , so we have K24 = {S> A y C}. Since S is

a member of K15 , the string baaba is in the language generated by the grammar.

EXERCISES

6.1 Show that the following are not context-free languages.

a) {flW|i <j <k}
b) {a

ibj \j = i
2
y

c) {a
l

\i is a prime}"

d) the set of strings of a's, ^'s, and c's with an equal number of each

e) {a"b
n
c
m

|
n < m < 2n} -

* 6.2 Which of the following are CFL's?

a) {a'Vli^yand i + 2j}

b) (a + b)* ~{(anbnY\n> 1}

c) {wh^w
|
w is in (a 4- b)*}

d) {ftj \bi is i in binary, i > 1}
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e) {wxw
|
u> and x are in (a + b)*}

f) (a + b)*-{(fl^)"|«> 1}

63 Prove that the following are not CFL's.

a) {aW|y = max {i, k}}

b) [tfir<?\i±n}

[Hint: Use Ogden's lemma on a string of the form anbnc"'.]

6.4 Show that the CFL's are closed under the following operations:

* a) Quotient with a regular set, that is, ifL is a CFL and R a regular set, then L/R is a CFL.

b) INIT
* c) CYCLE
d) reversal

See Exercise 3.4 for the definitions of INIT and CYCLE.

6.5 Show that the CFL's are not closed under the following operations.

$ a) MIN b) MAX c) \

d) Inverse substitution

e) INV, where INV(L) = {x \x — wyz and wyRz is in L}

MIN, MAX, and i are defined in Exercises 3.4 and 3.16.

6.6 Let X be an alphabet. Define homomorphisms h, h u and h 2 by h(a) = h(a) = a,

hi(a) = a, hi(a) = £, h 2 (a) = £, and h 2(a) = a for each a in £*. For L
x
£ Z* and L2 £ X*,

define

Shuffle (Lj, L 2 ) = {x|for some y in h~ l (x\ h
x (y) is in L

x
and h 2 (y) is in L 2 }.

That is, the Shuffle of L x
and L2 is the set of words formed by "shuffling" a word of L x

with

a word of L2 . Symbols from the two words need not alternate as in a "perfect shuffle."

a) Show that the Shuffle of two regular sets is regular.

b) Prove that the Shuffle of two CFL's is not necessarily a CFL.

c) Prove that the Shuffle of a CFL and a regular set is a CFL.

6.7 A Dyck Language is a language with k types of balanced parentheses. Formally, each

Dyck language is, for some k y L(Gk ), where Gk is the grammar

S — SS|[ I S] I |[2 S] 2 |--|[k S]fc |6.

For example, [lbfiLbh^L is in the Dyck language with two kinds of parentheses. Prove

that every CFL L is h(LD n R), where h is a homomorphism, R a regular set, and LD a Dyck

language. [Hint : Let L be accepted by empty stack by a PDA in the normal form of

Exercise 5.5(b) where the moves only push or pop single symbols. Let the parentheses be

[abX and
]abXj where "means" on input a, stack symbol X is pushed, and matching

parenthesis "means" on input b, X may be popped (a or b may be e). Then the Dyck

language enforces the condition that the stack be handled consistently, i.e., ifX is pushed,

then it will still be X when it is popped. Let the regular set R enforce the condition that

there be a sequence of states for which the push and pop moves are legal for inputs a and b,

respectively. Let h([abx ) = a and h(]abx ) = b.]

6.8 Show that ifL is a CFL over a one-symbol alphabet, then L is regular. [Hint: Let n be

the pumping lemma constant for L and let L ^ 0*. Show that for every word of length n or

more, say 0"*, there are p and q no greater than n such that 0p+iq is in L for all i > 0. Then
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show that L consists of perhaps some words of length less than n plus a finite number of

linear sets, i.e., sets of the form {0
p+iq

\
i > 0} for fixed p and qy q < n.]

6.9 Prove that the set of primes in binary is not a CFL.

6.10 Show that the linear languages (see Exercise 4.20 for a definition) are closed under

a) union b) homomorphism c) intersection with a regular set

6.11 Prove the following pumping lemma for linear languages. If L is a linear language,

then there is a constant L such that if z in L is of length n or greater, then we may write

z = uvwxy, such that
|

uvxy \ < n, \vx\ > 1, and for all i > 0, w>Wy is in L.

6.12 Show that {aWcW
1

1! > 1 and j > 1} is not a linear language.

6.13 A PDA is said to make a turn if it enters a sequence of ID's

(Qu ™i, y t ) |— (q2 , w2 , y2 ) |— ($3 ,
w3 , y3 )

and
| y2 1

is strictly greater than
| y 1 1

and
| y3 |

. That is, a turn occurs when the length of the

stack "peaks." A PDA M is said to be a k-turn PDA if for every word w in L(M), w is

accepted by a sequence of ID's making no more than k turns. If a PDA is /c-turn for some

finite /c, it is said to be finite-turn. If L is accepted by a finite-turn PDA, L is metalinear.

a) Show that a language is linear if and only if it is accepted by a one-turn PDA.
b) Show that the linear languages are closed under inverse homomorphism.

c) Show that the metalinear languages are closed under union, concatenation, homomor-

phism, inverse homomorphism, and intersection with a regular set.

6.14 Show that the set of strings with an equal number of as and b's is a CFL that is not a

metalinear language.

6.15 Show that

a) the linear languages ** b) the metalinear languages

are not closed under *.

6.16 Give an algorithm to decide for two sentential forms a and p of a CFG G, whether

6.17 Use the CYK algorithm to determine whether

a) aaaaa b) aaaaaa

are in the grammar of Example 6.7.

6.18 Let G be a context-free grammar in CNF.

a) Give an algorithm to determine the number of distinct derivations of a string x.

b) Associate a cost with each production of G. Give an algorithm to produce a minimum-

cost parse of a string x. The cost of a parse is the sum of the costs of the productions

used.

[Hint : Modify the CYK algorithm of Section 6.3.]

Solutions to Selected Exercises

6.4 c) Let G = (K, T, P, S) be a CFG in CNF. To construct G such that

L(G) = CYCLE(L(G)) consider a derivation tree of a string x x
x2 in grammar G. Follow the

path from S to the leftmost symbol of x 2 . We wish to generate the path in reverse order
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(bottom to top) and output symbols on opposite sides of the path from which they orig-

inally appeared. To do this construct

G = (V u {A\A is in V} u {S0}, T, P, S0 ),

where P contains

1) all productions of P,

2) C -+ AB and B^CA'xiP contains A BCy

3) S^£,
^

4) S0 -+ aA if P contains A-*ay

5) S0 -*S.

To see that L(G) = CYCLE(L(G)) show by induction on the length of a derivation that

A ^> A
!
A 2

"' A n if and only if for each i

Ai$>Ai+l
•• ^n ^/li

•••

Then

5^^! •• An => A t
' A

i
- l aA i + l

- "An

iff

S0 => aAi ^ aA
t + x

••• /InS/^ •

=>a>4i+1 ••• /t B v4!
••• Ai-i.

A derivation tree of G is shown in Fig. 6.11(a) with a corresponding tree for G in Fig.

6.11(b).

6.5 a) Let L be the CFL {0*F2fc

|
i < or ; < k}. L is generated by the CFG

S-+AB\C, A-+0A\e y B^\B2\B2\e y C-0C2|C2|D, D-lD|t

MIN(L) = {(yp'2*
|

/c = min(i, j)}. We claim MIN(L) is not a CFL. Suppose it were, and let

n be the pumping lemma constant. Consider z = 0n
l
n2n = uvwxy. If contains no 2's, then

uwy is not in MIN(L). If vx has a 2, it cannot have a 0, since
|
vwx

\
< n. Thus uv

2wx 2
y has

at least n + 1 2's, at least n Vs and exactly n 0's; it is thus not in MIN(L).

S S
QA /V

/! £ 3 //

/ /\ ./\
0 C D F G

/\ \ ./\ \
E F 4 C E 2

/ A A. \
1 G // D B 1

/ \ / -A
2 3 4 S A

I I

e 0

(a) (b)

Fig. 6.11 Tree transformation used for Exercise 6.4(c).
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BIBLIOGRAPHIC NOTES

The pumping lemma for context-free languages is from Bar-Hillel, Perles, and Shamir

[1961]; Ogden 's lemma, in its stronger version, is found in Ogden [1968]. Wise [1976] gives

a necessary and sufficient condition for a language to be context free. Parikh [1966] gives

necessary conditions in terms of the distribution of symbols in words of the language.

Pumping lemmas for other classes of languages are given in Boasson [1973] and Ogden

[1969].

Theorem 6.2, closure under substitution, and Theorem 6.5, closure under intersection

with a regular set, are from Bar-Hillel, Perles, and Shamir [1961]. Theorem 6.3 is from

Ginsburg and Rose [1963b]. Theorem 6.4 and its corollary, nonclosure under intersection

or complementation, are from Scheinberg [I960]. Theorem 6.6, the existence of an algo-

rithm to tell whether a CFL is finite, is also from Bar-Hillel, Perles, and Shamir [1961].

Floyd [1962b] shows how to apply closure properties to prove language constructs not to

be context free.

The CYK algorithm was originally discovered by J. Cocke, but its first publication was

due independently to Kasami [1965] and Younger [1967], The most practical, general,

context-free recognition and parsing algorithm is by Earley [1970]. This algorithm is 0(n
3
)

in general, but takes only 0(n
2
) on any unambiguous CFG and is actually linear on a wide

variety of useful grammars. The algorithm of Valiant [1975a] is asymptotically the most

efficient, taking 0(n
2 B

)
steps, while the algorithm of Graham, Harrison, and Ruzzo [1976]

takes 0(n3
/log n) steps. A related result, that membership for unambiguous CFG's can be

tested in 0(n
2
) time, is due to Kasami and Torii [1969] and Earley [1970].

Exercise 6.4(a), closure of CFL's under quotient with a regular set, was shown by

Ginsburg and Spanier [1963]. Additional closure properties of CFL's can be found in

Ginsburg and Rose [1963b, 1966]. Exercise 6.7, the characterization of CFL's by Dyck

languages, is from Chomsky [1962]. Stanley [1965] showed the stronger result that the

Dyck language used need depend only on the size of the terminal alphabet. The proof that

the primes in binary are not a CFL (Exercise 6.9) is from Hartmanis and Shank [1968].

Finite-turn PDA's, mentioned in Exercise 6. 1 3, were studied by Ginsburg and Spanier [ 1 966].

Exercise 6.8, that CFL's over a one-symbol alphabet are regular, was shown by Ginsburg

and Rice [1962].
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CHAPTER

7
TURING MACHINES

In this chapter we introduce the Turing machine, a simple mathematical model of

a computer. Despite its simplicity, the Turing machine models the computing

capability of a general-purpose computer. The Turing machine is studied both for

the class of languages it defines (called the recursively enumerable sets) and the

class of integer functions it computes (called the partial recursive functions). A
variety of other models of computation are introduced and shown to be equiv-

alent to the Turing machine in computing power.

7.1 INTRODUCTION

The intuitive notion of an algorithm or effective procedure has arisen several

times. In Chapter 3 we exhibited an effective procedure to determine if the set

accepted by a finite automation was empty, finite, or infinite. One might naively

assume that for any class of languages with finite descriptions, there exists an

effective procedure for answering such questions. However, this is not the case.

For example, there is no algorithm to tell whether the complement of a CFL is

empty (although we can tell whether the CFL itself is empty). Note that we are not

asking for a procedure that answers the question for a specific context-free lan-

guage, but rather a single procedure that will correctly answer the question for all

CFL's. It is clear that if we need only determine whether one specific CFL has an

empty complement, then an algorithm to answer the question exists. That is, there

is one algorithm that says "yes" and another that says "no," independent of their

inputs. One of these must be correct. Of course, which of the two algorithms

answers the question correctly may not be obvious.

146
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At the turn of the century, the mathematician David Hilbert set out on a

program to find an algorithm for determining the truth or falsity ofany mathemat-

ical proposition. In particular, he was looking for a procedure to determine if an

arbitrary formula in the first-order predicate calculus, applied to integers, was

true. Since the first-order predicate calculus is powerful enough to express the

statement that the language generated by a context-free grammar is £*, had

Hilbert been successful, our problem of deciding whether the complement of a

CFL is empty would be solved. However, in 1931, Kurt Gddel published his

famous incompleteness theorem, which proved that no such effective procedure

could exist. He constructed a formula in the predicate calculus applied to integers,

whose very definition stated that it could neither be proved nor disproved within

this logical system. The formalization of this argument and the subsequent

clarification and formalization of our intuitive notion of an effective procedure is

one of the great intellectual achievements of this century.

Once the notion of an effective procedure was formalized, it was shown that

there was no effective procedure for computing many specific functions. Actually

the existence of such functions is easily seen from a counting argument. Consider

the class of functions mapping the nonnegative integers onto {0, 1}. These func-

tions can be put into one-to-one correspondence with the reals. However, if we
assume that effective procedures have finite descriptions, then the class of all

effective procedures can be put into one-to-one correspondence with the integers.

Since there is no one-to-one correspondence between the integers and the reals,

there must exist functions with no corresponding effective procedures to compute

them. There are simply too many functions, a noncountable number, and only a

countable number of procedures. Thus the existence of noncomputable functions

is not surprising. What is surprising is that some problems and functions with

genuine significance in mathematics, computer science, and other disciplines are

noncomputable.

Today the Turing machine has become the accepted formalization of an

effective procedure. Clearly one cannot prove that the Turing machine model is

equivalent to our intuitive notion of a computer, but there are compelling argu-

ments for this equivalence, which has become known as Church's hypothesis. In

particular, the Turing machine is equivalent in computing power to the digital

computer as we know it today and also to all the most general mathematical

notions of computation.

7.2 THE TURING MACHINE MODEL

A formal model for an effective procedure should possess certain properties. First,

each procedure should be finitely describable. Second, the procedure should con-

sist of discrete steps, each of which can be carried out mechanically. Such a model

was introduced by Alan Turing in 1936. We present a variant of it here.
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148 TURING MACHINES

The basic model, illustrated in Fig. 7.1, has a finite control, an input tape that

is divided into cells, and a tape head that scans one cell of the tape at a time. The
tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold

exactly one of a finite number of tape symbols. Initially, the n leftmost cells, for

some finite n > 0, hold the input, which is a string of symbols chosen from a subset

of the tape symbols called the input symbols. The remaining infinity of cells each

hold the blank, which is a special tape symbol that is not an input symbol.

a
\

a
2

a
n

B B

Finite

control

Fig. 7.1 Basic Turing machine.

In one move the Turing machine, depending upon the symbol scanned by the

tape head and the state of the finite control,

1) changes state,

2) prints a symbol on the tape cell scanned, replacing what was written there,

and

3) moves its head left or right one cell.

Note that the difference between a Turing machine and a two-way finite

automaton lies in the former's ability to change symbols on its tape.

Formally, a Turing machine (TM) is denoted

M = (Q, Z, T, 3, q0 , B, F),

where

Q is the finite set of states,

T is the finite set of allowable tape symbols,

B, a symbol of F, is the blank,

X, a subset of F not including B, is the set of input symbols,

3 is the next movefunction, a mapping from Q x F to Q x F x {L, R} (d may,

however, be undefined for some arguments),

q0 in Q is the start state,

F ^ Q is the set offinal states.

We denote an instantaneous description (ID) of the Turing machine M by

cc
1
qcc 2 ' Here q, the current state of M, is in Q; a

x
a 2 is the string in F* that is the

contents of the tape up to the rightmost nonblank symbol or the symbol to the left

of the head, whichever is rightmost. (Observe that the blank B may occur in a
x
a 2 .)
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We assume that Q and T are disjoint to avoid confusion. Finally, the tape head is

assumed to be scanning the leftmost symbol of a2 , or if a 2 = e, the head is scan-

ning a blank.

We define a move of M as follows. Let X
t
X2

•

j
qX

x

• • • Xn be an ID.

Suppose d(q, X
( )
= (p, Y, L), where if i - 1 = n, then X

{
is taken to be B. If z = 1,

then there is no next ID, as the tape head is not allowed to fall off the left end of

the tape. If i > 1, then we write

X
XX2

•• X^^qXi •• Xn \w X 1
X2 X

i
- 2pX i

_
1
YXi+1

•• (7.1)

However, if any suffix of X^
t
YXi+l

••• X,, is completely blank, that suffix is

deleted in (7.1).

Alternatively, suppose d(q, X
t)
= (p, Y, K). Then we write:

X
l
X 2 -Xt

.
l
qX

l
Xi+l -Xn \w X l

X2 --X i
_

l
YpXi+l - Xn . (7.2)

Note that in the case i — 1 = n, the string X, • • • X„ is empty, and the right side of

(7.2) is longer than the left side.

If two ID's are related by (^-, we say that the second results from the first by

one move. If one ID results from another by some finite number of moves, includ-

ing zero moves, they are related by the symbol
f^-.

We drop the subscript M from

[ft-
or|^-when no confusion results.

The language accepted by M, denoted L(M\ is the set of those words in Z*
that cause M to enter a final state when placed, justified at the left, on the tape of

M, with M in state q0 , and the tape head ofM at the leftmost cell. Formally, the

language accepted by M = (Q, Z, T, 3, q0 , B, F) is

{w|w in Z* and q0 w \^ u.
x
pv. 2 for some p in F, and ol

x
and a 2 in T*}.

Given a TM recognizing a language L, we assume without loss of generality

that the TM halts, i.e., has no next move, whenever the input is accepted.

However, for words not accepted, it is possible that the TM will never halt.

Example 7.1 The design of a TM M to accept the language L = {OT
|
n > 1} is

given below. Initially, the type ofM contains OT followed by an infinity of blanks.

Repeatedly, M replaces the leftmost 0 by Xy
moves right to the leftmost 1, replac-

ing it by 7, moves left to find the rightmost X, then moves one cell right to the

leftmost 0 and repeats the cycle. If, however, when searching for a 1, M finds a

blank instead, then M halts without accepting. If, after changing a 1 to a 7, M
finds no more O's, then M checks that no more l's remain, accepting if there are

none.

Let Q =
{tf0 , qu <?2, ft, q*\ Z = {0, 1}, Y = {0, 1, X y

Y, B} 9
and F = {tf4 }.

Informally, each state represents a statement or a group of statements in a

program. State q0 is entered initially and also immediately prior to each replace-

ment of a leftmost 0 by an X. State q y
is used to search right, skipping over O's and

Ts until it finds the leftmost 1. IfM finds a 1 it changes it to Y, entering state q2 .
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State q2 searches left for an X and enters state q0 upon finding it, moving right, to

the leftmost 0, as it changes state. As M searches right in state qu if a B or X is

encountered before a 1, then the input is rejected; either there are too many O's or

the input is not in 0*1*.

State q0 has another role. If, after state q2 finds the rightmost X, there is a Y
immediately to its right, then the O's are exhausted. From q0 ,

scanning Y, state q3

is entered to scan over Fs and check that no l's remain. If the Fs are followed by

a B, state q4 is entered and acceptance occurs; otherwise the string is rejected. The

function d is shown in Fig. 7.2. Figure 7.3 shows the computation ofM on input

0011. For example, the first move is explained by the fact that d(q0 , 0) =

(q l9 X, R); the last move is explained by the fact that d(q 3 ,
B) = (g4 , B, R). The

reader should simulate M on some rejected inputs such as 001 101, 001, and Oil.

State 0 1

Symbol

X y B

4o

4i

42

43

44

<4i

<4i

(42

,
X, R)

, 0, R) (q2 , y, L)

, 0, L) (4o, X, R)

(43, y, n)

tel. y> r)

(42, n l)

(43, Y9 R) (44, B, R)

Fig. 7.2 The function 5.

g00011 1—^,011 \-xoqi 11 h^oyi h-

q 2 X0Y\ [-Xqo0Y\ \-XXq
x
Y\ |— XXYq x \ |—

XXq 2 YY\—Xq2 XYY I- xx^o h xxy^ y h
XXYYq3 |— XXYYBq

Fig. 7.3 A computation of M

.

7.3 COMPUTABLE LANGUAGES AND FUNCTIONS

A language that is accepted by a Turing machine is said to be recursively enumer-

able (r.e.). The term "enumerable" derives from the fact that it is precisely these

languages whose strings can be enumerated (listed) by a Turing machine. "Recur-

sively" is a mathematical term predating the computer, and its meaning is similar

to what the computer scientist would call "recursion." The class of r.e. languages is

very broad and properly includes the CFL's.

The class of r.e. languages includes some languages for which we cannot

mechanically determine membership. If L(M) is such a language, then any Turing
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machine recognizing L(M) must fail to halt on some input not in L(M). If w is in

L(M), M eventually halts on input w. However, as long as M is still running on
some input, we can never tell whetherM will eventually accept ifwe let it run long

enough, or whether M will run forever.

It is convenient to single out a subclass of the r.e. sets, called the recursive sets,

which are those languages accepted by at least one Turing machine that halts on
all inputs (note that halting may or may not be preceded by acceptance). We shall

see in Chapter 8 that the recursive sets are a proper subclass of the r.e. sets. Note
also that by the algorithm of Fig. 6.8, every CFL is a recursive set.

The Turing machine as a computer of integer functions

In addition to being a language acceptor, the Turing machine may be viewed as a

computer of functions from integers to integers. The traditional approach is to

represent integers in unary; the integer i > 0 is represented by the string 0\ If a

function has k arguments, iu i2 ,
ik , then these integers are initially placed on

the tape separated by l's, as 0 ll 10
I2

l ••• 10*.

If the TM halts (whether or not in an accepting state) with a tape consisting of

0m for some m, then we say that f(iu i2 ,
ik ) = m, where /is the function of k

arguments computed by this Turing machine. Note that one TM may compute a

function of one argument, a different function of two arguments, and so on. Also

note that if TM M computes function / of k arguments, then / need not have a

value for all different /c-tuples of integers iu ik .

If f(iu ik ) is defined for all iu ik , then we say / is a total recursive

function. A function f(iu ik )
computed by a Turing machine is called a partial

recursive function. In a sense, the partial recursive functions are analogous to the

r.e. languages, since they are computed by Turing machines that may or may not

halt on a given input. The total recursive functions correspond to the recursive

languages, since they are computed by TM's that always halt. All common arith-

metic functions on integers, such as multiplication, n!, flog 2 n] and 2
2 " are total

recursive functions.

Example 7.2 Proper subtraction m — n is defined to be m — n for m > n, and zero

for m < n. The TM

M = ({q0 , q l9 ...
9 q6 }, {0, 1}, {0, 1, £}, 6, q0 , B, 0)

defined below, started with 0m 10" on its tape, halts with 0m
" n on its tape. M

repeatedly replaces its leading 0 by blank, then searches right for a 1 followed by a

0 and changes the 0 to 1. Next, M moves left until it encounters a blank and then

repeats the cycle. The repetition ends if

i) Searching right for a 0,M encounters a blank. Then, the n O's in 0m 10" have all

been changed to l's, and n + 1 of the m O's have been changed to B. M
replaces the n + 1 l's by a 0 and n &s, leaving m — n O's on its tape.
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ii) Beginning the cycle, M cannot find a 0 to change to a blank, because the first

m O's already have been changed. Then n > m, so m - n = 0. M replaces all

remaining l's and O's by B.

The function d is described below.

1) %o, 0) = (qu B, R)

Begin the cycle. Replace the leading 0 by B.

2) %„ 0)=(q ly 0,R)

%.,!) = (q2 , I R)

Search right, looking for the first 1.

3) d(q2 , 1) = (q2 , 1, R)

<%2,0)=(<?3, 1,L)

Search right past l's until encountering a 0. Change that 0 to 1.

4) d(q3 , 0) = (q3 , 0, L)

5(qi , 1) = (<73 , 1, L)

Hq3 ,
B) = (q0 , B K)

Move left to a blank. Enter state q0 to repeat the cycle.

5) d(q2y B) = (<?4 , B, L)

%4 , 1) = (94) B,L)

<%4, 0) = (<?4) 0, L)

5(q>, B) = (q6 , 0, R)

If in state q2 a B is encountered before a 0, we have situation (i) described

above. Enter state g4 and move left, changing all l's to B's until encountering

a B. This B is changed back to a 0, state q6 is entered, and M halts.

6) %o, 1) = fas, B, R)

<5(<?5 , 0) = (q 5 , B, R)

S(q5 ,
l)=(q5,B,R)

S(q5,B)=(q6,B,R)
If in state q0 a 1 is encountered instead of a 0, the first block of O's has been

exhausted, as in situation (ii) above. M enters state q5 to erase the rest of the

tape, then enters q6 and halts.

A sample computation of M on input 0010 is:

qro0010 1— B^r,010 |— BO^IO |— B01<720 |—

BO^ll |— B43OII \—q3 B0U \—Bqo0ll \—

BBqi 1
1
1— BBlq2 l \- BB1 lq2 |— BB1<?4 1 |—

BBq>l
I

B<j4 \-B0q6
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On input 0100, M behaves as follows:

400100 |— Bq t
100 |— Bl^OO |— Bq3 1 10 |—

q3 B\\0 f— Bq0UO [— BBq5 10 \— BBBq50 \—

BBBBq5 |— BBBBBq6

7.4 TECHNIQUES FOR TURING MACHINE CONSTRUCTION

Designing Turing machines by writing out a complete set of states and a next-

move function is a noticeably unrewarding task. In order to describe complicated

Turing machine constructions we need some "higher-level" conceptual tools. In

this section we shall discuss the principal ones.

Storage in the finite control

The finite control can be used to hold a finite amount of information. To do so, the

state is written as a pair of elements, one exercising control and the other storing a

symbol. It should be emphasized that this arrangement is for conceptual purposes

only. No modification in the definition of the Turing machine has been made.

Example 7.3 Consider a Turing machine M that looks at the first input symbol,

records it in its finite control, and checks that the symbol does not appear else-

where on its input. Note that M accepts a regular set, but M will serve for

demonstration purposes:

M = (Q, {0, 1}, {0, 1, B} 9 S 9 [q09 B]9 B, F),

where Q is {q0 , q x ] x {0, 1, B}. That is, Q consists of the pairs [q0 , 0], [q0 , 1],

[q09 £], [q l9 0], [q l9 1], and [qu B\ The set F is {[q l9 B]}. The intention is that the

first component of the state controls the action, while the second component

"remembers" a symbol.

We define 3 as follows.

1) a) S([q0 ,
B], 0) = {[q l9 0], 0, R\ b) S([q09 B] 9 1) = ([q l9 1], 1, R).

Initially, q0 is the control component of the state, and M moves right. The first

component of JVfs state becomes q l9 and the first symbol seen is stored in the

second component.

2) a) S([qu 0], 1) = ([<?„ 0], 1, R), b) S([q it 1], 0) = 1], 0, R).

IfM has a 0 stored and sees a 1 or vice versa, then M continues to move to the

right.
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3) a) S([qu 0], B) = ([q l9 B], 0, L), b) S([qu 1], B) = (fo, B], 0, L).

M enters the final state B] if it reaches a blank symbol without having

first encountered a second copy of the leftmost symbol.

IfM reaches a blank in state [qu 0], or [q l9 1], it accepts. For state [qu 0] and
symbol 0 or for state [q l9 1] and symbol 1, 5 is not defined. Thus ifM encounters

the tape symbol stored in its state, M halts without accepting.

In general, we can allow the finite control to have k components, all but one of

which store information.

Multiple tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for

any finite k. This arrangement is shown in Fig. 7.4, with k = 3. The symbols on the

tape are considered /c-tuples, one component for each track.

4 1 0 1 1 1 1 $ B B

B B B B 1 0 1 B B B

B 1 0 0 1 0 1 B B B

Finite

control

Fig. 7.4 A three-track Turing machine.

Example 7.4 The tape in Fig. 7.4 belongs to a Turing machine that takes a

binary input greater than 2, written on the first track, and determines whether it is

a prime. The input is surrounded by $ and $ on the first track. Thus, the allowable

input symbols are
ft,

B, B], [0, B, B], [1, B, B], and [$, B, B]. These symbols can

be identified with 0, 1, and $, respectively, when viewed as input symbols. The
blank symbol can be identified with [B, B, B].

To test if its input is a prime, the TM first writes the number two in binary on

the second track and copies the first track onto the third. Then the second track is

subtracted, as many times as possible, from the third track, effectively dividing the

third track by the second and leaving the remainder.

If the remainder is zero, the number on the first track is not a prime. If the

remainder is nonzero, the number on the second track is increased by one. If the

second track equals the first, the number on the first track is a prime, because it

cannot be divided by any number lying properly between one and itself. If the
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second is less than the first, the whole operation is repeated for the new number on

the second track.

In Fig. 7.4, the TM is testing to determine if 47 is a prime. The TM is dividing

by 5; already 5 has been subtracted twice, so 37 appears on the third track.

Checking off symbols

Checking off symbols is a useful trick for visualizing how a TM recognizes lan-

guages defined by repeated strings, such as

{ww
|
w in £*}, {wcy

|
w and y in £*, w y} or {wwR

\
w in £*}.

It is also useful when lengths of substrings must be compared, such as in the

languages

{flV

|

i > 1} or {oW \i+J or ; + k}.

We introduce an extra track on the tape that holds a blank or yj. The yj
appears when the symbol below it has been considered by the TM in one of its

comparisons.

Example 7.5 Consider a Turing machine M = (Q, E, T, S, q0 , B, F), which recog-

nizes the language {vvcw|w in (a + b)
+

}. Let

Q = <l \q = <l2, •••,^9 and d = a,b, or B}.

The second component of the state is used to store an input symbol,

£ = {[£, d]\d = a, b, or c}.

The input symbol [B, d] is identified with d. Remember that the two "tracks" are

just conceptual tools; that is, [B, d] is just another "name" for d:

r={[X, d]\X = BoTy/ and d = a, b, c, or B},

<lo
= ku B\ and F = {[g9 ,

B]};

[B, B] is identified with B, the blank symbol. For d = a or 6 and e = a or 5 we

define (5 as follows.

1) 8{[qu Bl [*,</])=([<?,, 4 [^,4 *)l

M checks the symbol scanned on the tape, stores the symbol in the finite

control, and moves right.

2) 5([q2 ,d), [B,e])=([q2,d\, [B, e], R).

M continues to move right, over unchecked symbols, looking for c.

3) S([q2,d\,[B,c]) = ([q3,d],[B,clR).

On finding c, M enters a state with first component q3 .
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4) S([q3,dl[y/,e])=([q3,d],[y/,e], R).

M moves right over checked symbols.

5) %,4[M) = fc»l[y,4 4
M encounters an unchecked symbol. If the unchecked symbol matches the

symbol stored in the finite control, M checks it and begins moving left. If the

symbols disagree, M has no next move and so halts without accepting.M also

halts if in state q3 it reaches [B, B] before finding an unchecked symbol.

6) S([q„ B], y, d]) = ([<?4 ,
B], [J, 4 L).

M moves left over checked symbols.

7) 6([q„ B], [B, c]) = ([q5 ,
B], [B, c], L).

M encounters the symbol c.

8) 5([q5 ,B], [B,d]) = ([q6,B], [B, d], L).

If the symbol immediately to the left of c is unchecked,M proceeds left to find

the rightmost checked symbol.

9) 5([q6 ,
B], [B, d]) = ([q6 ,

B], [B, d], L).

M proceeds left.

10) 5([q6 ,
B], [V, d]) = ([q u B], [J, d), R).

M encounters a checked symbol and moves right to pick up another symbol

for comparison. The first component of state becomes q l
again.

11) 5([q5 ,
B], [V, d]) = ([q 1? B], [V, d), R).

M will be in state [q5 ,
B] immediately after crossing c moving left. (See rule 7.)

If a checked symbol appears immediately to the left of c, all symbols to the left

of c have been checked. M must test whether all symbols to the right have

been checked. If so, they must have compared properly with the symbols to

the left of c, so M will accept.

12) 6([qi ,
B], [B, c]) = ([q8 ,

B], [B, c], R).

M moves right over c.

13) S([qa,BlU,d]) = ([qe,Bl[J,dl R).

M moves to the right over checked symbols.

14) 8([qa ,
B], [B, B]) = ([q9 ,

B], [J, B\ L).

If M finds [B, B], the blank, it halts and accepts. If M finds an unchecked

symbol when its first component of state is q8 , it halts without accepting.

Shifting over

A Turing machine can make space on its tape by shifting all nonblank symbols a

finite number of cells to the right. To do so, the tape head makes an excursion to

the right, repeatedly storing the symbols read in its finite control and replacing
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them with symbols read from cells to the left. The TM can then return to the

vacated cells and print symbols of its choosing. If space is available, it can push

blocks of symbols left in a similar manner.

Example 7.6 We construct part of a Turing machine, M = (Q, 2, T, S, q0 , £, F),

which may occasionally have a need to shift nonblank symbols two cells to the

right. We suppose that M's tape does not contain blanks between nonblanks, so

when it reaches a blank it knows to stop the shifting process. Let Q contain states

of the form [q, A u A 2] for q = q l
or q2 , and A

x
and A 2 in T. Let X be a special

symbol not used by M except in the shifting process. M starts the shifting process

in state [qu B, B\ The relevant portions of the function S are as follows.

1) S{[q
i
,B9 BlA 1 ) = ([q l

,B,A
llX9 R) for A , in T - {B, X}.

M stores the first symbol read in the third component of its state. X is printed

on the cell scanned, and M moves to the right.

2) 6{[q l9 B9 A llA 2)={[q i9 A l9 A 2lX,R) for A
x
and A2 in T - {ft X}.

M shifts the symbol in the third component to the second component, stores

the symbol being read in the third component, prints an X, and moves right.

3
) Hku A u A 2], A 3 ) = ([qu A 2 ,

A 3], A u R) for A l9 A 2 , and A 3 in

r - {b9 x}.

M now repeatedly reads a symbol A 3y stores it in the third component of

state, shifts the symbol previously in the third component, A 2 , to the second

component, deposits the previous second component, A l9 on the cell scanned,

and moves right. Thus a symbol will be deposited two cells to the right of its

original position.

4
) H[<li, A i, A 2], B) = ([q l9 A 2 ,

B\ A l9
R) for A

x
and A 2 in V - {B, X}.

When a blank is seen on the tape, the stored symbols are deposited on the

tape.

5) S([qi,A lt B], B) = ([q2 , B, B], A u L).

After all symbols have been deposited, M sets the first component of state to

q2 and moves left to find an X, which marks the rightmost vacated cell.

6) S{[q29 B, Bl A) = ([q2 ,
B, B], A, L) for A in Y - {£, X}.

M moves left until an X is found. When X is found, M transfers to a state that

we have assumed exists in Q and resumes its other functions.

Subroutines

As with programs, a "modular" or "top-down" design is facilitated if we use

subroutines to define elementary processes. A Turing machine can simulate any

type of subroutine found in programming languages, including recursive

procedures and any of the known parameter-passing mechanisms. We shall here
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describe only the use of parameterless, nonrecursive subroutines, but even these

are quite powerful tools.

The general idea is to write part of a TM program to serve as a subroutine; it

will have a designated initial state and a designated return state which temporarily

has no move and which will be used to effect a return to the calling routine. To
design a TM that "calls" the subroutine, a new set of states for the subroutine is

made, and a move from the return state is specified. The call is effected by entering

the initial state for the subroutine, and the return is effected by the move from the

return state.

Example 7.7 The design of a TM M to implement the total recursive function

"multiplication" is given below. M starts with 0m 10" on its tape and ends with (Tn

surrounded by blanks. The general idea is to place a 1 after 0m 10n and then copy

the block of n O's onto the right end m times, each time erasing one of the m O's.

The result is \0
n \0rn . Finally the prefix 10

n
l is erased, leaving 0™. The heart of the

algorithm is a subroutine COPY, which begins in an ID QTlq^lQf and eventually

enters an ID 0
m
lq50

n
\0

i+n
. COPY is defined in Fig. 7.5. In state qu on seeing a 0,

M changes it to a 2 and enters state q 2 . In state q2 , M moves right, to the next

blank, deposits the 0, and starts left in state q3 . In state q3yM moves left to a 2. On
reaching a 2, state q x

is entered and the process repeats until the 1 is encountered,

signaling that the copying process is complete. State <?4 is used to convert the 2's

back to O's, and the subroutine halts in q5 .

0 1 2

4i (42, 2, R) (44, 1, L)

42 (4i. 0, R) (42. 1, R)

43 (43. 0, L) (43, 1, L) (4., 2, R)

44 (45, 1, R) (44, 0, L)

Fig. 7.5 S for subroutine COPY.

To complete the program for multiplication, we add states to convert initial

ID q00
m
\0

n
to B0m ~ 1

lfliCl. That is, we need the rules

%o, 0) = (q6,B,R%

Sfae. 0) = (q69 0, R),

8(q69 l)=(q l9 1, R).

Additional states are needed to convert an ID £I0m
~

I lg50
n
10

nl to

Bi+ \Qm-i- 1 i^OMO"', which restarts COPY, and to check whether i = m, that is,

all m O's have been erased. In the case that i = m, the leading 10" 1 is erased and the

computation halts in state q l2 . These moves are shown in Fig. 7.6.
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Hi

qio

qu

(47, 0, L)

(<?9, 0, L)

(<?9, 0, L)

(tfs, 1, L)

(qu,B,R)

toio, B, R)

too, By R)

ton, B, i?)

Fig. 7.6 Additional moves for TM performing multiplication.

Note that we could make more than one call to a subroutine if we rewrote the

subroutine using a new set of states for each call.

7.5 MODIFICATIONS OF TURING MACHINES

One reason for the acceptance of the Turing machine as a general model of a

computation is that the model with which we have been dealing is equivalent to

many modified versions that would seem off-hand to have increased computing

power. In this section we give informal proofs of some of these equivalence

theorems.

Two-way infinite tape

A Turing machine with a two-way infinite tape is denoted by M = (Q, £, T, <5, q0 ,

B, F), as in the original model. As its name implies, the tape is infinite to the left as

well as to the right. We denote an ID of such a device as for the one-way infinite

TM. We imagine, however, that there is an infinity of blank cells both to the left

and right of the current nonblank portion of the tape.

The relation which relates two ID's if the ID on the right is obtained from

the one on the left by a single move, is defined as for the original model with the

exception that if 5(q, X) = (p, Y, L), then qXa \jf pBYa (in the original model, no

move could be made), and if d(q, X) = (p, By R), then qXa
\

— pa (in the original,

the B would appear to the left of p).

The initial ID is q0 w. While there was a left end to the tape in the original

model, there is no left end of the tape for the Turing machine to "fall off," so it can

proceed left as far as it wishes. The relation
f^-,

as usual, relates two ID's if the one

on the right can be obtained from the one on the left by some number of moves.

Theorem 7.1 L is recognized by a Turing machine with a two-way infinite tape if

and only if it is recognized by a TM with a one-way infinite tape.

Proof The proof that a TM with a two-way infinite tape can simulate a TM with

a one-way infinite tape is easy. The former marks the cell to the left of its initial

head position and then simulates the latter. If during the simulation the marked
cell is reached, the simulation terminates without acceptance.
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Conversely, let M 2 = (Q 2 ,
E 2 ,

T2 , S2y q2 , B, F2 ) be a TM with a two-way

infinite tape. We construct M
x , a Turing machine simulating M 2 and having a

tape that is infinite to the right only. M
x
will have two tracks, one to represent the

cells of Af 2 's tape to the right of, and including, the tape cell initially scanned, the

other to represent, in reverse order, the cells to the left of the initial cell.

The relationship between the tapes of M 2 and M
x

is shown in Fig. 7.7, with

the initial cell of M 2 numbered 0, the cells to the right 1, 2, ... , and the cells to

the left -1, -2, ....

A_
5
A_ 4 A^^ A_ 2 A_\ A

Q
A

x

A
2

A
3

A4 A
5

(a)

^0 A
2

A
3

•4
4

A
5

4 4-1 A_ 2 -4-3 -4-4 -4-5

(b)

Fig. 7.7 (a) Tape of M 2 . (b) Tape of M
x

The first cell of M/s tape holds the symbol $ in the lower track, indicating

that it is the leftmost cell. The finite control of M
x

tells whether M 2 would be

scanning a symbol appearing on the upper or on the lower track ofM
x

.

It should be fairly evident that M
x
can be constructed to simulate M 2 , in the

sense that while M 2 is to the right of the initial position of its input head, M x

works on the upper track. While M 2 is to the left of its initial tape head position,

M
x
works on its lower track, moving in the direction opposite to the direction in

which M 2 moves. The input symbols ofM
x
are symbols with a blank on the lower

track and an input symbol of M 2 on the upper track. Such a symbol can be

identified with the corresponding input symbol ofM 2 . B is identified with [B, B\

We now give a formal construction of M
x
— (Q u Z 1? r l5 <5„ qu B, F

t ). The

states, Q l9 ofM x
are all objects of the form [q, U]or [qy D], where q is in Q 2 ,

plus

the symbol q x
. Note that the second component will indicate whether M x

is

working on the upper (U for up) or lower (D for down) track. The tape symbols in

r
t
are all objects of the form [X, Y], where X and Y are in T 2 . In addition, Y may

be a symbol not in T2 . H l
consists of all symbols [a, B], where a is in S 2 . F t

is

{[q, U], [q, D] \q is in F2 }. We define 3 X
as follows.

1) For each a in S 2 u {£},

5Mu [a, B]) = ([qy U\ [X, fl,
R) if S 2 (q29 a) = (q, X, R).

IfM 2 moves right on its first move,M
1
prints § in the lower track to mark the

end of tape, sets its second component of state to U, and moves right. The first
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component ofM^s state holds the state ofM2 . On the upper track,M
x
prints

the symbol X that is printed by M 2 .

2) For each a in E 2 u {B},

8i(q» [*> B]) = ([q, D\ [X, ft R) if «52(g2 ,
a) = (q9 X, L).

If Af 2 moves left on its first move, M, records the next state ofM 2 and the

symbol printed by M 2 as in (1) but sets the second component of its state to D
and moves right. Again, is printed in the lower track to mark the left end of

the tape.

3) For each [X, Y] in r„ with Y + and A = L or R,

a, (fe u], [x, y]) = ([P, ui [z, y], ^) if <5 2 (g, x) = (p, z, /t).

Af ! simulates M 2 on the upper track.

4) For each [X, Y] in with Y + ^

S&q, D], [X, Y]) = ([p, Z>], [X, Z], /I) if 5 2 fa, Y) = (p, Z, I).

Here A is L if A is .R, and >1 is R if ^4 is L. M, simulates M 2 on the lower track

of Mj. The direction of head motion of Mj is opposite to that of M 2 .

5) «ittft u]. = Mb^lt^fl)
= ([p. c], [y, ft k) if ^,x) = (p, y,^i).

Here C = C/ if /I = K, and C = Z) if A = L.M
X
simulates a move ofM 2 on the

cell initially scanned by M 2 . M x
next works on the upper or lower track,

depending on the direction in which M 2 moves. M
Y
will always move right in

this situation.

Multitape Turing machines

A multitape Turing machine is shown in Fig. 7.8. It consists of a finite control with

k tape heads and k tapes; each tape is infinite in both directions. On a single move,

depending on the state of the finite control and the symbol scanned by each of the

tape heads, the machine can:

1) change state;

2) print a new symbol on each of the cells scanned by its tape heads;

3) move each of its tape heads, independently, one cell to the left or right, or keep

it stationary.

Initially, the input appears on the first tape, and the other tapes are blank. We
shall not define the device more formally, as the formalism is cumbersome and a

straightforward generalization of the notation for single-tape TM's.

Theorem 7.2 If a language L is accepted by a multitape Turing machine, it is

accepted by a single-tape Turing machine.
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Finite

control

Fig. 7.8 Multitape Turing machine.

Proof Let L be accepted by M l9 a TM with k tapes. We can construct M 2 , a

one-tape TM with 2k tracks, two tracks for each ofM tapes. One track records

the contents of the corresponding tape ofM
t
and the other is blank, except for a

marker in the cell that holds the symbol scanned by the corresponding head of

Mj. The arrangement is illustrated in Fig. 7.9. The finite control ofM 2 stores the

state of Af i, along with a count of the number of head markers to the right ofM 2's

tape head.

Head 1

Tape 1

X

Ai A 2

Head 2

Tape 2

X

Bi B2 Bm

Head 3

Tape 3

X

c, c 2 cm

Fig. 7.9 Simulation of three tapes by one.

Each move of M
x

is simulated by a sweep from left to right and then from

right to left by the tape head of Af 2 . Initially, M 2 's head is at the leftmost cell

containing a head marker. To simulate a move ofMu M 2 sweeps right, visiting

each of the cells with head markers and recording the symbol scanned by each

head ofM
t

. When M 2 crosses a head marker, it must update the count of head

markers to its right. When no more head markers are to the right, M 2 has seen the

symbols scanned by each of Af/s heads, so Af 2 has enough information to deter-
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mine the move ofMv NowM2 makes a pass left, until it reaches the leftmost head

marker. The count of markers to the right enables M2 to tell when it has gone far

enough. As M2 passes each head marker on the leftward pass, it updates the tape

symbol ofM
x
"scanned" by that head marker, and it moves the head marker one

symbol left or right to simulate the move ofM x . Finally, M 2 changes the state of

M x
recorded in M2's control to complete the simulation of one move ofM x

. If the

new state ofM
x

is accepting, then M 2 accepts.

Note that in the first simulation of this section—that of a two-way infinite

tape TM by a one-way infinite tape TM, the simulation was move for move. In the

present simulation, however, many moves ofM2 are needed to simulate one move
ofM j. In fact, since after k moves, the heads ofM

x
can be 2k cells apart, it takes

about Yj=i 2i « 2k
2 moves ofM2 to simulate k moves ofM v (Actually, 2k more

moves may be needed to simulate heads moving to the right.) This quadratic

slowdown that occurs when we go from a multitape TM to a single tape TM is

inherently necessary for certain languages. While we defer a proof to Chapter 12,

we shall here give an example of the efficiency of multitape TM's.

Example 7.8 The language L = {wwR
|
w in (0 + 1)*} can be recognized on a

single-tape TM by moving the tape head back and forth on the input, checking

symbols from both ends, and comparing them. The process is similar to that of

Example 7.5.

To recognize L with a two-tape TM, the input is copied onto the second tape.

The input on one tape is compared with the reversal on the other tape by moving
the heads in opposite directions, and the length of the input checked to make sure

it is even.

Note that the number of moves used to recognize L by the one-tape machine

is approximately the square of the input length, while with a two-tape machine,

time proportional to the input length is sufficient.

Nondeterministic Turing machines

A nondeterministic Turing machine is a device with a finite control and a single,

one-way infinite tape. For a given state and tape symbol scanned by the tape

head, the machine has a finite number of choices for the next move. Each choice

consists of a new state, a tape symbol to print, and a direction of head motion.

Note that the nondeterministic TM is not permitted to make a move in which the

next state is selected from one choice, and the symbol printed and/or direction of

head motion are selected from other choices. The nondeterministic TM accepts its

input if any sequence of choices of moves leads to an accepting state.

As with the finite automaton, the addition of nondeterminism to the Turing

machine does not allow the device to accept new languages. In fact, the combina-

tion of nondeterminism with any of the extensions presented or to be presented,
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such as two-way infinite or multitape TM's, does not add additional power. We
leave these results as exercises, and prove only the basic result regarding the

simulation of a nondeterministic TM by a deterministic one.

Theorem 73 If L is accepted by a nondeterministic Turing machine, M l5
then L

is accepted by some deterministic Turing machine, M 2 .

Proof For any state and tape symbol ofM l5 there is a finite number of choices

for the next move. These can be numbered 1,2, ... Let r be the maximum number

of choices for any state-tape symbol pair. Then any finite sequence of choices can

be represented by a sequence of the digits 1 through r. Not all such sequences may
represent choices of moves, since there may be fewer than r choices in some

situations.

M 2 will have three tapes. The first will hold the input. On the second, M 2 will

generate sequences of the digits 1 through r in a systematic manner. Specifically,

the sequences will be generated with the shortest appearing first. Sequences of

equal length are generated in numerical order.

For each sequence generated on tape 2, M 2 copies the input onto tape 3 and

then simulates M
i
on tape 3, using the sequence on tape 2 to dictate the moves of

Mj. If M
t
enters an accepting state, M 2 also accepts. If there is a sequence of

choices leading to acceptance, it will eventually be generated on tape 2. When
simulated, M 2 will accept. But if no sequence of choices of moves ofM

2
leads to

acceptance, M 2 will not accept.

Multidimensional Turing machines

Let us consider another modification of the Turing machine that adds no addi-

tional power—the multidimensional Turing machine. The device has the usual

finite control, but the tape consists of a /c-dimensional array of cells infinite in all

2k directions, for some fixed k. Depending on the state and symbol scanned, the

device changes state, prints a new symbol, and moves its tape head in one of 2k

directions, either positively or negatively, along one of the k axes. Initially, the

input is along one axis, and the head is at the left end of the input.

At any time, only a finite number of rows in any dimension contain nonblank

symbols, and these rows each have only a finite number of nonblank symbols. For

example, consider the tape configuration of the two-dimensional TM shown in

Fig. 7.10(a). Draw a rectangle about the nonblank symbols, as also shown in Fig.

7.10(a). The rectangle can be represented row by row on a single tape, as shown in

Fig. 7.10(b). The *'s separate the rows. A second track may be used to indicate the

position of the two-dimensional TMTs tape head.

We shall prove that a one-dimensional TM can simulate a two-dimensional

TM, leaving the generalization to more than two dimensions as an exercise.

Theorem 7.4 If L is accepted by a two-dimensional TM M 2 . then L is accepted

by a one-dimensional TM M
l

.
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* *BBBa i BBB*BBa 2 ci3a4a 5 B*a6 a 1 aga9 Ba loB*Ba ll a l 2Ci l3 Ba l 4.a l5 *BBa 1 6 0 1
7 BBB* *

Fig. 7.10 Simulation of two dimensions by one. (a) Two-dimensional tape, (b) One-

dimensional simulation.

Proof M
x
represents the tape ofM 2 as in Fig. 7.10(b). Mi will also have a second

tape used for purposes we shall describe, and the tapes are two-way infinite.

Suppose that M 2 makes a move in which the head does not leave the rectangle

already represented by M
t
's tape. If the move is horizontal, M

x
simply moves its

head marker one cell left or right after printing a new symbol and changing the

state ofM 2 recorded in M/s control. If the move is vertical, Tx
uses its second tape

to count the number of cells between the tape head position and the * to its left.

Then M
t
moves to the * to the right, if the move is down, or the * to the left if the

move is up, and puts the tape head marker at the corresponding position in

the new block (region between *'s) by using the count on the second tape.

Now consider the situation when M 2 s head moves off the rectangle repre-

sented by Mj. If the move is vertical, add a new block of blanks to the left or right,

using the second tape to count the current length of blocks. If the move is horizon-

tal, M
x
uses the "shifting over" technique to add a blank at the left or right end of

each block, as appropriate. Note that double *'s mark the ends of the region used

to hold blocks, so M
x
can tell when it has augmented all blocks. After creating

room to make the move, M x
simulates the move ofM 2 as described above.

Multihead Turing machines

A /c-head Turing machine has some fixed number, /c, of heads. The heads are

numbered 1 through k, and a move of the TM depends on the state and on the

symbol scanned by each head. In one move, the heads may each move indepen-

dently left, right, or remain stationary.

Theorem 7.5 If L is accepted by some /c-head TM M l9 it is accepted by a one-

head TM M 2 .

Proof The proof is similar to that of Theorem 7.2 for multitape TM's. M2 has

k + 1 tracks on its tape; the last holds the tape ofM
t
and the ith holds a marker
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indicating the position of the zth tape head for 1 < i < k. The details are left for an

exercise.

Off-line Turing machines

An off-line Turing machine is a multitape TM whose input tape is read-only.

Usually we surround the input by endmarkers, $ on the left and $ on the right. The

Turing machine is not allowed to move the input tape head off the region between

$ and $. It should be obvious that the off-line TM is just a special case of the

multitape TM, and therefore is no more powerful than any of the models we have

considered. Conversely, an off-line TM can simulate any TM M by using one

more tape than M. The first thing the off-line TM does is copy its own input onto

the extra tape, and it then simulates M as if the extra tape were M's input. The

need for off-line TM's will become apparent in Chapter 12, when we consider

limiting the amount of storage space to less than the input length.

7.6 CHURCH'S HYPOTHESIS

The assumption that the intuitive notion of "computable function" can be

identified with the class of partial recursive functions is known as Church's hypoth-

esis or the Church-Turing thesis. While we cannot hope to "prove" Church's

hypothesis as long as the informal notion of "computable" remains an informal

notion, we can give evidence for its reasonableness. As long as our intuitive notion

of "computable" places no bound on the number of steps or the amount of

storage, it would seem that the partial recursive functions are intuitively compu-

table, although some would argue that a function is not "computable" unless we

can bound the computation in advance or at least establish whether or not the

computation eventually terminates.

What is less clear is whether the class of partial recursive functions includes all

"computable" functions. Logicians have presented many other formalisms such as

the A-calculus, Post systems, and general recursive functions. All have been shown

to define the same class of functions, i.e., the partial recursive functions. In addi-

tion, abstract computer models, such as the random access machine (RAM), also

give rise to the partial recursive functions.

The RAM consists of an infinite number of memory words, numbered 0,

1, each of which can hold any integer, and a finite number of arithmetic

registers capable of holding any integer. Integers may be decoded into the usual

sorts of computer instructions. We shall not define the RAM model more

formally, but it should be clear that if we choose a suitable set of instructions, the

RAM may simulate any existing computer. The proof that the Turing machine

formalism is as powerful as the RAM formalism is given below. Some other

formalisms are discussed in the exercises.
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Simulation of random access machines by Turing machines

Theorem 7.6 A Turing machine can simulate a RAM, provided that the elemen-

tary RAM instructions can themselves be simulated by a TM.

Proof We use a multitape TM M to perform the simulation. One tape ofM
holds the words of the RAM that have been given values. The tape looks like

#0*y0 #l*yi #10*i;2 # ••• #i* Vi #

where v
t
is the contents, in binary, of the ith word. At all times, there will be some

finite number of words of the RAM that have been used, andM needs only to keep

a record of values up to the largest numbered word that has been used so far.

The RAM has some finite number of arithmetic registers. M uses one tape to

hold each register's contents, one tape to hold the location counter, which contains

the number of the word from which the next instruction is to be taken, and one

tape as a memory address register on which the number of a memory word may be

placed.

Suppose that the first 10 bits of an instruction denote one of the standard

computer operations, such as LOAD, STORE, ADD, and so on, and that the

remaining bits denote the address of an operand. While we shall not discuss the

details of implementation for all standard computer instructions, an example

should make the techniques clear. Suppose the location counter tape ofM holds

number i in binary. M searches its first tape from the left, looking for # i*. If a

blank is encountered before finding # /*, there is no instruction in word i, so the

RAM and M halt. If # i* is found, the bits following * up to the next # are

examined. Suppose the first 10 bits are the code for "ADD to register 2," and the

remaining bits are some number j in binary. M adds 1 to i on the location counter

tape and copies j onto the memory address tape. Then M searches for #j* on the

first tape, again starting from the left (note that #0* marks the left end). If #j* is

not found, we assume word j holds 0 and go on to the next instruction of the

RAM. If #j*vj # is found, Vj is added to the contents of register 2, which is stored

on its own tape. We then repeat the cycle with the next instruction.

Observe that although the RAM simulation used a multitape Turing ma-
chine, by Theorem 7.2 a single tape TM would suffice, although the simulation

would be more complicated.

7.7 TURING MACHINES AS ENUMERATORS

We have viewed Turing machines as recognizers of languages and as computers of

functions on the nonnegative integers. There is a third useful view of Turing

machines, as generating devices. Consider a multitape TM M that uses one tape as

an output tape, on which a symbol, once written, can never be changed, and whose
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tape head never moves left. Suppose also that on the output tape,M writes strings

over some alphabet E, separated by a marker symbol # . We can define G(M), the

language generated by M, to be the set of w in E* such that w is eventually printed

between a pair of # 's on the output tape.

Note that unless M runs forever, G(M) is finite. Also, we do not require that

words be generated in any particular order, or that any particular word be gen-

erated only once. IfL is G(M) for some TM M, then L is an r.e. set, and conversely.

The recursive sets also have a characterization in terms of generators; they are

exactly the languages whose words can be generated in order of increasing size.

These equivalences will be proved in turn.

Characterization of r.e. sets by generators

Lemma 7.1 If L is G(M
X ) for some TM Mu then L is an r.e. set.

Proof Construct TM M 2 with one more tape than M
x . M 2 simulates M

{
using

all but M 2's input tape. Whenever M
x
prints # on its output tape, M 2 compares

its input with the word just generated. If they are the same,M 2 accepts; otherwise

M 2 continues to simulate M v Clearly M 2 accepts an input x if and only if x is in

G(M
X ). Thus L(M 2 ) = G(M,)-

The converse of Lemma 7.1 is somewhat more difficult. Suppose M
l

is a

recognizer for some r.e. set L ^ E*. Our first (and unsuccessful) attempt at design-

ing a generator for L might be to generate the words in E* in some order w l9

w2 , run M
x
on w l5 and if M

x
accepts, generate w

x
. Then run M

x
on w2 ,

generating w2 ifM
x
accepts, and so on. This method works ifM

x
is guaranteed to

halt on all inputs. However, as we shall see in Chapter 8, there are languages L
that are r.e. but not recursive. If such is the case, we must contend with the

possibility that M
x
never halts on some w

f
. Then M 2 never considers wJ+1 ,

w, + 2 , and so cannot generate any of these words, even ifM
x
accepts them.

We must therefore avoid simulating M
l
indefinitely on any one word. To do

this we fix an order for enumerating words in E*. Next we develop a method of

generating all pairs (i, j) of positive integers. The simulation proceeds by generat-

ing a pair (i,j) and then simulating M
v
on the ith word, for j steps.

We fix a canonical order for E* as follows. List words in order of size, with

words of the same size in "numerical order." That is, let E = {a0 ,
au ak -i},

and imagine that a
t
is the "digit" i in base k. Then the words of length n are the

numbers 0 through k" — 1 written in base k. The design of a TM to generate words

in canonical order is not hard, and we leave it as an exercise.

Example 7.9 If E = {0, 1}, the canonical order is £, 0, 1, 00, 01, 10, 11, 000,

001,...
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Note that the seemingly simpler order in which we generate the shortest

representation of 0, 1, 2, . . . in base k will not work as we never generate words like

flo^o^!, which have "leading O's."

Next consider generating pairs (i,j) such that each pair is generated after

some finite amount of time. This task is not so easy as it seems. The naive

approach, (1, 1), (1, 2), (1, 3), ... never generates any pairs with i > 1. Instead, we
shall generate pairs in order of the sum i + j, and among pairs of equal sum, in

order of increasing I That is, we generate (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1),

(1, 4), . . . The pair (i, ;) is the {[(/ + ; - + ; - 2)]/2 + i}th pair generated. Thus

this ordering has the desired property that there is a finite time at which any

particular pair (i, j) is generated.

A TM generating pairs (z, j) in this order in binary is easy to design, and we
leave its construction to the reader. We shall refer to such a TM as the pair

generator in the future. Incidentally, the ordering used by the pair generator

demonstrates that pairs of integers can be put into one-to-one correspondence

with the integers themselves, a seemingly paradoxical result that was discovered

by Georg Kantor when he showed that the rationals (which are really the ratios of

two integers) are equinumerous with the integers.

Theorem 7.7 A language is r.e. if and only if it is G(M 2 ) for some TM M 2 .

Proof With Lemma 7.1 we have only to show how an r.e. set L = L(Mi) can be

generated by a TM M 2 . M 2 simulates the pair generator. When (i, ;) is generated,

M 2 produces the ith word w
f
in canonical order and simulates M

x
on w

f
forj steps.

If M
x

accepts on the yth step (counting the initial ID as step 1), then M 2

generates vv
f
.

Surely M 2 generates no word not in L If w is in L, let w be the ith word in

canonical order for the alphabet of L, and let M
x
accept w after exactly j moves. As

it takes only a finite amount of time for M 2 to generate any particular word in

canonical order or to simulate M
x
for any particular number of steps, we know

that M 2 will eventually produce the pair (i, j). At that stage, w will be generated by

M2 . Thus G(M 2 ) = L.

Corollary If L is an r.e. set, then there is a generator for L that enumerates each

word in L exactly once.

Proof M 2 described above has that property, since it generates vv
f
only when

considering the pair (i,j), where j is exactly the number of steps taken by M
x
to

accept w
f

.

Characterization of recursive sets by generators

We shall now show that the recursive sets are precisely those sets whose words can

be generated in canonical order.
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Lemma 7.2 If L is recursive, then there is a generator for L that prints the words

of L in canonical order and prints no other words.

Proof Let L = JJ^My)^ £*, where M t
halts on every input. Construct M 2 to

generate L as follows. M 2 generates (on a scratch tape) the words in £*, one at a

time, in canonical order. After generating some word w, M2 simulatesM x
on w. If

M
x
accepts w, M2 generates w. Since M x

is guaranteed to halt, we know that M2

will finish processing each word after a finite time and will therefore eventually

consider each particular word in £*. Clearly M 2 generates L in canonical order.

The converse of Lemma 7.2, that ifL can be generated in canonical order then

L is recursive, is also true. However, there is a subtlety of which we should be

aware. In Lemma 7.2 we could actually construct M 2 from M
x . However, given a

TM M generating L in canonical order, we know a halting TM recognizing L
exists, but there is no algorithm to exhibit that TM.

Suppose Mj generates L in canonical order. The natural thing to do is to

construct a TM M 2 that on input w simulates M
1
untilM

x
either generates w or a

word beyond w in canonical order. In the former case, M2 accepts w, and in the

latter case, M 2 halts without accepting w. However, if L is finite, M
x
may never

halt after generating the last word in L, so M
x
may generate neither w nor any

word beyond. In this situation M 2 would not halt. This problem arises only when

L is finite, even though we know every finite set is accepted by a Turing machine

that halts on all inputs. Unfortunately, we cannot determine whether a TM gener-

ates a finite set or, if finite, which finite set it is. Thus we know that a halting

Turing machine accepting L, the language generated by M u always exists, but

there is no algorithm to exhibit the Turing machine.

Theorem 7.8 L is recursive if and only if L is generated in canonical order.

Proof The "only if" part was established by Lemma 7.2. For the "if" part, when

L is infinite, M 2 described above is a halting Turing machine for L. Clearly, when

L is finite, there is a finite automaton accepting L, and thus Lean be accepted by a

TM that halts on all inputs. Note that in general we cannot exhibit a particular

halting TM that accepts L, but the theorem merely states that one such TM
exists.

7.8 RESTRICTED TURING MACHINES EQUIVALENT
TO THE BASIC MODEL

In Section 7.5 we considered generalizations of the basic TM model. As we have

seen, these generalizations have no more computational power than the basic

model. We conclude this chapter by considering some models that at first appear

less powerful than the TM but indeed are just as powerful. For the most part,

these models will be variations of the pushdown automaton defined in Chapter 5.
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In passing, we note that a pushdown automaton is equivalent to a nondeter-

ministic TM with a read-only input on which the input head cannot move left,

plus a storage tape with a rather peculiar restriction on the tape head. Whenever
the storage tape head moves left, it must print a blank. Thus the storage tape to

the right of the head is always completely blank, and the storage tape is effectively

a stack, with the top at the right, rather than the left as in Chapter 5.

Multistack machines

A deterministic two-stack machine is a deterministic Turing machine with a read-

only input and two storage tapes. If a head moves left on either tape, a blank is

printed on that tape.

Lemma 7.3 An arbitrary single-tape Turing machine can be simulated by a

deterministic two-stack machine.

Proof The symbols to the left of the head of the TM being simulated can be

stored on one stack, while the symbols on the right of the head can be placed on

the other stack. On each stack, symbols closer to the TM's head are placed closer

to the top of the stack than symbols farther from the TM's head.

Counter machines

We can prove a result stronger than Lemma 7.3. It concerns counter machines,

which are off-line Turing machines whose storage tapes are semi-infinite, and

whose tape alphabets contain only two symbols, Z and B (blank). Furthermore,

the symbol Z, which serves as a bottom of stack marker, appears initially on the

cell scanned by the tape head and may never appear on any other cell. An integer i

can be stored by moving the tape head i cells to the right of Z. A stored number

can be incremented or decremented by moving the tape head right or left. We can

test whether a number is zero by checking whether Z is scanned by the head, but

we cannot directly test whether two numbers are equal.

An example of a counter machine is shown in Fig. 7.11; § and $ are custo-

marily used for end markers on the input. Here Z is the nonblank symbol on each

tape. An instantaneous description of a counter machine can be described by the

state, the input tape contents, the position of the input head, and the distance of

the storage heads from the symbol Z (shown here as d x
and d2 ). We call these

distances the counts on the tapes. The counter machine, then, can really only store

a count on each tape and tell if that count is zero.

Lemma 7.4 A four-counter machine can simulate an arbitrary Turing ma-

chine.

Proof From Lemma 7.3, it suffices to show that two counter tapes can simulate

one stack. Let a stack have k — 1 tape symbols, Zu Z 2 ,

Z

k _ x
. Then we can
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i Read-only input $

i i

Finite

control

//

\ 1

Z B B ... \

\

B B B

<

Z B B B B B

Fig. 7.11 Counter machine.

represent the stack Zh Zi2
••• Zim

uniquely by the count in base k

j = im + kim . , + /c
2
im _ 2 + • • • + k

m~ l
i x . (73)

Note that not every integer represents a stack; in particular, those whose base-/c

representation contains the digit 0 do not.

Suppose that the symbol Zr is pushed onto the top (right end) of the stack

Zh Zi2
" Zim . The count associated with Zh Z i2

• • • ZimZr isjk -f r. To get this new

count, the counter machine repeatedly moves the head of the first counter one cell

to the left and the head of the second, k cells to the right. When the head of the first

counter reaches the nonblank symbol, the second counter will hold the count jk. It

is a simple matter to add r to the count.

If, instead, the top symbol Zim
of the stack were popped,; should be replaced

by L/AA tne integer part of j/k. We repeatedly decrement the count on the first

counter by k and then add one to the second count. When the first count is zero,

the second count will be [j//cj.

To complete the description of the simulation, we must show how the four-

counter machine can tell what symbol is at the top of each stack. If the count j is

stored on one counter, the four-counter machine can copy j to another counter,

computing j mod k in its finite control. Note that j mod k is im if j is given by

(7.3). ^

Theorem 7.9 A two-counter machine can simulate an arbitrary Turing ma-

chine.

Proof By Lemma 7.4, it is sufficient to show how to simulate four counters with

two. Let four counters have counts ij, k, and {. One counter can represent these

four by the number n = 2
f

3;'5*7'. Since 2, 3, 5, and 7 are primes, ij9 k, and { can be

uniquely recovered from n.
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To increment i,j, k, or / by 1, we multiply n by 2, 3, 5, or 7, respectively. To do

so, if we have another counter set to zero, we can move the head of this counter 2,

3, 5, or 7 cells to the right each time we move the head of the first counter one cell

to the left. When the first counter holds zero, the second will hold 2n, 3n, 5n, or In,

respectively. To decrement ij, /c, or <f by 1, n is, by a similar process, divided by 2,

3, 5, or 7, respectively.

We must also show how the two-counter machine can determine the next

move of the four-counter machine. The two-counter machine always scans the

same cell of the input tape as the four-counter machine does. The state of the

four-counter machine is stored in the finite control of the two-counter machine.

Thus, to determine the move of the four-counter machine, the two-counter ma-

chine has only to determine which, if any, of i9 j, k, and £ are 0. By passing n from

one counter to the other, the finite control of the two-counter machine can deter-

mine if n is divisible by 2, 3, 5, 7, or any product of these.

Limits on the number of states and symbols

Another way to restrict a TM is to limit the size of the tape alphabet or the

number of states. If the tape alphabet, number of tapes, and number of states are

all limited, then there is only a finite number of different Turing machines, so the

restricted model is less powerful than the original.! If we do not restrict the tape

alphabet, then three states and one tape are sufficient to recognize any r.e. set; this

result is left as an exercise. We shall, however, prove a result about limited tape

alphabets.

Theorem 7.10 If L ^ (0 + 1)* and L is r.e., then L is accepted by a one-tape TM
with tape alphabet {0, 1, B}.

Proof Let L= L(Mj), where M
x
= (Q, {0, 1}, T, 5, q0 , B, F). Suppose F has

between 2
k ~ l + 1 and 2* symbols, so k bits are sufficient to encode any tape

symbol ofM
x

. We may design M2 , with tape alphabet {0, 1, B) to simulate M
x

.

The tape ofM 2 will consist of a sequence of codes for symbols ofM
x

. The finite

control ofM 2 remembers the state ofM, and also remembers the position ofM 2's

tape head, modulo k, so M 2 can know when it is at the beginning of a coded tape

symbol of M,.

At the beginning of the simulation of a move ofMu the head ofM 2 is at the

left end of a binary-coded symbol ofM v M2 scans the next k — 1 symbols to its

right, to determine the move of M j. Then M, replaces the symbols scanned to

reflect the move ofM
{ ,

positions its tape head at the left end of the code for the

next symbol scanned byM u and changes the state ofM v If that state is accepting,

t However, there are such restricted Turing machines that are "universal" (see Section 8.3) in the sense

that given as input an encoding of a transition function for some TM M and an input w to M, the

universal machine accepts if and only ifM accepts w. For example, it is known that there is a universal

TM with one tape, 5 states, and 7 tape symbols.
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M 2 accepts; otherwise, M2 is ready to simulate the next move ofM 2
. A special

case occurs ifM2 finds its head positioned at a blank when it should be reading a

code for a tape symbol ofMv In this case, M x has just moved to a position it has

never before reached. M 2 must write the binary code for M/s blank on the cell

scanned and the k — 1 cells to its right, after which it may simulate a move ofM
l

as before.

One important detail is left to be explained. M2 's input is a binary string w in

(0 + 1)* representing w itself, rather than a string ofcoded 0's and Vs representing

w. Therefore, before simulating Mu M 2 must replace w by its code. To do so, M2

uses the "shifting over" trick, using B for the symbol X described in Section 7.4,

where "shifting over" was introduced. For each input symbol, starting with the

leftmost, the string to the right of the symbol is shifted k — 1 places right, and then

the symbol and the k — 1 B's introduced are replaced by the /c-bit binary code for

the symbol.

We can apply the same binary coding technique even if the input alphabet is

not {0, 1}. We therefore state the following corollary and leave its proof as an

exercise.

Corollary If L is an r.e. set over any alphabet whatsoever, then L is accepted by

an off-line TM that has only one tape besides the input, and whose alphabet for

that tape is {0, 1, £}.

Theorem 7.11 Every Turing machine can be simulated by an off-line Turing

machine having one storage tape with two symbols, 0 (blank) and 1. The Turing

machine can print a 0 or 1 over a 0, but cannot print a 0 over a 1.

Proof We leave this to the reader. The "trick" is to create successive ID's of the

original Turing machine on the tape of the new one. Tape symbols are, of course,

encoded in binary. Each ID is copied over, making the changes necessary to

simulate a move of the old machine.

In addition to the binary encoding of the original symbol, the TM doing the

simulating needs cells to indicate the position of the head in the ID being copied,

and cells to indicate that the binary representation of a symbol has already been

copied.

EXERCISES

7.1 Design Turing machines to recognize the following languages.

a) {(TWln > 1}.

b) {ww*|w is in (0+ 1)*}.

c) The set of strings with an equal number of 0's and l*s.

7.2 Design Turing machines to compute the following functions,

a) [log2 n] b) n! c) n
2
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7.3 Show that if L is accepted by a fc-tape, /-dimensional, nondeterministic TM with m
heads per tape, then L is accepted by a deterministic TM with one semi-infinite tape and

one tape head.

7.4 A recursive function is a function defined by a finite set of rules that for various

arguments specify the function in terms of variables, nonnegative integer constants, the

successor (add one) function, the function itself, or an expression built from these by

composition of functions. For example, Ackermanris function is defined by the rules

:

1) X(0,y)=l

2) A{1, 0) = 2

3) A(x, 0) = x + 2 for x > 2

4) A(x+l,y+l) = A(A(xt y+l),y)
a) Evaluate A(2, 1).

* b) What function of one variable is A(x> 2)?

* c) Evaluate A(4t 3).

* 7.5 Give recursive definitions for

a) n + m b) n — m c) nm d) n!

'* 7.6 Show that the class of recursive functions is identical to the class of partial recursive

functions.

7.7 A function is primitive recursive if it is a finite number of applications of composition

and primitive recursion^ applied to constant 0, the successor function, or a projection

function xn ) = x,.

a) Show that every primitive recursive function is a total recursive function.

** b) Show that Ackermann's function is not primitive recursive.

**c) Show that adding the minimization operator, min (/(x)) defined as the least x such

that / (x) = 0, yields all partial recursive functions.

7.8 Design a Turing machine to enumerate {(TV \n > 1}.

'* 7.9 Show that every r.e. set is accepted by a TM with only two nonaccepting states and

one accepting state.

* 7.10 Complete the proof of Theorem 7.11, that tapes symbols 0 (blank) and 1, with no 1

overprinted by 0, are sufficient for an off-line TM to accept any r.e. language.

7.11 Consider an off-line TM model that cannot write on any tape but has three pebbles

that can be placed on the auxiliary tape. Show that the model can accept any r.e. language.

t A primitive recursion is a definition of/(x„ x„) by

f(x x
x„) = if x„ = 0then

0(X, xB_,)

else

h{x
l9

xH,f(x lt x„_
t ,
xn
- 1))

where g and h are primitive recursive functions.
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proof given here is taken from Fischer [1966]. Theorem 7.11, on TM's that can only print
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[1978].
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CHAPTER

8
UN DECIDABILITY

We now consider the classes of recursive and recursively enumerable languages.

The most interesting aspect of this study concerns languages whose strings are

interpreted as codings of instances of problems. Consider the problem of deter-

mining if an arbitrary Turing machine accepts the empty string. This problem may
be formulated as a language problem by encoding TM's as strings of O's and l's.

The set of all strings encoding TM's that accept the empty string is a language that

is recursively enumerable but not recursive. From this we conclude that there can

be no algorithm to decide which TM's accept the empty string and which do not.

In this chapter we shall show that many questions about TM's, as well as

some questions about context-free languages and other formalisms, have no algor-

ithms for their solution. In addition we introduce some fundamental concepts

from the theory of recursive functions, including the hierarchy of problems

induced by the consideration of Turing machines with "oracles."

8.1 PROBLEMS

Informally we use the word problem to refer to a question such as: "Is a given

CFG ambiguous?" In the case of the ambiguity problem, above, an instance of the

problem is a particular CFG. In general, an instance of a problem is a list of

arguments, one argument for each parameter of the problem. By restricting our

attention to problems with yes-no answers and encoding instances of the problem
by strings over some finite alphabet, we can transform the question of whether

there exists an algorithm for solving a problem to whether or not a particular

language is recursive. While it may seem that we are throwing out a lot of impor-

177
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tant problems by looking only at yes-no problems, in fact such is not the case.

Many general problems have yes-no versions that are provably just as difficult as

the general problem.

Consider the ambiguity problem for CFG's. Call the yes-no version AMB. A
more general version of the problem, called FIND, requires producing a word
with two or more parses if one exists and answering "no" otherwise. An algorithm

for FIND can be used to solve AMB. If FIND produces a word w, then answer

"yes"; if FIND answers "no," then answer "no." Conversely, given an algorithm

for AMB we can produce an algorithm for FIND. The algorithm first applies

AMB to the grammar G. If AMB answers "no" our algorithm answers "no." If

AMB answers "yes," the algorithm systematically begins to generate all words

over the terminal alphabet of G. As soon as a word w is generated, it is tested to see

if it has two or more parse trees. Note that the algorithm does not begin generat-

ing words unless G is ambiguous, so some w eventually will be found and printed.

Thus we indeed have an algorithm. The portion of the algorithm that tests w for

two or more parses is left as an exercise.

The process whereby we construct an algorithm for one problem (such as

FIND), using a supposed algorithm for another (AMB), is called a reduction (of

FIND to AMB). In general, when we reduce problem A to problem B we are

showing that B is at least as hard as A. Thus in this case, as in many others, the

yes-no problem AMB is no easier than the more general version of the problem.

Later we shall show that there is no algorithm for AMB. By the reduction ofAMB
to FIND we conclude there is no algorithm for FIND either, since the existence of

an algorithm for FIND implies the existence of an algorithm for AMB, a

contradiction.

One further instructive point concerns the coding of the grammar G. As all

Turing machines have a fixed alphabet, we cannot treat the 4-tuple notation

G = (K, T, P, S) as the encoding of G without modification. We can encode

4-tuples as binary strings as follows. Let the metasymbols in 4-tuples, that is, the

left and right parentheses, brackets, comma and ->, be encoded by 1, 10, 100,

10
5

,
respectively. Let the z'th grammar symbol (in any chosen order) be encoded by

10'
+ 5

. In this encoding, we cannot tell the exact symbols used for either terminals

or nonterminals. Of course renaming nonterminals does not affect the language

generated, so their symbols are not important. Although we ordinarily view the

identities of the terminals as important, for this problem the actual symbols used

for the terminals is irrelevant, since renaming the terminals does not affect the

ambiguity or unambiguity of a grammar.

Decidable and undecidable problems

A problem whose language is recursive is said to be decidable. Otherwise, the

problem is undecidable. That is, a problem is undecidable if there is no algorithm

that takes as input an instance of the problem and determines whether the answer

to that instance is "yes" or "no."
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An unintuitive consequence of the definition of "undecidable" is that prob-
lems with only a single instance are trivially decidable. Consider the following

problem based on Fermat's conjecture. Is there no solution in positive integers to

the equation x l + / = z
l

if i > 3? Note that x, y, z, and i are not parameters but

bound variables in the statement of the problem. There is one Turing machine
that accepts any input and one that rejects any input. One of these answers

Fermat's conjecture correctly, even though we do not know which one. In fact

there may not even be a resolution to the conjecture using the axioms of arith-

metic. That is, Fermat's conjecture may be true, yet there may be no arithmetic

proof of that fact. The possibility (though not the certainty) that this is the case

follows from Godel's incompleteness theorem, which states that any consistent

formal system powerful enough to encompass number theory must have state-

ments that are true but not provable within the system.

It should not disturb the reader that a conundrum like Fermat's conjecture is

"decidable." The theory of undecidability is concerned with the existence or non-

existence of algorithms for solving problems with an infinity of instances.

8.2 PROPERTIES OF RECURSIVE AND RECURSIVELY
ENUMERABLE LANGUAGES

A number of theorems in this chapter are proved by reducing one problem to

another. These reductions involve combining several Turing machines to form a

composite machine. The state of the composite TM has a component for each

individual component machine. Similarly the composite machine has separate

tapes for each individual machine. The details of the composite machine are

usually tedious and provide no insight. Thus we choose to informally describe the

constructions.

Given an algorithm (TM that always halts), we can allow the composite TM
to perform one action if the algorithm accepts and another if it does not accept.

We could not do this if we were given an arbitrary TM rather than an algorithm,

since if the TM did not accept, it might run forever, and the composite machine

would never initiate the next task. In pictures, an arrow into a box labeled "start"

indicates a start signal. Boxes with no "start" signal are assumed to begin operat-

ing when the composite machine does. Algorithms have two outputs, "yes" and

"no," which can be used as start signals or as a response by the composite ma-
chine. Arbitrary TM's have only a "yes" output, which can be used for the same

purposes.

We now turn to some basic closure properties of the classes of recursive and

r.e. sets.

Theorem 8.1 The kcomplement of a recursive language is recursive.

^oof Let L be a recursive language and M a Turing machine that halts on all

mputs and accepts L. Construct M' from M so that ifM enters a final state on
input w, then M ' halts without accepting. IfM halts without accepting, M' enters a
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Fig. 8.1 Construction showing that recursive languages are closed under complementation.

final state. Since one of these two events occurs, M' is an algorithm. Clearly L(M')

is the complement of L and thus the complement of L is a recursive language.

Figure 8.1 pictures the construction of M' from M.

Theorem 8.2 The union of two recursive languages is recursive. The union of two

recursively enumerable languages is recursively enumerable.

Proof Let L
x
and L2 be recursive languages accepted by algorithmsM

x
and M 2 .

We construct M, which first simulates M,. If M
1
accepts, then M accepts. IfM

x

rejects, then M simulates M 2 and accepts if and only ifM 2 accepts. Since both M
x

and M2 are algorithms, M is guaranteed to halt. Clearly M accepts L t u L 2 .

For recursively enumerable languages the above construction does not work,

since M
x
may not halt. Instead M can simultaneously simulate M

x
and M 2 on

separate tapes. If either accepts, then M accepts. Figure 8.2 shows the two con-

structions of this theorem.

\f r— A/,

(a) (b)

Fig. 8.2 Construction for union.

Theorem 8.3 If a language L and its complement Lare both recursively enumer-

able, then L (and hence L) is recursive.

Proof Let M
x
and M 2 accept L and L respectively. Construct M as in Fig. 8.3 to

simulate simultaneously M
x
and M 2 . M accepts w ifM

{
accepts w and rejects w if

M 2 accepts w. Since w is in either L or L, we know that exactly one ofM
t
or M 2

will accept. Thus M will always say either "yes" or "no," but will never say both.

Note that there is no a priori limit on how long it may take before M
x
or M 2

accepts, but it is certain that one or the other will do so. Since M is an algorithm

that accepts L, it follows that L is recursive.
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>Yes

Fig. 8.3 Construction for Theorem 8.3.

Theorems 8.1 and 8.3 have an important consequence. Let L and L be a pair of

complementary languages. Then either

1) both L and L are recursive,

2) neither L nor L is r.e., or

3) one of L and L is r.e. but not recursive; the other is not r.e.

An important technique for showing a problem undecidable is to show by

diagonalization that the complement of the language for that problem is not r.e.

Thus case (2) or (3) above must apply. This technique is essential in proving our

first problem undecidable. After that, various forms of reductions may be

employed to show other problems undecidable.

8.3 UNIVERSAL TURING MACHINES AND AN
UNDECIDABLE PROBLEM

We shall now use diagonalization to show a particular problem to be undecidable.

The problem is: "Does Turing machine M accept input w?" Here, both M and w
are parameters of the problem. In formalizing the problem as a language we shall

restrict w to be over alphabet {0, 1} and M to have tape alphabet {0, 1, B}. As the

restricted problem is undecidable, the more general problem is surely undecidable

as well. We choose to work with the more restricted version to simplify the

encoding of problem instances as strings.

Turing machine codes

To begin, we encode Turing machines with restricted alphabets as strings over

{0, 1}. Let

M = (6, {0,1}, {0, 1, B} 9 5,q l9 B, {q 2 })

be a Turing machine with input alphabet {0, 1} and the blank as the only addi-

tional tape symbol. We further assume that Q = [q u q2 , . . - , qn } is the set of states,

and that q 2 is the only final state. Theorem 7.10 assures us that if L c (0 + 1)* is

accepted by any TM, then it is accepted by one with alphabet {0, 1, B}. Also, there
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is no need for more than one final state in any TM, since once it accepts it may as

well halt.

It is convenient to call symbols 0, 1, and B by the synonyms Xu X 2 ,
X3 ,

respectively. We also give directions L and R the synonyms D
x
and D 2 ,

respec-

tively. Then a generic move 3(qh X})
= (qk ,

Xe ,
Dm ) is encoded by the binary string

0l 10*10* ltflO". (8.1)

A binary code for Turing machine M is

111 code! 11 code2 11 ••• 11 coder 111, (8.2)

where each code,- is a string of the form (8.1), and each move ofM is encoded by

one of the codecs. The moves need not be in any particular order, so each TM
actually has many codes. Any such code for M will be denoted (M).

Every binary string can be interpreted as the code for at most one TM; many
binary strings are not the code of any TM. To see that decoding is unique, note

that no string of the form (8.1) has two Ts in a row, so the codecs can be found

directly. If a string fails to begin and end with exactly three Ts, has three l's other

than at the end, or has two pair of l's with other than five blocks of O's in between,

then the string represents no TM.
The pair M and w is represented by a string of the form (8.2) followed by w.

Any such string will be denoted <M, w).

Example 8.1 Let M — ({q l9 q 2 , q3 ), {0, 1}, {0, 1, B}, 3, q lf Bf {q2}) have moves: ^

S(q» l)=fe,0,K),

<%3,oH(<h, *> n
%3, 1)=(<?2,0,R),

5(l3>B) = (q3y 1, L).

Thus one string denoted by (M, 101 1) is

111010010001010011000101010010011

000100100101001 100010001000100101 1 1 101

1

Note that many different strings are also codes for the pair <M, 101 1 ), and any of

these may be referred to by the notation (M, 101 1).

A non-r.e. language

Suppose we have a list of (0 + 1)* in canonical order (see Section 7.7), where wf
is

the ith word, and M
}

is the TM whose code, as in (8.2) is the integer j written in
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/

12 3 4

Fig. 8.4 Hypothetical table indicating acceptance of words by TM's.

binary. Imagine an infinite table that tells for all i and j whether w
f
is in L(Mj).

Figure 8.4 suggests such a table ;t 0 means w
£
is not in L(Mj) and 1 means it is.

We construct a language Ld by using the diagonal entries of the table to

determine membership in Ld . To guarantee that no TM accepts Ld , we insist that

w
t
is in Ld if and only if the (/, i) entry is 0, that is, ifM, does not accept w

f . Suppose

that some TM Mj accepted Ld . Then we are faced with the following contradic-

tion. If Wj is in Ld , then the (j, j) entry is 0, implying that Wj is not in L(M,-) and

contradicting Ld — L(Mj). On the other hand, if Wj is not in Ld , then the (j, j) entry

is 1, implying that Wy is in L(M
; ), which again contradicts Ld = U{Mj). As Wj is

either in or not in Ld , we conclude that our assumption, Ld — L(M
7 ), is false. Thus,

no TM in the list accepts Ld , and by Theorem 7.10, no TM whatsoever accepts Ld .

We have thus proved

Lemma 8.1 Ld is not r.e.

The universal language

Define L^, the "universal language," to be {<M, w)|M accepts w}. We call

"universal" since the question of whether any particular string w in (0 + 1)* is

accepted by any particular Turing machine M is equivalent to the question of

whether <M', w> is in L^, where M' is the TM with tape alphabet {0, 1, B) equiv-

alent to M constructed as in Theorem 7.10.

Theorem 8.4 is recursively enumerable.

Proof We shall exhibit a three-tape TM M
x
accepting L^. The first tape ofM

x
is

the input tape, and the input head on that tape is used to look up moves of the TM
M when given code (M, w) as input. Note that the moves ofM are found between

the first two blocks of three l's. The second tape ofM
x
will simulate the tape ofM.

t Actually as all low-numbered Turing machines accept the empty set, the correct portion of the table

shown has all 0's.
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The alphabet ofM is {0, 1, B], so each symbol of M's tape can be held in one tape

cell ofM/s second tape. Observe that if we did not restrict the alphabet ofM, we
would have to use many cells ofM

x 's tape to simulate one of M's cells, but the

simulation could be carried out with a little more work. The third tape holds the

state of M, with qt
represented by 0'. The behavior of Mj is as follows:

1) Check the format of tape 1 to see that it has a prefix of the form (8.2) and that

there are no two codes that begin with O'lCVl for the same i and j. Also check

that if 0t

'l(V10M(yi0m is a code, then 1 < j < 3, 1 < / < 3, and 1 < m < 2.

Tape 3 can be used as a scratch tape to facilitate the comparison of codes.

2) Initialize tape 2 to contain w, the portion of the input beyond the second

block of three l's. Initialize tape 3 to hold a single 0, representing q x
. All three

tape heads are positioned on the leftmost symbols. These symbols may be

marked so the heads can find their way back.

3) If tape 3 holds 00, the code for the final state, halt and accept.

4) Let Xj be the symbol currently scanned by tape head 2 and let 0' be the

current contents of tape 3. Scan tape 1 from the left end to the second 111,

looking for a substring beginning 1 lO'lO^l. Ifno such string is found, halt and

reject; M has no next move and has not accepted. If such a code is found, let it

be 0'10'10*l(yi0
m

. Then put 0* on tape 3, print X, on the tape cell scanned by

head 2 and move that head in direction Dm . Note that we have checked in (1)

that 1 < t < 3 and 1 < m < 2. Go to step (3).

It is straightforward to check thatM
x
accepts (M, w) if and only ifM accepts

w. It is also true that ifM runs forever on w, M, will run forever on (M, w), and if

M halts on w without accepting, M
{
does the same on (M, w).

The existence of M
x

is sufficient to prove Theorem 8.4. However, by

Theorems 7.2 and 7.10, we can find a TM with one semi-infinite tape and alphabet

{0, 1, B} accepting Z^. We call this particular TM MM , the universal Turing ma-

chine, since it does the work of any TM with input alphabet {0, 1}.

By Lemma 8.1, the diagonal language Ld is not r.e., and hence not recursive.

Thus by Theorem 8.1, Ld is not recursive. Note that L d
= {w

f |

M, accepts vv,}. We
can prove the universal language = {(M, w)

|
M accepts w} not to be recursive

by reducing Ld to L„ Thus L u is an example of a language that is r.e. but not

recursive. In fact, Ld is another example of such a language.

Theorem 8.5 is not recursive.

Proof Suppose A were an algorithm recognizing L^. Then we could recognize Ld

as follows. Given string w in (0 + 1)*, determine by an easy calculation the value

of i such that w = w
t . Integer i in binary is the code for some TM M,. Feed

<M„ w,> to algorithm A and accept w if and only ifM, accepts w, . The construction

is shown in Fig. 8.5. It is easy to check that the constructed algorithm accepts w if
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<M
;

, w>
HypotheticalConvert

——>
A for L

u

Constructed algorithm for L d

Yes

No
-Yes

->No

Fig. 8.5 Reduction of Ld to Lu .

and only if w = w
t
- and w

f
is in L(M

f ).
Thus we have an algorithm for Ld Since no

such algorithm exists, we know our assumption, that algorithm A for exists, is

false. Hence Lu is r.e. but not recursive.

8.4 RICE'S THEOREM AND SOME MORE
UNDECIDABLE PROBLEMS

We now have an example of an r.e. language that is not recursive. The associated

problem "Does M accept w?" is undecidable, and we can use this fact to show that

other problems are undecidable. In this section we shall give several examples of

undecidable problems concerning r.e. sets. In the next three sections we shall

discuss some undecidable problems taken from outside the realm of TM's.

Example 8.2 Consider the problem: "Is L(M) ^ 0?" Let (M) denote a code for

M as in (8.2). Then define

C = {(M)\ L(M) + 0} and Le
= {<M>

|

L(M) = 0}.

Note that Le and L„e are complements of one another, since every binary string

denotes some TM ; those with a bad format denote the TM with no moves. All

these strings are in Le . We claim that L„e is r.e. but not recursive and that Le is not

r.e.

We show that is r.e. by constructing a TM M to recognize codes of TM's
that accept nonempty sets. Given input (M,), M nondeterministically guesses a

string x accepted by M
t
and verifies that M, does indeed accept x by simulating M,

on input x. This step can also be carried out deterministically if we use the pair

generator described in Section 7.7. For pair (y, k) simulate M
f
on the jth binary

string (in canonical order) for k steps. If M, accepts, then M accepts (M,).

Now we must show that Le is not recursive. Suppose it were. Then we could

construct an algorithm for L^, violating Theorem 8.5. Let A be a hypothetical

algorithm accepting Le . There is an algorithm B that, given (M, w), constructs a

TM M' that accepts 0 ifM does not accept w and accepts (0 + 1)* ifM accepts w.

The plan of M' is shown in Fig. 8.6. M' ignores its input x and instead simulates M
on input w, accepting if M accepts.

Note that M' is not B. Rather, B is like a compiler that takes (M, w) as

"source program" and produces M' as "object program." We have described what
B must do, but not how it does it. The construction ofB is simple. It takes (M, w)
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>Yes

Fig. 8.6 The TM M'.

and isolates w. Say w = a
x
a2

* * * an is of length n. B creates n + 3 states q l9 q2 , . . .

.

grt+3 with moves

X) = (q2 , $, K) for any X (print marker),

S(qh X) = (qi+ 15 a
f _ l5 for any X and 2 < z < n 4- 1 (print w),

%,+2 > *) = ft &>r X ^ £ (erase tape),

%,+ 2> #) = (qn+3 , ft L),

(5(g„+3 ,
X) = (qn+3) X, L) for X j= $ (find marker).

Having produced the code for these moves, B then adds n + 3 to the indices of the

states ofM and includes the move

%, + 3> $) = («» + 4, $> *) /* start up M */

and all the moves ofM in its generated TM. The resulting TM has an extra tape

symbol $, but by Theorem 7.10 we may construct M' with tape alphabet {0, 1, B},

and we may surely make q2 the accepting state. This step completes the algorithm

ft and its output is the desired AT of Fig. 8.6.

Now suppose algorithm A accepting Le exists. Then we construct an algor-

ithm C for 1^ as in Fig. 8.7. IfM accepts w, then L(M') 0; so A says "no" and C
says "yes." IfM does not accept w, then L(M') = 0,A says "yes," and C says "no."

As C does not exist by Theorem 8.5, A cannot exist. Thus, Le is not recursive. IfL„e

were recursive, Le would be also by Theorem 8.1. Thus L„e is r.e. but not recursive.

If Le were r.e., then Le and L„e would be recursive by Theorem 8.3. Thus Le is not

r.e.

Example 8.3 Consider the language

L, = {(M)
I

L(M) is recursive}

and

= {(M>
I

L(M) is not recursive}.

Note that L, is not {(M) |M halts on all inputs}, although it includes the latter

language. A TM M could accept a recursive language even though M itselfmight

loop forever on some words not in L(M); some other TM equivalent to M must

always halt, however. We claim neither L, nor L„r is r.e.

Suppose L>. were r.e. Then we could construct a TM for L„ which we know
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<M, w>- A—
C

Yes

No

Fig. 8.7 Algorithm constructed for L„ assuming that algorithm A for L e exists.

does not exist. Let Mr be a TM accepting L,. We may construct an algorithm A
that takes (M, w) as input and produces as output a TM M' such that

L(M') =
0 ifM does not accept w,

ifM accepts w.

Note that is not recursive, so M' accepts a recursive language if and only ifM
does not accept w. The plan ofM' is shown in Fig. 8.8. As in the previous example,

we have described the output of A. We leave the construction of A to the reader.

> Yes

Fig. 8.8 The TM M'.

Given A and Mr we could construct a TM accepting L u , shown in Fig. 8.9,

which behaves as follows. On input <M, w) the TM uses A to produce M\ uses

Mr to determine if the set accepted by M' is recursive, and accepts if and only if

L(M') is recursive. But L(M') is recursive if and only if L(M') = 0, which means

M does not accept w. Thus the TM of Fig. 8.9 accepts (M, w) if and only if

<M, w> is in Lu,

Now let us turn to L nr . Suppose we have a TM Mnr accepting Lnr . Then we may
use Mnr and an algorithm B, to be constructed by the reader, to accept B takes

(M, w) as input and produces as output a TM M' such that

Z* ifM accepts w,

L>, ifM does not accept w.
L(M') =

>Yes

Fig. 8.9 Hypothetical TM for L,
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tYes

<M, w>

(a) (b)

Fig. 8.10 Constructions used in proof that L nr is not r.e. (a) M'. (b) TM for L u .

>Yes

Thus M' accepts a recursive language ifand only ifM accepts w. Af ', which B must

produce, is shown in Fig. 8.10(a), and a TM to accept L u given B and Mnr , is shown

in Fig. 8.10(b). The TM of Fig. 8.10(b) accepts <M, w> if and only if L(M') is not

recursive, or equivalently, if and only if M does not accept w. That is, the TM
accepts (M, w) if and only if (M, w) is in Since we have already shown that

no such TM exists, the assumption that Mnr exists is false. We conclude that is

not r.e.

Rice's Theorem for recursive index sets

The above examples show that we cannot decide if the set accepted by a Turing

machine is empty or recursive. The technique of proof can also be used to show

that we cannot decide if the set accepted is finite, infinite, regular, context free, has

an even number of strings, or satisfies many other predicates. What then can we

decide about the set accepted by a TM? Only the trivial predicates, such as "Does

the TM accept an r.e. set?," which are either true for all TM's or false for all TM's.

In what follows we shall discuss languages that represent properties of r.e.

languages. That is, the languages are sets of TM codes such that membership of

(M) in the language depends only on L(M), not on M itself. Later we shall

consider languages ofTM codes that depend on the TM itself, such as "M has 27

states," which may be satisfied for some but not all of the TM's accepting a given

language.

Let ¥ be a set of r.e. languages, each a subset of (0 + 1)*. ff is said to be a

property of the r.e. languages. A set L has property ¥ if L is an element of For

example, the property of being infinite is {L| L is infinite}. ¥ is a trivial property if

¥ is empty or ¥ consists of all r.e. languages. Let Ly be the set {(M) \L(M) is

in .y
7

}.

Theorem 8.6 (Rice's Theorem) Any nontrivial property ¥ of the r.e. languages is

undecidable.

Proof Without loss of generality assume that 0 is not in ¥ (otherwise consider

¥). Since ff is nontrivial, there exists L with property ¥ . Let M L be a TM
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accepting L. Suppose ¥ were decidable. Then there exists an algorithm My
accepting Ly . We use ML and My to construct an algorithm for as follows.

First construct an algorithm A that takes (M, w> as input and produces (M'> as

output, where L(M') is in Sf if and only ifM accepts w ((M, w) is in JL
tt ).

The design ofM' is shown in Fig. 8.11. First M' ignores its input and simulates

M on w. IfM does not accept w, then M' does not accept x. IfM accepts w, then M'
simulates ML on x, accepting x if and only ifML accepts x. ThusM' either accepts

0 or L depending on whether M accepts w.

Yes Start

M,

Yes

M'

->Yes

Fig. 8.11 M' used in Rice's theorem.

We may use the hypothetical My to determine if L(M') is in Sf. Since L(M') is

in ^ if and only if (M, w) is in Z^, we have an algorithm for recognizing L^, a

contradiction. Thus Sf must be undecidable. Note how this proof generalizes

Example 8.2.

Theorem 8.6 has a great variety of consequences, some of which are sum-

marized in the following corollary.

Corollary The following properties of r.e. sets are not decidable:

a) emptiness,

b) finiteness,

c) regularity,

d) context-freedom.

Rice's Theorem for recursively enumerable index sets

The condition under which a set Ly is r.e. is far more complicated. We shall show
that Ly, is r.e. if and only if <f satisfies the following three conditions.

1) If L is in and L c E , for some r.e. L , then L is in 5? (the containment

property).

2) If L is an infinite language in £?, then there is a finite subset of L in y

.

3) The set of finite languages in 9* is enumerable, in the sense that there is a

Turing machine that generates the (possibly) infinite string

code
1
#code 2# .. ., where code, is a code for the ith finite language in $f (in
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any order). The code for the finite language {wu w2 , vv„} is just w l9

w2 ,
...,w„.

We prove this characterization with a series of lemmas.

Lemma 8.2 If $f does not have the containment property, then is not r.e.

Proof We generalize the proof that is not r.e. Let Lx be in Sf, Lx
c L2 , and let

L2 not be in [For the case where <f was the nonrecursive sets, we chose Lx
=

and L2 = (0 + 1)*.] Construct algorithm A that takes as input (M, w) and pro-

duces as output TM M' with the behavior shown in Fig. 8.12, where Mj and M 2

accept Lj and L2 ,
respectively. IfM accepts w, then M 2 is started, and M' accepts

x whenever x is in either Lx
or L2 . IfM does not accept w, thenM 2 never starts, so

M' accepts x if and only if x is in L
x

. As Lj c L 2 ,

L(M') = ^ 2 ifM accepts w
>

|Lj ifM does not accept w.

Thus L(M') is in i/
7

if and only if M does not accept w.

M
Yes Start

A/,

Fig. 8.12 The TM M'.

Yes-

/
Yes

A'/'

Yes

We again leave it to the reader to design the "compiler" A that takes <M, w>

as input and connects them with the fixed Turing machines M
x
and M 2 to con-

struct the M' shown in Fig. 8.12. Having constructed A, we can use a TM My
for Ly to accept L u , as shown in Fig. 8.13. This TM accepts <M, w> if and only

if M' accepts a language in or equivalently, if and only ifM does not accept w.

As such a TM does not exist, we know My cannot exist, so is not r.e.

We now turn to the second property of recursively enumerable index sets.

<M. w>
>Yes

Fig. 8.13 Hypothetical TM to accept Lu .
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Lemma 83 If £f has an infinite language L such that no finite subset of L is in

5^, then Ly is not r.e.

Proof Suppose Ly were r.e. We shall show that Lu would be r.e. as follows.

Let M x be a TM accepting L. Construct algorithm A to take a pair <M, w> as

input and produce as output a TM M' that accepts L if w is not in L(M) and

accepts some finite subset of L otherwise. As shown in Fig. 8.14, M' simulates M
t

on its input x. If M
t
accepts x, then M' simulates M on w for |x| moves. If M

fails to accept w after |x| moves, then M' accepts x. We leave the design of

algorithm A as an exercise.

Start, simulate for |jc| moves

Yes i
t— w M

M'
Not "yes"

after \x\ moves

Yes

Fig. 8.14 Construction of M'.

If w is in L(M), then M accepts w after some number of moves, say j. Then

L(M') = {x
|
x is in L and |x| < j}, which is a finite subset of L. If w is not in

L(M), then L(M') = L. Hence, if M does not accept w, L(M') is in y, and if M
accepts w, L(M'), being a finite subset of L, is not in £f by the hypothesis of the

lemma. An argument that is by now standard proves that if Ly is r.e., so is L u .

Since the latter is not r.e., we conclude the former is not either.

Finally, consider the third property of r.e. index sets.

Lemma 8.4 If L#> is r.e., then the list of binary codes for the finite sets in <f is

enumerable.

Proof We use the pair generator described in Section 7.7. When (z, j) is gen-

erated, we treat i as the binary code of a finite set, assuming 0 is the code for

comma, 10 the code for zero, and 1 1 the code for one. We may in a straightforward

manner construct a TM M (0 (essentially a finite automaton) that accepts exactly

the words in the finite language represented by i. We then simulate the enumer-

ator for for j steps. If it has printed M {i

\ we print the code for the finite set

represented by i, that is, the binary representation of i itself, followed by a de-

limiter symbol #. In any event, after the simulation we return control to the pair

generator, which generates the pair following (i, ;").

Tneorem 8.7 Ly is r.e. if and only if

1) If L is in £f and L c L, for some r.e. L, then L is in 6f.

2) IfL is an infinite set in £f, then there is some finite subset L of L that is in Sf.

3) The set of finite languages in £f is enumerable.
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Proof The "only if" part is Lemmas 8.2, 8.3, and 8.4. For the "if" part, suppose

(1), (2), and (3) hold. We construct a TM M x
that recognizes <M> if and only if

L(M) is in $f as follows. M
l
generates pairs (/, ;) using the pair generator. In

response to M
t
simulates M2 , which is an enumerator of the finite sets in

y, for i steps. We know M2 exists by condition (3). Let L t be the last set com-

pletely printed out by M 2 . [If there is no set completely printed, generate the next

(ij) pair.] Then simulateM for j steps on each word in Lv IfM accepts all words

in Lu then M
t
accepts <M>. If not, M

x
generates the next (i,y)-pair.

We use conditions (1) and (2) to show that L(M
t ) = Ly . Suppose L is in

Ly , and let M be any TM with L(M) = L. By condition (2), there is a finite

L ^ L in Sf (take L = L if L is finite). Let E be generated after i steps of Af2 ,

and let j be the maximum number of steps taken by M to accept a word in L
(if E = 0, let 7= 1). Then when M

t
generates (i, ;), if not sooner, M

x
will

accept <M>.

Conversely, suppose Mj accepts <M>. Then there is some (i, j) such that

within j steps M accepts every word in some finite language L such that M2

generates L within its first i steps. Then L is in y, and L ^ L(M). By condition

(1), L(M) is in ff, so <M> is in L^. We conclude that L(M
X ) = L^.

Theorem 8.7 has a great variety of consequences. We summarize some ofthem

as corollaries and leave others as exercises.

Corollary 1 The following properties of r.e. sets are not r.e.

Proof In each case condition (1) is violated, except for (b), where (2) is violated,

a)

b)

c)

d)

e)

0
g)

and (g), where (3) is violated.

Corollary 2 The following properties of r.e. sets are r.e.

a) L=f=0.

b) L contains at least 10 members.

c) w is in L for some fixed word w.

d) L n L, + 0.
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Problems about Turing machines

Does Theorem 8.6 say that everything about Turing machines is undecidable?

The answer is no. That theorem has to do only with properties of the language

accepted, not properties of the Turing machine itself. For example, the question

"Does a given Turing machine have an even number of states?" is clearly deci-

dable. When dealing with properties of Turing machines themselves, we must use

our ingenuity. We give two examples.

Example 8.4 It is undecidable if a Turing machine with alphabet {0, 1, B) ever

prints three consecutive Fs on its tape. For each Turing machineM
f
we construct

M
f ,
which on blank tape simulates M, on blank tape. However, M

f
uses 01 to

encode a 0 and 10 to encode a 1. If M,'s tape has a 0 in cell M
t
has 01 in cells

2j — 1 and 2j. If M, changes a symbol, M
t
changes the corresponding 1 to 0, then

the paired 0 to 1. One can easily design M
f
so thatM

t
never has three consecutive

Fs on its tape. Now further modify M
f
so that if M, accepts, M

t
prints three

consecutive Ts and halts. Thus M, prints three consecutive Ts if and only if M
f

accepts £. By Theorem 8.6, it is undecidable whether a TM accepts e, since the

predicate is in L" is not trivial. Thus the question of whether an arbitrary

Turing machine ever prints three consecutive Ts is undecidable.

Example 8.5 It is decidable whether a single-tape Turing machine started on

blank tape scans any cell four or more times. If the Turing machine never scans

any cell four or more times, than every crossing sequence (sequence of states in

which the boundary between cells is crossed, assuming states change before the

head moves) is of length at most three. But there is a finite number of distinct

crossing sequences of length three or less. Thus either the Turing machine stays

within a fixed bounded number of tape cells, in which case finite automaton

techniques answer the question, or some crossing sequence repeats. But if some
crossing sequence repeats, then the TM moves right with some easily detectable

pattern, and the question is again decidable.

8.5 UNDECIDABILITY OF
POST'S CORRESPONDENCE PROBLEM

Undecidable problems arise in a variety of areas. In the next three sections we

explore some of the more interesting problems in language theory and develop

techniques for proving particular problems undecidable. We begin with Post's

Correspondence Problem, it being a valuable tool in establishing other problems

to be undecidable.

An instance of Post's Correspondence Problem (PCP) consists of two lists,

A = wu . .
. ,
wk and B = xu . .

. , xk , of strings over some alphabet Z. This instance
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of PCP has a solution if there is any sequence of integers i l9 i2 , . .., *m , with m > 1,

such that

Wfp VV,-
2 ,

Wim
= Xjj, x

t

-

2 ,
x

fm
.

The sequence i l9 . . ., fm is a solution to this instance of PCP.

Example 8.6 Let X = {0, 1}. Let A and B be lists of three strings each, as defined

in Fig. 8.15. In this case PCP has a solution. Let m = 4, i
x
= 2, i2 = 1, i 3 = 1, and

z4 = 3. Then

w2w 1
w

1
w3 = x 2 x 1 x 1

x3 = 101111110.

List /i List B

i w,

1 1 111

2 10111 10

3 10 0

Fig. 8.15 An instance of PCP.

Example 8.7 Let I = {0, 1}. Let A and B be lists of three strings as shown in Fig.

8.16.

List A List B

i Wi Xi

1 10 101

2 011 11

3 101 011

Fig. 8.16 Another PCP instance.

Suppose that this instance of PCP has a solution iu i2 , . .
. ,

im . Clearly, i t
= U

since no string beginning with w2
= 011 can equal a string beginning with

x 2 = 11; no string beginning with vv3 = 101 can equal a string beginning with

x3 = 011.

We write the string from list A above the corresponding string from B. So far

we have

10

101
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The next selection from A must begin with a 1. Thus i2 = 1 or i2 = 3. But

i2 = 1 will not do, since no string beginning with w
t
w

t
= 1010 can equal a string

beginning with x
t
x

t
= 101101. With i2 = 3, we have

10101

101011

Since the string from list B again exceeds the string from list A by the single

symbol 1, a similar argument shows that i3 = i4 = • • • = 3. Thus there is only one

sequence of choices that generates compatible strings, and for this sequence string

B is always one character longer. Thus this instance of PCP has no solution.

A modified version of PCP

We show that PCP is undecidable by showing that if it were decidable, we would

have an algorithm for L^. First, we show that, if PCP were decidable, a modified

version of PCP would also be decidable.

The Modified Post's Correspondence Problem (MPCP) is the following:

Given lists A and B, of k strings each from Z*, say

A = w l9 w2 ,
wk and B = xu x2 ,

x

k ,

does there exist a sequence of integers, i l9 i2 , • K> sucn tnat

wiw^w,., •• w
ir
= x

l
x

il
xi2

•• x
Ir
?

The difference between the MPCP and PCP is that in the MPCP, a solution is

required to start with the first string on each list.

Lemma 8.5 If PCP were decidable, then MPCP would be decidable. That is,

MPCP reduces to PCP.

Proof Let

A = w l9 w2 ,
wk and B = xu x2 , xk

be an instance of the MPCP. We convert this instance ofMPCP to an instance of

PCP that has a solution if and only if our MPCP instance has a solution. If PCP
were decidable, we would then be able to solve the MPCP, proving the lemma.

Let Z be the smallest alphabet containing all the symbols in lists A and By and

let § and $ not be in Z. Let y f
be obtained from w,- by inserting the symbol $ after

each character of w, and let z-
t
be obtained from x

t
by inserting the symbol $ ahead

of each character of x,. Create new words

yo = <bi> zo = z i>
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Let C = y0 , y l9 yk + x
and D = z0 ,

z l9 . .
. , zfc + 1

. For example, the lists C and D
constructed from the lists A and B of Example 8.6 are shown in Fig. 8.17.

MPCP

List A List B

i Wi *i

1 1 111

2 10111 10

3 10 0

List C List D

j yi Zi

0 414 414141

1 H 414141

2 1404141414 4140

3 1404 40

4 $ 4$

Fig. 8.17 Corresponding instances of MPCP and PCP.

In general, the lists C and D represent an instance of PCP. We claim that this

instance of PCP has a solution if and only if the instance ofMPCP represented by

lists A and B has a solution. To see this, note that if 1, i l9 z 2 > . .
. ,

ir is a solution to

MPCP with lists A and B, then

0, iu i2 , zr , k + 1

is a solution to PCP with lists C and D. Likewise, if i l9 i2 , ir is a solution to

PCP with lists C and D, then i
l
= 0 and ir

= k 4- 1, since y0 and z0 are the only

words with the same index that begin with the same symbol, and yk+1 and zfc+1

are the only words with the same index that end with the same symbol. Let j be the

smallest integer such that ij = k 4- 1. Then iu i 2 , . .
. , ij is also a solution, since the

symbol $ occurs only as the last symbol of yk+1 and zfc+1 ,
and, for no /, where

1 </<;', is ie = k 4- 1. Clearly 1, z 2 , «3» • • • , ij- 1 is a solution to MPCP for lists A
and B.

If there is an algorithm to decide PCP, we can construct an algorithm to

decide MPCP by converting any instance of MPCP to PCP as above.

Undecidability of PCP

Theorem 8.8 PCP is undecidable.

Proof With Lemma 8.5, it is sufficient to show that if MPCP were decidable,

then it would be decidable whether a TM accepts a given word. That is, we reduce

to MPCP, which by Lemma 8.5 reduces to PCP. For each M and w we

construct an instance of MPCP that has a solution if and only ifM accepts w. We
do this by constructing an instance ofMPCP that, if it has a solution, has one that

starts with #g0 w^a l qifii^
"' #a

fc gk /?fc
#, where strings between successive #'s

are successive ID's in a computation ofM with input w, and qk is a final state.
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Formally, the pairs of strings forming lists A and B of the instance of MPCP
are given below. Since, except for the first pair, which must be used first, the order

of the pairs is irrelevant to the existence of a solution, the pairs will be given

without indexing numbers. We assume there are no moves from a final state.

The first pair is:

List A List B

# #^0w#

The remaining nairc are omiir»f*H ac finllnwc*givjujj^u da lUiiUWa.

Group I

T ict A T ict R

X AT for each X in T.

# #

Group II. For each q in Q — F, p in Q, and X, Y, and Z in T

List A List 5
qX Yp if%,X) = (p, Y,R)

ZqX pZY if%,X) = (p, Y,L)

Yp# if%B) = (p, Y,R)

Zq# pZY# if%,B) = (p, Y,L)

Group III. For each q in F, and X and Y in F:

List ,4 List £
XqY q

Xq q

qY q

Group IV

List A List B

g# # # for each g in F.

Let us say that (x, y) is a partial solution to MPCP with lists /I and B if x is a

prefix of y, and x and y are the concatenation of corresponding strings of lists A
and B respectively. If xz = y, then call z the remainder of (x, y).

Suppose that from ID q0 w there is a valid sequence of /c more ID's. We claim

that there is a partial solution

(x, y)= (#g0 w#a 1 g 1 ^ 1
# •••

#^0 w#a 1 g 1 ^ 1
# ••• #a^&#).

Moreover, this is the only partial solution whose larger string is as long as \y\.

The above statement is easy to prove by induction k. It is trivial for k = 0,

since the pair (#, #g0 w#) must be chosen first.
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Suppose that the statement is true for some k and that qk is not in F. We can

easily show that it is true for k 4- 1. The remainder of the pair (x, y) is

z = ak qk pk#. The next pairs must be chosen so that their strings from list A form

z. No matter what symbols appear to the right and left of qk , there is at most one

pair in Group II that will enable the partial solution to be continued past qk . This

pair represents, in a natural way, the move of M from ID ock qk Pk * The other

symbols of z force choices from Group I. No other choices will enable z to be

composed of elements in list A.

We can thus obtain a new partial solution, (y, yafc+1 qk+i /?fc+1 #). It is

straightforward to see that otk+l qk+

1

pk+1 is the one ID that M can reach on one

move from ak qk Pk . Also, there is no other partial solution whose length of the

second string equals \yai.k + x qk + 1 fik + 1# |
-

In addition, if qk is in F, it is easy to find pairs from Groups I and III which,

when preceded by the partial solution (x, y) and followed by the pair in Group IV,

provide a solution to MPCP with lists A and B.

Thus if M, started in ID q0 w, reaches an accepting state, the instance of

MPCP with lists A and B has a solution. IfM does not reach an accepting state,

no pairs from groups III or IV may be used. Therefore, there may be partial

solutions, but the string from B must exceed the string from A in length, so no

solution is possible.

We conclude that the instance of MPCP has a solution if and only ifM with

input w halts in an accepting state. Since the above construction can be carried out

for arbitrary M and w, it follows that if there were an algorithm to solve MPCP,
then there would be an algorithm to recognize L^, contradicting Theorem 8.5.

Example 8.8 Let

M = 42, 4 3 }, {0, 1, B}> {0, 1}, 3, qu 5, {q3}\

and let S be defined by:

0) B)

(<?2, 1, R) (<?2, 0, L) (92, 1, L)

<?2 (</3, 0, L) (<J..0,K) (qi, 0, R)

<?3

Let w = 01. We construct an instance of MPCP with lists A and B. The first

pair is # for list A and #^ 1
01# for list B. The remaining pairs are:

Group I

List A List B
0 0

1 1

# #
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Group II

JLlSl A T tot PJLlSl i>

n n
q x

K)
1 ^

1 /7 1

{/2U1tt I

0g 20 <?300

lq20 q3 10l
Oq,

92* 0^2*

from S(q l9 0) = (92, 1,

from (5^!, 1)= (92, 0, L)

from ^(^!, B) = (92, 1, ^)t

from S(q 2 , 0) = (93, 0, L)

from <5(g2 >

from S(q2y

1)
=

B) =
(9., 0, R)

(92, 0, K)

Group III

Group IV

List A List 5
O43O 43

0q3 1 q3

1^0 ^3

I43I ^3

0^3 ^3

1^3 43

<?30 <?3

^1 ?3

List A List £

<?3## #

Note that M accepts input w = 01 by the sequence of ID's:

qfll, lq2 l, \0qu 1<?201, g3 101.

Let us see if there is a solution to the MPCP we have constructed. The first pair

gives a partial solution (#, ftqfilft). Inspection of the pairs indicates that the

only way to get a longer partial solution is to use the pair (qfi, lq 2 ) next. The
resulting partial solution is (#<?i0, #g 1

01#lg2 ). The remainder is now 1#1<?2 -

The next three pairs chosen must be (1, 1), (#, #), and (1, 1). The partial solution

becomes (#g 1
01#l, #g 1

01#lg 2 l*l)- The remainder is now <72 1#1- Continuing

the argument, we see that the only partial solution, the length of whose second

string is 14, is (x, x0q
t
#l), where x = #g 1

01# lq2 l# 1.

Here, we seemingly have a choice, because the next pair used could be (0, 0)

or (0^j#, g201#). In the former case we have (xO, xO^j* 10) as a partial solution.

But this partial solution is a "dead end." No pair can be added to it to make
another partial solution, so, surely, it cannot lead to a solution.

t Since B is never printed, we can omit pairs where B is to the right of the state. Group III pairs also

omit those with B on one or both sides of the state.
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In a similar manner, we continue to be forced by our desire to reach a solution

to choose one particular pair to continue each partial solution. Finally, we reach

the partial solution (y, yl#g3 10), where

y=#q l
01#lq2 l#10q l

#lq20.

Since q3 is a final state, we can now use pairs in Groups I, III, and IV to find a

solution to the instance of MPCP. The choice of pairs is

(1, 1), (#, #), (q3 l, q3 ), (0, 0), (1, 1), (#, #), (q 30, q3 ),

(1, 1), (#, #), (q3 l, q3 )y (#, #), (43##, #).

Thus, the shortest word that can be composed of corresponding strings from lists

A and B, starting with pair 1 is

t^Ol + l^^lO^^l^OW^lOl*^!*^!*^**.

An application of PCP

Post's correspondence problem can be used to show that a wide variety of prob-

lems are undecidable. We give only one application here: the undecidability of

ambiguity for context-free grammars. The reader should consult the exercises at

the end of the chapter for additional applications.

Theorem 8.9 It is undecidable whether an arbitrary CFG is ambiguous.

Proof Let

A = wu w2 ,
w„ and B = xu x 2 ,

xn

be two lists of words over a finite alphabet Z. Let au a 2 , De new symbols.

Let

LA =K wi2
• • • w

im aim aim _ t
ah \

m > 1}

and

LB = {xh xi2 •••xlm alm«Im _ 1
|m> 1}.

Let G be the CFG

({5, s u s2}ju{fll) ...,*„}, p, s%

where P contains the productions S -* SA , S -> SB and for 1 < i < n, SA w, 5^ a
x ,

SA -+Wiah SB -+ XiSB aiy
and S^^x.a,. The grammar G generates the language

LA u LB .

If the instance (A
y
B) of PCP has a solution, say iu i2 , . .

. ,
im , then there is a

word x^Xfj--- x ima im a im _ l

•••
a,-, in that equals the word w

il
w i2

"'

wIm flIm flim _ 1

•••
a,-, in LB . This word has a leftmost derivation beginning S-+Sa>

and another beginning S-+ SB . Hence in this case G is ambiguous.
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Conversely, suppose G is ambiguous. Since the a's dictate the productions

used, it is easy to show that any word derived from SA has only one leftmost

derivation from SA . Similarly, no word derived from SB has more than one left-

most derivation from SB . Thus it must be that some word has leftmost deviations

from both SA and SB . If this word is ya
im aim_ l

•• ah , where y is in Z*, then i l9

i2 , . .
. , im is a solution to PCP.
Thus G is ambiguous if and only if the instance (A, B) of PCP has a solution.

We have thus reduced PCP to the ambiguity problem for CFG's. That is, if there

were an algorithm for the latter problem, we could construct an algorithm for

PCP, which by Theorem 8.8 does not exist. Thus the ambiguity problem for

CFG's is undecidable.

8.6 VALID AND INVALID COMPUTATIONS OF TM'S:

A TOOL FOR PROVING CFL PROBLEMS UNDECIDABLE

While PCP can be reduced easily to most of the known undecidable problems

about CFL's, there is a more direct method that is instructive. We shall in this

section show direct reductions of the membership problem for TM's to various

problems about CFL's. To do so we need to introduce the notions of valid and

invalid Turing machine computations.

A valid computation of a Turing machine M = (Q 9
Z, T, 3, q0 , B, F), for the

purposes of this section, is a string w 1#wf#w3#w4# ••• such that:

1) each vv
f
is an ID of M, a string in T*QT* not ending with B,

2) w
l

is an initial ID, one of the form q0 x for x in Z*,

3) w„ is a final ID, that is, one in r*FT*, and

4
)
w

i hr wI +1 for 1 < i < n.

We assume without loss of generality that Q and T are disjoint, and # is in neither

Q nor T.

The set of invalid computations of a Turing machine is the complement of the

set of valid computations with respect to the alphabet T u Q u {#}.

The notions of valid and invalid computations are useful in proving many
properties of CFL's to be undecidable. The reason is that the set of invalid compu-

tations is a CFL, and the set of valid computations is the intersection of two

CFL's.

Lemma 8.6 The set of valid computations of a Turing machine M is the intersec-

tion of two CFL's, L
x
and L2 , and grammars for these CFL's can be effectively

constructed from M.

Proof Let M = (Q, Z, T, <5, q0 , B, F) be a TM. Both CFL's L
x
and L2 will consist

of strings of the form X!#x 2# • • #xm#. We use L
x
to enforce the condition that

x
i I
—

(
Xi+\)

R
f°r oc*d i and L2 to enforce the condition xf |— xl+ x

for even i. L2

also enforces the condition that X! is an initial ID. That xm is a final ID or its
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reverse is enforced by L x
or L2 depending on whether m is odd or even, respec-

tively. Then L
x
n L2 is the set of valid computations of M.

To begin, let L3 be {y#z* |y z}- *s easv to construct a PDA P to accept

L3 . P reads the input up to the #, checking in its finite control that y is of the

form r*gr* In the process, P places on its stack the ID z such that y \jf z, where

y is the input before the #. That is, when the input to P is a symbol of T, P pushes

that symbol onto the stack. If the input is a state q in Q, P stores q in the finite

control and reads the next input symbol, say X (if the next symbol is #, take X to

be B). If d(q, X) = (p, 7, R\ then P pushes Yp onto the stack. If 5(q, X) =

(p, 7, L), let Z be on top of the stack. Then P replaces Z by pZy (but if the input

last read was #, and Y = B, just replace Z by pZ, or by p if Z is also £). After

reading the #, P compares each input symbol with the top stack symbol. If they

differ, P has no next move and so dies. If they are equal, P pops the top stack

symbol. When the stack is emptied, P accepts.

Now, let L
x
= (L 3 #)*({£} u r*FT*#). By Theorems 5.4 and 6.1, there is an

algorithm to construct a CFG for Lv In a similar way, we can construct a PDA
for L4 = {y

K#z \y \jf z}. The construction of G2 for

l 2 = 40£*#(L4#)*({£} u r*pr*#)

is then easy, and by Theorem 6.1 there is an algorithm to construct a CFG G 2 for

L2 . Now Lj n L2 is the set of valid computations of M. That is, if X!#x 2# •••

#xm# is in Li n L2 , then Lj requires that x
f

(x, + t )

K
for odd i; L2 requires that

x, is initial, and xf (-^ xi+

1

for even i. That the last ID has an accepting state is

enforced by L
x
for m odd and by L2 for m even.

Theorem 8.10 It is undecidable for arbitrary CFG's Gj and G2 whether Ufi\) n
L(G2 ) is empty.

Proo/ By Lemma 8.6 we can construct from M grammars G
x
and G 2 such that

L(G
X ) n L(G2 ) is the set of valid computations of M. If there is an algorithm A to

tell whether the intersection of the languages of two CFG's is empty, we can

construct an algorithm B to tell whether L(M) = 0 for arbitrary TM M. Simply

design B to construct G
x
and G2 from M as in Lemma 8.6, then apply Algorithm A

to tell whether L(G
t ) n L(G2 ) is empty. If the intersection is empty, then there are

no valid computations of M , so L(M) = 0. If the intersection is not empty,

L(M) 0. That is, the problem of emptiness for r.e. sets reduces to the problem

of intersection for CFG's.

Algorithm B cannot exist, however, since L(M) = 0 is undecidable by

Theorem 8.6. Therefore A does not exist, so it is undecidable whether the intersec-

tion of two CFL's is empty.

Although two context-free languages are required to represent the valid com-

putations of a Turing machine, the set of invalid computations is itself a CFL. The

reason is that we no longer need to guarantee simultaneously for each i that
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W; |— wi+1 . We need only guess where an error occurs. That is, we must verify for

one i that w
f |— wf+1 is false.

Lemma 8.7 The set of invalid computations of a Turing machine M = (Q, E, T,

d, q0 , B, F) is a CFL.

Proof If a string w is an invalid computation, then one of the following condi-

tions holds.

1) w is not of the form x 1#x 2# *" #*m#> where each x
£
is an ID of M.

2) x
t

is not initial; that is, x x is not in g0 £*-

3) xm is not final; that is, xm is not in r*FT*.

4) Xi \w (*i+i)
R

is false for some odd i.

5) xf 1-^- x
I + j is false for some even i.

The set of strings satisfying (1), (2), and (3) is regular, and an FA accepting it is

easily constructed. The sets of strings satisfying (4) and (5) are each CFL's. We
prove this contention for (4); a similar argument prevails for (5). A PDA P for (4)

nondeterministically selects some x
f
that is preceded by an even number of #'s

and while reading x, stores on its stack the ID z such that x, |— z, with the right

end of z at the top of the stack. After finding # on the input, P compares z with the

following xi+ 1
. If z xi+ i, then P scans its remaining input and accepts.

The set of invalid computations is the union of two CFL's and a regular set.

By Theorem 6.1 it is a CFL, and a grammar for this language can be constructed

effectively.

Theorem 8.11 It is undecidable for any arbitrary CFG G whether L(G) = £*.

Proof Given an arbitrary TM M, we can effectively construct a CFG G with

terminal alphabet Z, such that L(G) = Z* if and only if L(M) = 0. That is, by

Lemma 8.7 we may construct a CFG G that generates the invalid computations of

M. Thus if for arbitrary G, L(G) = E* were decidable, then we could decide for

arbitrary M whether L(M) = 0, a contradiction.

Other consequences of characterization of computations by CFL's

Many other results follow from Theorem 8.11.

Theorem 8.12 Let G x
and G2 be arbitrary CFG's and R an arbitrary regular set.

The following problems are undecidable.

Proof Fix G2 to be a grammar generating Z*, where £ is the terminal alphabet of

G
t . Then (1) and (2) are equivalent to Ufi x ) = £*. Fix R = Z*, and (3) and (4) are

1) L(G
1 ) = L(G2 ).

3) L(G 1 ) = R.

2) UG 2)^UG l ).

4) R^UGJ.
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equivalent to L(G
t ) = X*. Thus the undecidable problem of whether a CFL is X*

reduces to (1) through (4), and each of these problems is undecidable as well.

Note that by Theorems 5.3 and 5.4, one can convert effectively between

PDA's and CFG's, so Theorems 8.10, 8.11, and 8.12 remain true if CFL's are

represented by PDA's instead of CFG's. Also, the regular set R in Theorem 8.12

can be represented by a DFA, NFA, or regular expression as we choose.

One should observe also that the question L(G) ^ R is decidable. The reason

is that L(G) c R if and only if L(G) n R = 0. But L(G) n R is a CFL, and hence

its emptiness is decidable.

There are some additional properties of context-free languages that we can

show to be undecidable by observing that if a TM has valid computations on an

infinite set of inputs, its set of valid computations is not, in general, a CFL.

However, we first modify each Turing machine M in a trivial way by adding two

extra states whose sole purpose is to ensure that M makes at least two moves in

every computation. This can be done without otherwise modifying the computa-

tion performed by M. The purpose of the modification is to force each valid

computation to contain at least three ID's and thus ensure that the set of valid

computations is a CFL if and only ifM accepts a finite set.

Lemma 8.8 Let M be a Turing machine that makes at least three moves on every

input. The set of valid computations ofM is a CFL if and only if the set accepted

by M is a finite set.

Proof If the set accepted by M is finite, the set of valid computations ofM is

finite and hence a CFL. Assume the set accepted by M is infinite and the set L of

valid computations is a CFL. Since M accepts an infinite set, there exists a valid

computation

where the w,'s are ID's, and
|

w 2 |
is greater than the constant n in Ogden's lemma.

Mark the symbols of w2 as distinguished. Then we can "pump" w2 without pump-

ing both W! and w3 , thus getting an invalid computation that must be in L We
conclude that the valid computations do not form a CFL.

Theorem 8.13 It is undecidable for arbitrary CFG's G
x
and G2 whether

1) L(Gj) is a CFL; 2) LfGj n L(G 2 ) is a CFL.

Proof

1) Given an arbitrary Turing machine M, modify M without changing the set

accepted, so that M makes at least two moves on every input. Construct CFG
G generating the invalid computations. Ulfi) is a CFL if and only ifM accepts

a finite set.

2) Proceed as in (1), but construct CFG's G t
and G 2 such that L(G

X ) n L(G2 )
is

the set of valid computations of M.
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8.7 GREIBACH'S THEOREM

There is a striking similarity among the proofs of undecidability in language

theory. This suggests that there is an analog of Rice's theorem for classes of

languages such as the CFL's, and indeed there is.

Let us focus our attention on a class of languages such as the CFL's, and on

a particular system (such as CFG's or PDA's) for interpreting finite-length strings

as names of languages. Consider a class # of languages with the property that,

given names (e.g., grammars) of languages Lx
and L2 in # and a name (e.g., a finite

automaton) for a regular set R, we can effectively construct names for RLU L t
R,

and Li u L2 . Then we say that the class is effectively closed under concatena-

tion with regular sets and union. Assume furthermore that L = E* is undecidable

for the class as is the case for the CFL's. The next theorem shows that a wide

variety of problems are undecidable for the class

Theorem 8.14 (GreibacKs Theorem) Let ^ be a class of languages that is effec-

tively closed under concatenation with regular sets and union, and for which
"= £*" is undecidable for any sufficiently large fixed £. Let P be any nontrivial

property! that is true for all regular sets and that is preserved under /a, where a

is a single symbol. (That is, if L has the property P, so does L/a = {w
|
wa is in L}.)

Then P is undecidable for

Proof Let L 0 ^ £* be a member of^ for which P(L 0 ) is false where I* is suffici-

ently large so that is undecidable. For any L ^ Z* in # construct

Lj = Lq#E* u £*#L. L
{

is in c
€, since # is effectively closed under concatenation

with regular sets and under union. Now if L = £*, then L
x
= !*#£*, which is a

regular set, and hence P(L t ) is true. If L ^ 2*, then there exists w not in L. Hence

L
1
/#w = L0 . Since P is preserved under quotient with a single symbol, it is

preserved under quotient with the string #w, by induction on |w|. Thus P(L
X )

must be false, or else P(Lo) would be true, contrary to our assumption. Therefore

P(L
t ) is true if and only if L = X*. Thus "= £*" for (€ reduces to property P for ^,

and hence P is undecidable for (£.

Applications of Greibach's theorem

Theorem 8.14 can be used to show, for example, that it is undecidable if the

language generated by a CFG is regular. Note that this question is different from

asking if the language generated is equal to some particular regular set R, as was

asked in Theorem 8.12.

Theorem 8.15 Let G be an arbitrary CFG. It is undecidable whether L(G) is

regular.

Proof The CFL's are effectively closed under concatenation with regular sets and

under union. Let P be the property that L is regular. P is nontrivial for the CFL's,

t Technically, a property is just a subset of (€. We say "L has property Pn or "P(L)" to mean L is a

member of P.
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is true for all the regular sets, and is preserved under quotient with a single symbol

by Theorem 3.6. Note that the regular sets are effectively closed under quotient

with another regular set, although Theorem 3.6 does not claim this (see the

discussion following that theorem). Thus by Theorem 8.14, P is undecidable for

CFL's.
~

Theorem 8.15 allows us to show that a property is undecidable by showing

that the property is preserved under quotient with a single symbol. This latter task

is often relatively easy as, for example, in proving that inherent ambiguity is

undecidable.

Lemma 8.9 Let P be the property that a CFL is not inherently ambiguous. Then

P is preserved under quotient with a single symbol.

Proof Let G = (V, T, P, S) be an unambiguous CFG. Let

Ga = (V u {[A/a]\A is in V}, T, Pa ,
[S/a]),

where Pa contains

1) all productions of P,

2) [A/a] -+ a if A -> aa is in P,

3) [A/a] - a[B/a] if A -+ aBp is in P, and 0±>c.

We claim that L(Ga ) = L(G)/a and that Ga is unambiguous. To see this, first show

by an easy induction that

1) [S/a] ^> a if and only if S ^> oca, and

2) [S/a] ±> a[A/a] if and only if S ±> aA.

That L(G
fl )
= L(G)/a follows immediately. Assume Ga is ambiguous. Then there

must be two leftmost derivations

1) [S/a]^0^>a*>xand

2) [S/a]*>y±>a*>x where P ± y.

But then in G we have two leftmost derivations of the string xa, a contradiction.

Thus Ga must be unambiguous. We conclude that unambiguity is preserved under

quotient with a single symbol.

Theorem 8.16 Inherent ambiguity for CFL's is undecidable.

Proof By Theorem 4.7, P is nontrivial. By Lemma 8.9 it is preserved under

quotient with a single symbol. It is easy to show that P is true for all regular sets.

That is, every regular set has an unambiguous CFG. (The reader may look ahead

to Theorem 9.2 for a construction of an unambiguous CFG from an arbitrary

DFA.) Thus by Theorem 8.14, inherent ambiguity for CFL's is undecidable.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


8.8 | INTRODUCTION TO RECURSIVE FUNCTION THEORY 207

8.8 INTRODUCTION TO RECURSIVE FUNCTION THEORY

We mentioned in Section 7.3 that each Turing machine can be thought of as

computing a function from integers to integers, as well as being a language recog-

nizer. For every Turing machine M and every k, there is a functionf$ (iu f2 , . .
.

,

ik ) that takes k integers as arguments and produces an integer answer or is

undefined for those arguments. IfM started with 0fl10,2l ••• 0ik on its tape halts

with (V on its tape, then we sayf$ (iu . .
. , ik )

= j. IfM does not halt with a tape

consisting of a block of O's with all other cells blank, then f$ (iu ik ) is

undefined. Note that the same Turing machine can be thought of as a language

recognizer, a computer of a function with one argument, a computer of a different

function of two arguments, and so on.

If i is an integer code for a TM M, as described in Section 8.3, and k is

understood, then we shall often write/ in place off%K
Recall that a function computed by a Turing machine is called a (partial)

recursive function. If it happens to be defined for all values of its arguments, then it

is also called a total recursive function.

The constructions on Turing machines given earlier in this chapter and the

previous one can be expressed as total recursive functions of a single variable.

That is, an algorithm A that takes as input the binary code for a TM M and

produces as output the binary code for another TM M' can be viewed as a

function g of one variable. In particular, let i be the integer representing M and ;

be the integer representing M'. Then g(i) = j. Technically, the TM B that com-

putes g is not A, but rather one that converts its unary input to binary, simulates A
and then converts its output to unary.

The 5mn-theorem

Our first theorem, called the Smn-theorem, says that given a partial recursive func-

tion g(x, y) of two variables, there is an algorithm one can use to construct from a

TM for g and a value for x, another TM which with input y computes g(x, y).

Theorem 8.17 Let g(x, y) be a partial recursive function. Then there is a total

recursive function o of one variable, such thatf0(x)(y) = g(x9 y) for all x and y. That

is, if g(x) is treated as the integer representing some TM M„ then f {M }

x(y)
=

9(x
9 y)-

Proof Let M compute g. Let A be a TM that given input x, written in unary,

constructs a TM Mx that when given input v, shifts it right and writes 0*1 to its

left; Mx then returns its head to the left end and simulates M. The output of A is

the unary representation of an integer <MX) that representsMx . Then A computes

a total recursive function <x, and fa(x){y) = g(x, y). In proof, note that for each x,

o(x) is an integer representing Mx above, and for each x, Mx is designed to

produce #(x, y) when given input y. Sincefa{x) is the function computed byMx , the

equality fa(x)(y) = g(x, y) follows.
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The recursion theorem

The second theorem, called the recursion theorem, states that every total recursive

function a mapping indices (integers denoting Turing machines) of partial recur-

sive functions into indices of partial recursive functions has a fixed point x0 such

thatfxo(y) = fa(x0)(y) f°r aH y- ^n other words, if we modify all Turing machines in

some manner, there is always some Turing machine MXQ for which the modified

Turing machine Ma(XQ) computes the same function as the unmodified Turing

machine. At first this sounds impossible, since we can modify each Turing ma-

chine to add 1 to the originally computed function. One is tempted to say that

f(y)+ 1 f(y). But note that iff(y) is everywhere undefined, thenf(y)+ 1 does

equal / (y) for all y.

Theorem 8.18 For any total recursive function a there exists an x0 such that

/*o(*)=/»(*o)(*) for a11 *

Proof For each integer i construct a TM that on input x computes jfj(i) and then

simulates, by means of a universal TM, the/)(f)th TM on x. Let g(i) be index of the

TM so constructed. Thus for all i and x,

/,(.•)(*)=//.(.•)(*)• (8-3)

Observe that g(i) is a total function even if/j(i) is not defined. Let j be an index of

the function ag. That is,; is an integer code for a TM that, given input i, computes

g(i) and then applies a to g(i). Then for x0 = g(j) we have

fxo(x)=fM(x)

=fW)(x) by (8.3)

= L(9u))(
x ) since ^. is the function ag

= f*(X0)(X )-

Thus x0 is a fixed point of the mapping a. That is, TM x0 and TM a(x0 )
compute

the same function.

Applications of the recursion and Smn theorems

Example 8.9 Let M l9
M 2 , ... be any enumeration of all Turing machines. We do

not require that this enumeration be the "standard" one introduced in Section 8.3,

but only that whatever representation is used for a TM, we can by an algorithm

convert from that representation to the 7-tuple notation introduced in Section 7.2,

and vice versa. Then we can use the recursion theorem to show that for some i, M,-

and Mi+l both compute the same function.

Let a(i) be the total recursive function defined as follows. Enumerate TM's

M u M 2 , . . . until one with integer code i as in (8.2) is found. Note that the states of

the TM must be considered in all possible orders to see if i is a code for this TM,
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since in the notation introduced in Section 8.3, the order in which the moves for

the various states is written affects the code. Having found that M
j
has code i,

enumerate one more TM, Mj+l , and let be the code for Mi+1 . Then the

recursion theorem applied to this a says there is some x0 for which Mxo and

MXQ+l define the same function of one variable.

Example 8.10 Given a formal system F, such as set theory, we can exhibit a

Turing machine M such that there is no proof in F that M started on any

particular input halts, and no proof that it does not halt. Construct M, a TM
computing a two-input function g(i, j), such that

M enumerates proofs in F in some order, printing 1 if a proof that the ith TM does

not halt on input j is found. Further, we may construct M so that if g(U j) = 1, then

M halts, and M does not halt otherwise. By the Smn-theorem there exists a such

that

fad)(j) = 9(iJ)-

By the recursion theorem, we may effectively construct an integer i0 such that

fioU)=L(io)U) = G(hJ)-

But g{i0J) = 1, and is therefore defined, if and only if there is a proof in F thaifio(j)

is undefined. Thus if F is consistent (i.e., there cannot be proofs of a statement and

its negation), there can be no proof in F that the i0 th TM either halts or does not

halt on any particular input j.

8.9 ORACLE COMPUTATIONS

One is tempted to ask what would happen if the emptiness problem, or some other

undecidable problem, were decidable? Could we then compute everything? To
answer the question we must be careful. If we start out by assuming that the

emptiness problem is decidable, we have a contradictory set of assumptions and

may conclude anything. We avoid this problem by defining a Turing machine with

oracle.

Let A be a language, y4gI*.A Turing machine with oracle A is a single-tape

Turing machine with three special states q h qy , and qn . The state q., is used to ask

whether a string is in the set A. When the Turing machine enters state q., it

requests an answer to the question: "Is the string of nonblank symbols to the right

of the tape head in AT The answer is supplied by having the state of the Turing

1 if there is a proof in F that ft (j) is

not defined; that is, there is a proof

that the ith TM does not halt when given input j;

undefined otherwise.
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machine change on the next move to one of the two states qy or qn ,
depending on

whether the answer is yes or no.f The computation continues normally until the

next time q-> is entered, when the "oracle" answers another question.

Observe that if A is a recursive set, then the oracle can be simulated by

another Turing machine, and the set accepted by the TM with oracle A is recur-

sively enumerable. On the other hand, if A is not a recursive set and an oracle is

available to supply the correct answer, then the TM with oracle A may accept a set

that is not recursively enumerable. We denote the Turing machine M with oracle

A by MA
. A set L is recursively enumerable with respect to AifL= L(MA

) for some
TM M. A set L is recursive with respect to A if L = L(MA

) for some TM MA
that

always halts. Two oracle sets are equivalent if each is recursive in the other.

A hierarchy of undecidable problems

We can now rephrase the question at the beginning of the section as "What sets

can be recognized given an oracle for the emptiness problem?" Clearly not all sets

can be r.e. with respect to the emptiness problem, since there is an uncountable

number of sets and only a countable number of TM's. Consider the oracle set

S x
= {(M)\L(M) = 0}, which is not an r.e. set (recall that (M> is the binary

code for TM M). Now consider TM's with oracle Sv These machines have a

halting problem that is not recursive in Sj. By defining an oracle for the emptiness

problems for TM's with oracle S,, and so on, we can develop an infinite hierarchy

of undecidable problems. More specifically, define

Si+l = {(M)\Ls>(M) = 0}.

Si+ ! is an oracle for solving the emptiness problem for computations with respect

to 5,. We can now classify some undecidable problems (but not all such problems)

by showing their equivalence to a set S, for some particular i.

Theorem 8.19 The membership problem for TM's without oracles is equivalent

to S t
.

Proof Construct MSi
that, given (M, w) on its input, constructs the code for a

TM M' that accepts 0 if w is not in L(M) and accepts (0 + 1)* otherwise. The

construction of M' was given in Example 8.2. MSl then enters state q , with the

code for M' to the right of its head and accepts if and only if qn is entered. Thus

the membership problem for TM's without oracle is recursive in S t
.

Conversely, we can show there is a Turing machine with the membership

problem as oracle, that recognizes Sv (Strictly speaking, the oracle is L^.) To show

S x
is recursive in L^, construct a TM M 2 that, given (M>, constructs a new TM M'

operating as follows: M' ignores its input; instead, M ' uses the pair generator to

generate all pairs (/, When (i, j) is generated, M' simulates M for i steps on the

t Note that the TM can remember its prior state by writing that state on its tape just before

entering q >.
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yth input word to Af , words being numbered in the usual ordering. If Af accepts,

M' accepts its own input. If L(Af ) = 0, then L(M') = 0. If L(Af ) + 0, then Af'

accepts all its own inputs, e in particular. Thus M 2
" may query its oracle whether

Af' accepts £, that is, whether (Af, e) is in Z^. If so, Af2 rejects M. Otherwise Af 2

accepts M. Thus 5 t
is recursive in L^.

Next consider the problem whether L(M) = Z*, where £ is the input alphabet

for TM Af . In a sense, this problem is "harder" than membership or emptiness,

because, as we shall see, the "= £*" problem is equivalent to S2 , while emptiness

and membership are equivalent to S
x

. While this difference means nothing in

practical terms since all these problems are undecidable, the results on compara-

tive degree of difficulty suggest that when we consider restricted versions of the

problems, the " = £*" problem really is harder than membership or emptiness. For

context-free grammars, the emptiness and membership problems are decidable,

while by Theorem 8.11 the problem whether L(G) = E* is undecidable. For

another example, consider regular expressions. The emptiness and membership

problems are each decidable efficiently, in time polynomial in the length of the

expression, while the problem whether a given regular expression r is equivalent to

I* has been proved almost certainly to require time exponential in the length

ofr.t

Theorem 8.20 The problem whether L(M) = Z* is equivalent to S2 .

Proof We construct a TM M% 2 that takes an arbitrary TM M and constructs

from it Ms
\ a TM with oracle S

t
that behaves as follows. MSl enumerates words

x, and for each x uses oracle S
x
to tell whether M accepts x. The technique

whereby S
x
can be used to answer the membership question was covered in

Theorem 8.19. MSy
accepts its own input if any x is not accepted by M. Thus

|Z* otherwise.

Ml 2 with input M constructs Ms
\% then asks its own oracle, 5 2 , whether

L(MSl
) = 0. If so, M\ 2 accepts Af, and M\ 2 rejects otherwise. Thus M% 2 accepts

{<M>|L(M) = Z*}.

Now we must show that S2 is recursive in the "= £*" problem. That is, let

be the set of codes for ordinary Turing machines that accept all strings over their

input alphabet. Then there is a TM Mj* that accepts S 2 .

Before constructing Mi*, we first define a valid computation of a TM Af
s 1

using oracle Sv A valid computation is a sequence of ID's, just as for ordinary

Turing machines. However, if one ID has state q,, and the next ID has state qn ,

then MSl has queried the oracle whether some TM N accepts 0 and received the

t Technically, the problem is "complete in polynomial space"; see Chapter 13.

t Note that 5
X

is not part of M. Actually M\ z constructs the state transitions of oracle machine M,

which will work correctly given S
t
as oracle.
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answer "no." To demonstrate that this answer is correct, we insert a valid compu-

tation of ordinary TM N, showing that N accepts some particular input. If the

next state is qy ,
however, we insert no computation of N.

Now, let us describe how M4* behaves on input MSl
. Mj* creates an ordinary

TM M' that accepts all the invalid computations ofMSl
. To check that a string is

not a valid computation, M' checks if the format is invalid (as in Lemma 8.7), or if

one ID ofMSx does not follow on one move from the previous ID ofMSl
in the

sequence, or if a computation of an ordinary TM N inserted between ID's ofMSl

with states q., and qn is not valid.

The only difficult part to check is when one ID ofMSx has state q>, and the

next ID has state qr Then M' must determine if "yes" is not the correct answer, so

these two ID's do not follow in sequence. Let N be the TM about which the query

is made. M' uses the pair generator and, when (i, j) is generated, simulates N for i

steps on the ;th input. IfN accepts, M' determines that L(N) ± 0> so "yes" is the

wrong answer. Thus the computation is not a valid one, and M' accepts this

computation.

Now M' accepts all strings over its input alphabet if and only ifL(MSl
) = 0,

that is, MSl has no valid computations. Mj* may query its oracle whether M'
accepts Z*. The code for MSl

is in S2 if and only if L(M') = Z*. Thus S2 is

recursive in L^.

Turing reducibility

We have, throughout this chapter, dealt with a notion called "reducibility," in

which we reduced language L
l
to L2 by finding an algorithm that mapped strings

in L
Y
to strings in L2 and strings not in L

1
to strings not in L2 . This notion of

reducibility is often called many-one reducibility, and while it was all we needed, it

is not the most general notion. A more general technique is called Turing reducibil-

ity, and consists simply of showing that L x
is recursive in L 2 .

If Lj is many-one reducible to L2 , then surely L, is Turing-reducible to L2 . In

proof, suppose / is a function computable by a TM that always halts, such that

f(x) is in L2 if and only if x is in L,. Then consider the oracle TM M 7 2 that, given

input x, computes f(x) and then enters state q, with f(x) to the right of its head.

M Ll accepts if and only if it then enters qy . Surely L(M l 2
) = L l9 so L

x
Turing-

reduces to L2 . The converse is false, and a proof is suggested in the exercises.

If Lj Turing-reduces to L2 , and L x
is undecidable, then so is L2 . For ifL2 were

recursive, then the oracle TM M Ll such that L(ML2
)
= can be simulated by an

ordinary TM that always halts. Thus one could use a Turing reduction to show

that L2 is undecidable, given that Lj was undecidable, even in circumstances

where a many-one reduction of L
x
to L2 did not exist, or was hard to find.

The notion of many-one reducibility has its virtues, however. If L y
is many-

one reducible to L2 , and L
x

is not r.e., we can conclude L2 is not r.e. Yet this
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conclusion cannot be drawn for Turing reducibility. For example, Z^is a non-r.e.

language that Turing-reduces to the r.e. language LM . We can recognize L M given LM

as an oracle, by asking whether (M, w) is in and accepting if and only if the

answer is no.

We see that the more difficult form of reducibility (many-one) enables us to

draw conclusions we cannot draw with the easier form of reducibility (Turing). In

Chapter 13, where we study bounded reducibility, we shall see additional

examples of how more difficult forms of reductions yield conclusions not achiev-

able by easier forms.

EXERCISES

8.1 Suppose the tape alphabets of all Turing machines are selected from some infinite set

of symbols au a2 , ... Show how each TM may be encoded as a binary string.

8.2 Which of the following properties of r.e. sets are themselves r.e.?

a) L contains at least two strings.

b) L is infinite.

c) L is a context-free language.

d) L = L*.

S 8.3 Show that it is undecidable whether a TM halts on all inputs.

8.4 A Post Tag System is a finite set P of pairs (a, p) chosen from some finite alphabet,

and a start string y. We say that <xS => Sp if (a, p) is a pair. Define ^> to be the reflexive,

transitive closure of =>, as for grammars. Show that for given tag system (P, y) and string <5

it is undecidable whether y^>3. [Hint: For each TM M let y be the initial ID ofM with

blank tape, followed by a marker #, and select the pairs so that any ID must become the

next ID after a sequence of applications of the rules, unless that ID has an accepting state,

in which case the ID can eventually become i. Then ask if y ^> e.]

8.5 Show that there is no algorithm which given a TM M defining a partial recursive

function / of one variable, produces a TM M' that defines a different function of one

variable.

**8.6 For ordinary Turing machines M, show that

a) the problem of determining whether L(M) is finite is equivalent to S2 \

b) the problem of determining whether L(M) is a regular set is equivalent to S3 .

8.7 Show that the following problems about programs in a real programming language

are undecidable.

a) Whether a given program can loop forever on some input.

b) Whether a given program ever produces an output.

c) Whether two programs produce the same output on all inputs.

8.8 Use Theorem 8.14 to show that the following properties of CFL's are undecidable.

a) L is a linear language.

b) I is a CFL.
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*S 8.9 Show that Theorem 8.14 applies to the linear languages. [Hint: Consult Theorem 9.2

for a proof that every regular set has a linear grammar. The hard part is showing that
"= E*," is undecidable for linear languages.

* 8.10 Show that the following properties of linear languages are undecidable. You may use

the fact that every regular set is a linear language.

a) L is a regular set.

b) L is a linear language.

c) L is a CFL.

d) L has no unambiguous linear CFG.

*8.11 Show that for CFL L, it is undecidable whether L = L*.

*8.12

a) Show that if L x many-one reduces to L2 , and L2 is (i) recursive in L3 or (ii) r.e. in L3 ,

then L x is recursive or r.e. in L3 ,
respectively.

b) Show that L u Turing-reduces to S t
.

c) Show that L u does not many-one reduce to Sv [Hint: Use part (a).]

8.13 We say that L x "truth-table" reduces to L2 if:

1) There are k algorithms mapping any string x over the alphabet of L x to strings over the

alphabet L2 . Let g^x) be the result of applying the ith algorithm to x.

2) There is a Boolean function

/

(y ly . .
. , yk ) such that if y, is true when #,(x) is in L2 , and yf

is false otherwise, then f(y x , y*) is true if and only if* is in L x
.

For example, let L x
be the set of strings with equal numbers of 0's and l's, and let L2 be the

set of strings with no fewer 0's than l's. Let g x
(x) = x and # 2 (x) be formed from x by

replacing 0's by l's and vice versa. Letf(yu y 2 ) = y i
a y 2 . Then

/

[yu y2 ) is true if and only

if #i(x) and g 2(x) both have no fewer 0's than l's; that is, x has an equal number of 0's and

l's. Thus L x
truth-table reduces to L2 .

a) Show that if L
x
truth-table reduces to L2 , then L x

Turing-reduces to L2 .

b) Show that if L x many-one reduces to L2 , then L x
truth-table reduces to L2 .

c) Show that Lu truth-table reduces to S x
.

8.14 Consider a multitape TM with oracle which, when it queries its oracle, refers to the

entire contents of a designated tape, say the last. Show that this model is equivalent to the

oracle TM as defined in Section 8.9.

8.15 Show that PCP is decidable for words over a one-symbol alphabet.

8.16 Show that PCP is equivalent to S,.

*8.17 Show that PCP is undecidable if strings are restricted to have length one or two.

What if strings are restricted to have length exactly two?

*8.18 Let o be a total recursive function mapping indices of partial recursive functions to

indices of partial recursive functions. Give an algorithm to enumerate an infinite set of fixed

points of a; that is, infinitely many fs such that/(y) =fa{i)(y) for all y.

*8.19 Does there exist an effective enumeration of Turing machines M U M 2 , ... such that

no three consecutive TM's compute the same function?
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Solutions to Selected Exercises

8.3 Let M = (£), Z, T, S, q0y By F) be a TM. We construct another TM M\ such that M'
halts on x if and only ifM accepts x. We shall thus have shown that the question whether a

TM halts on all inputs reduces to the question whether a TM accepts all inputs, which we
know is undecidable. Incidentally, we shall also show by this construction that a question

such as "Does a TM halt on a given input ?" or "Does a TM halt on some input?" is also

undecidable.

M' is designed to behave as follows. First, it shifts its input one position right, placing a

left end marker $ on the leftmost cell. M' then simulates M. If 5(qy X) is undefined, and

either (i) q is nonaccepting and X is any symbol in Tu {$} [note that S(qy $) is surely

undefined], or (ii) q is accepting and X is $, then M' scanning X in state q moves right and

enters state p x
. In state pu scanning any symbol, M' moves left and enters state p 2 , in that

state, M' moves right and enters p x again. Thus M' loops forever if M either halts in a

nonaccepting state or falls off the left end of the tape in any state. IfM enters an accepting

state, not scanning $, then M' halts. Thus M' halts if and only if M accepts its input, as

desired.

8.9 We must first show that the linear languages are closed under union and concatena-

tion with regular sets. We look ahead to Theorem 9.2 for a proof that every regular set is

generated by CFG all of whose productions are of the forms A -» Bw and A -+ w for

nonterminals A and B and string of terminals w. Any such grammar is surely linear. The

proof that linear languages are closed under union is just like Theorem 6.1. For concatena-

tion with a regular set, let G
t
= (Vu Tiy P ly S t ) be a linear grammar and G 2 = (V^ T2y Pi,

S 2 ) be a grammar with all productions of the forms A -+ Bw and A -> w. Assume Vx and V2
are disjoint. Let

G = (Vt u V2y T, u T2 , P, S 2 ),

where P consists of

i) all productions A -> Bw of P 2l

ii) production A -> S, w whenever A -> w is a production of P 2 > and

iii) all productions of P
{

.

Then L(G) is easily seen to be L(Gi)L(G 2 )y
since all derivations in G are of the form

S 2 Si x => yx, where S 2 =>x and => y. Since regular sets and linear languages are closed

under reversal, concatenation on the left by a regular set follows similarly.

Now we must show that " = £*" is undecidable for linear languages. The proof closely

parallels Lemma 8.7 and Theorem 8.11, the analogous results for general CFG's. The

important difference is that we must redefine the form of valid computations so the set of

invalid computations is a linear CFG. Let us define a valid computation ofTM M to be a

string

w^w 2^ •• #wn _ 1
#wn##w;#wj_ 1

# ••• #wf#wf, (8.4)

where each w, is an ID, w, wi+ {
for 1 < / < n, w x is an initial ID and w„ is a final ID.

Then it is not hard to construct a linear grammar for strings not of the form (8.4), parallel-

ing the ideas of Lemma 8.7. Then the analog of Theorem 8.11 shows that " = E*" is

undecidable for linear grammars.
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CHAPTER

9
THE CHOMSKY HIERARCHY

Of the three major classes of languages we have studied—the regular sets, the

context-free languages, and the recursively enumerable languages—we have gram-

matically characterized only the CFL's. In this chapter we shall give grammatical

definitions of the regular sets and the r.e. languages. We shall also introduce a new
class of languages, lying between the CFL's and the r.e. languages, giving both

machine and grammatical characterizations for this new class. The four classes of

languages are often called the Chomsky hierarchy, after Noam Chomsky, who
defined these classes as potential models of natural languages.

9.1 REGULAR GRAMMARS

If all productions of a CFG are of the form A -> wB or A -> w, where A and B are

variables and w is a (possibly empty) string of terminals, then we say the grammar
is right-linear. If all productions are of the form A -> Bw or A -> w, we call it

left-linear. A right- or left-linear grammar is called a regular grammar.

Example 9.1 The language 0(10)* is generated by the right-linear grammar

S-+0A
(9.1)

A->10A\(

and by the left-linear grammar

5->510|0 (9.2)

217

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


218 THE CHOMSKY HIERARCHY

Equivalence of regular grammars and finite automata

The regular grammars characterize the regular sets, in the sense that a language is

regular if and only if it has a left-linear grammar and if and only if it has a

right-linear grammar. These results are proved in the next two theorems.

Theorem 9.1 If L has a regular grammar, then L is a regular set.

Proof First, suppose L = Ufi) for some right-linear grammar G = (K, T, P, S).

We construct an NFA with 6-moves,M = (£), T, S, [S], {[c]}) that simulates deriva-

tions in G.

Q consists of the symbols [a] such that a is S or a (not necessarily proper)

suffix of some right-hand side of a production in P.

We define 3 by:

1) If A is a variable, then S([A], e) = {[a]
|
A -> a is a production}.

2) If a is in T and a in T* u T*K, then <5([aa], a) = {[a]}.

Then an easy induction on the length of a derivation or move sequence shows

that <5([S], w) contains [a] if and only if 5 ^> xA => x_ya, where A -*> ya. is a produc-

tion and xy = w, or if a = S and w = 6. As [e] is the unique final state, M accepts

w if and only if 5 ^> xA => w. But since every derivation of a terminal string has at

least one step, we see that M accepts w if and only if G generates w. Hence every

right-linear grammar generates a regular set.

Now let G = (V, T, P, 5) be a left-linear grammar. Let G' = (V, 7, F, 5),

where P' consists of the productions of G with right sides reversed, that is,

F = {A -> a
|
A a

K
is in P}.

If we reverse the productions of a left-linear grammar we get a right-linear gram-

mar, and vice versa. Thus G' is a right-linear grammar, and it is easy to show that

Ufi') = I-(G)
R

. By the preceding paragraph, Ufi') is a regular set. But the regular

sets are closed under reversal (Exercise 3.4g), so Ufi')
R = Ufi) is also a regular set.

Thus every right- or left-linear grammar defines a regular set.

Example 9.2 The NFA constructed by Theorem 9.1 from grammar (9.1) is

shown in Fig. 9.1.

Fig. 9.1 NFA accepting 0(10)*.
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Now consider grammar (9.2). If we reverse its productions we get

S-01S|0

The construction of Theorem 9.1 for this grammar yields the NFA of Fig. 9.2(a). If

we reverse the edges of that NFA and exchange initial and final states, we get

another NFA for 0(10)*.

l

(b)

Fig. 9.2 Construction of an NFA for 0(10)* from a left-linear grammar.

Theorem 9.2 IfL is a regular set, then L is generated by some left-linear grammar
and by some right-linear grammar.

Proof Let L = L(M) for DFA M = (Q, E, 3, q0 ,
F). Fin^sjuppose that qQ is not a

final state. Then L = L(G) for right-linear grammar G = (Q, Z, P, q0 ), where P
consists of production p-+ aq whenever <5(p, a) = q and also p -> a whenever

<5(p, a) is a final state. Then clearly <5(p, w) = q if and only if p ^> wq. If wa is

accepted by M, let S(q0 ,
w) = p, implying q0 =*> wp. Also, <5(p, a) is final, so p - a is

a production. Thus q0 ^> wa. Conversely, let q0 ^> x. Then x = wa, and

% ^>wp=>wa for some state (variable) p. Then S(q0y w) = p, and <5(p, a) is final.

Thus x is in L(M). Hence L(M) = L(G) = L.

Now let g0 be in F, so £ is in L. We note that the grammar G defined above

generates L — {e}. We may modify G by adding a new start symbol 5 with produc-

tions 5 - q0 |
e. The resulting grammar is still right-linear and generates L.

To produce a left-linear grammar for L, start with an NFA for LK and then

reverse the right sides of all productions of the resulting right-linear grammar.
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Example 9.3 In Fig. 9.3 we see a DFA for 0(10)*.

The right-linear grammar from this DFA is

A-+0B\W\0

B-0D|1C

C->0£|1D|0

D-0D|1D

As D is useless we may eliminate it, obtaining grammar

>4->0B|0

B -» 1C

C->0£|0

o, 1

Fig. 9.3 DFA for 0(10)*.

9.2 UNRESTRICTED GRAMMARS

The largest family of grammars in the Chomsky hierarchy permits productions of

the form a -> /?, where a and ft are arbitrary strings of grammar symbols, with

a # c. These grammars are known as semi-Thue, type 0, phrase structure or unre-

stricted grammars. We shall continue to use the 4-tuple notation G = (K, 7, P, S)

for unrestricted grammars. We say ycxS => yfid whenever a - ft is a production. As

before, stands for the reflexive and transitive closure of the relation =>:

L(G) = {w|w is in T* and S^>w},

exactly as for context-free grammars.

Example 9.4 A grammar generating {a
1

1
ns a positive power of 2} is given below.

\)S-+ACaB 5)aD->Da

2) Ca -> aaC 6) AD -> ,4C

3) CB-+DB 7) a£->£a

4) C£-*£ 8) AE-+e
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A and B serve as left and right endmarkers for sentential forms; C is a marker that

moves through the string of a's between A and B, doubling their number by

production (2). When C hits the right endmarker B, it becomes a D or E by

production (3) or (4). If a D is chosen, that D migrates left by production (5) until

the left endmarker A is reached. At that point the D becomes a C again

by production (6), and the process starts over. If an E is chosen, the right endmar-

ker is consumed. The E migrates left by production (7) and consumes the left

endmarker, leaving a string ofT as for some i > 0. We can prove by induction on

the number of steps in the derivation that if production (4) is never used, then any

sentential form is either

i) S,

ii) of the form Aa lCa}B, where i + 2j is a positive power of 2, or

iii) of the form Aa lDajB, where i + j is a positive power of 2.

When we use production (4) we are left with a sentential form AdE, where i is a

positive power of 2. Then the only possible steps in a derivation are i applications

of (7) to yield AEd followed by one application of (8), producing sentence a\

where i is a positive power of 2.

Equivalence of type 0 grammars and Turing machines

We shall prove in the next two theorems that unrestricted grammars characterize

N the r.e. languages. The first theorem states that every type-0 language generates an

r.e. set. An easy proof would be to give an algorithm for enumerating all strings

generated by a type-0 grammar. Instead we construct a Turing machine recog-

nizer for sentences generated by a type-0 grammar, since this construction will be

useful later for a similar proof about context-sensitive grammars (the remaining

class in the Chomsky hierarchy).

Theorem 9.3 If L is L(G) for unrestricted grammar G = (V, T, P, S), then L is an

r.e. language.

Proof Let us construct a nondeterministic two-tape Turing machineM to recog-

nize L. M's first tape is the input, on which a string w will be placed. The second

tape is used to hold a sentential form a of G. M initializes a to S. Then M
repeatedly does the following:

1) Nondeterministically select a position i in a, so that any i between 1 and |a
|

can be chosen. That is, start at the left, and repeatedly choose to move right or

select the present position.

2) Nondeterministically select a production ft
-» y of G.

3) If p appears beginning in position i of a, replace P by y there, using the

"shifting-over" technique of Section 7.4, perhaps shifting left if \y\ < \P\.
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4) Compare the resulting sentential form with w on tape 1. If they match, accept;

w is a sentence of G. If not, go back to Step (1).

It is easy to show that all and only the sentential forms of G appear on tape 2

when Step (4) is executed after some sequence of choices. Thus L(M) = Ufi) = L,

so L is r.e.

Theorem 9.4 If L is an r.e. language, then L = L(G) for some unrestricted gram-

mar G.

Proof Let L be accepted by Turing machineM = (Q, Z, T, 5, q0 , B, F). Construct

a grammar G that "nondeterministically" generates two copies of a representation

of some word in Z* and then simulates the action ofM on one copy. IfM accepts

the word, then G converts the second copy to a terminal string. If M does not

accept, the derivation never results in a terminal string.

Formally, let

G = (K, Z, P, A
x \ where K=((Eu {e}) x T) u {A l9 A 2 ,

A 3 }

and the productions in P are:

1) A
l
-+q0 A 2

2) A 2
-* [a, a]A 2 for each a in Z.

3) A 2 -+A 3

4) /t 3 -+[e, B]/l 3

5) A 3 -+c

6) X] -> [a, y]p for each ainZ u {e} and each <j in Q and X and y in T, such

that <5fo, X) = (p, y, K).

7) [fe, Z]g[a, X] -> p[>, Z][a, y] for each X, Y, and Z in T, a and ftinZu {t},

and g in g, such that S(q, X) = (p, y, L).

8) [a, X]^f - qaq, q[a, X] -> qaq, and q -> £ for each ainlu {£}, X in T, and g

in F.

Using rules 1 and 2, we have

where a
x
is in Z for each i. Suppose that M accepts the string a 1 a 2

• • • a„. Then for

some m, M uses no more than m cells to the right of its input. Using rule 3, then

rule 4 m times, and finally rule 5, we have

*x *>q0[ai, flj[a 2 .
flj k, B]

m
.

From this point on, only rules 6 and 7 can be used until an accepting state is

generated. Note that the first components of variables in (Z u {e}) x T are never

changed. We can show by induction on the number of moves made by M that if

<7ofli <*2 an \w x \
x 2

"' Xr-iqXr
••• Xs ,

(9.3)
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then

qo[a l9 a x][a2 ,
a2] ••• [an ,

an][e, £f§>

[au X x][a2 ,
X2]

• • • [ar_ l9 Xr_J^, XJ • • • [an+m ,
Xn+m], (9.4)

where au a2 , a„ are in E, an+1 = an+2 = ••• = 0n+m = e, X u X 2 ,
Xn + m

are in T, and Xs+1 = Xs+2 = ••• = Xn+m = B.

The inductive hypothesis is trivially true for zero moves, since r = 1 and s = n.

Suppose it is true for k — 1 moves and let

30*1*2 " 'an \^-X 1
X2 -Xr. 1

qXr
- X, T 7t 72 - * ^

By the inductive hypothesis,

*o[«i. «i] * ' K BJ"§>K ••• [ar- u Xr^]q[ari Xr]
~ [an+m ,

Xn+m],

where the a's and X's satisfy the conditions of (9.4).

If t = r + 1, then the /cth move ofM is to the right, so 5(q, Xr)
=

(p, Yr ,
R). By

rule (6), q[ari Xr]
-> [ar ,

7r]p is a production of G. Thus

4oK *i] ••*[*„, *n][^B]
m
|>

K yj - k_ l5 y,_ q - k+m ,
yn+m], (9.5)

where Y; = £ for i > u.

If r = r — 1, then the /cth move ofM is to the left, and we prove (9.5) using rule

(7) and the observations that r > 1 and S(qy Xr )
= (p, Yr ,

L).

By rule (8), if p is in F then

[au yj • • [a
t
_ u y.-JpK q ••• [an+m ,

yn+m]^>flifl2 — an .

We have thus shown that if w is in L(M), then /Ij ^> w, so w is in L(G).

For the converse, that w in Jjfi) implies w in L(M), an induction similar to the

above shows that (9.4) implies (9.3). We leave this part as an exercise. Then we
note that there is no way to remove the state of M from sentential forms of G
without using rule (8). Thus G cannot derive a terminal string without simulating

an accepting computation of M. By rule (8), the string derived must be the first

components of the variables in (Z u {e}) x T, which are never changed as moves

ofM are simulated.

9.3 CONTEXT-SENSITIVE LANGUAGES

Suppose we place the restriction on productions a -> ft of a phrase structure

grammar that jS be at least as long as a. Then we call the resulting grammar
context-sensitive and its language a context-sensitive language (CSG and CSL
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respectively). The term "context-sensitive" comes from a normal form for these

grammars, where each production is of the form a 1
Aa2

-> ai/fa2 , with p ^ e.

Productions of the latter form look almost like context-free productions, but they

permit replacement of variable A by string /? only in the "context" a
x
— cc2 . We

leave this normal form as an exercise.

Almost any language one can think of is context-sensitive; the only known
proofs that certain languages are not CSL's are ultimately based on diagonaliza-

tion. These include Lu ofChapter 8 and the languages to which we may reduce L„,

for example, the languages proved undecidable in Chapter 8. We shall prove in

Section 9.4 that there are recursive languages that are non-CSL's, and in Chapter

12 we shall refine this statement somewhat. In both cases the proofs proceed by

diagonalization.

Example 9.5 Consider again the grammar of Example 9.4. There are two pro-

ductions that violate the definition of a context-sensitive grammar. These are

CB-> E and AE -» c. We can create a CSG for the language {a
21

\
i > 1} by realiz-

ing that A, B, C, D, and E are nothing but markers, which eventually disappear.

Instead of using separate symbols for the markers, we can incorporate these

markers into the cis by creating "composite" variables like [CaB], which is a single

symbol appearing in place of the string CaB.

The complete set of composite symbols we need to mimic the grammar of

Example 9.4 is [ACaB], [Aa], [ACa], [ADa], [A Ed], [Co], [Da], [Ea], [aCB], [CaB\

[aDB], [aE], [DaB], and [aB]. The productions of our context-sensitive grammars,

which we group according to the production from Example 9.4 that they mimic,

are:

1 ) S -> [ACaB] 5) a[Da] -> [Da]a

2) [Ca]a->aa[Ca] [aDB]->[DaB]

\ca][aB]^aa[CaB] Mjl^J
[ACa]a-+[Aa]a[Ca] a[DaB] ~^[Da][aB]

[ACa][aB] -> [Aa]a[CaB] [Aa][DaB] -> [ADa][aB]

[ACaB] -> [Aa][aCB] 6) [ADa] -> [ACa]

[CaB] -» a[aCB] 7) a[Ea] -> [Ea]a

3) [aCB] -> [aDB] [aE] -* [Ea]

4) [aCB]->[aE]
[Aa][Ea]->[AEa]a

8) [AEa] -> a

It is straightforward to show that S ^>a in the grammar ofExample 9.4 ifand

only if S ^> a' in the present CSG, where a' is formed from a by grouping with an a

all markers (A through E) appearing between it and the a to its left and also

grouping with the first a any markers to its left and with the last a any markers to

its right. For example, if a = AaaCaB, then a' is [/4fl]a[CaB].
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Linear bounded automata

Now we introduce a machine characterization of the CSL's. A linear bounded

automaton (LBA) is a nondeterministic Turing machine satisfying the following

two conditions.

1) Its input alphabet includes two special symbols ^ and $, the left and right

endmarkers, respectively.

2) The LBA has no moves left from $ or right from $, nor may it print another

symbol over $ or $.

The linear bounded automaton is simply a Turing machine which, instead of

having potentially infinite tape on which to compute, is restricted to the portion of

the tape containing the input x plus the two tape squares holding the endmarkers.

We shall see in Chapter 12 that restricting the Turing machine to an amount
of tape that, on each input, is bounded by some linear function of the length of the

input would result in the identical computational ability as restricting the Turing

machine to the portion of the tape containing the input—hence the name "linear

bounded automaton."

An LBA will be denoted M = (Q, Z, T, 5, q0 , $, F), where Q, Z, T, 5, q0 and F
are as for a nondeterministic TM; § and $ are symbols in Z, the left and right

endmarkers. L(M), the language accepted by M, is

{w
|
w is in (Z — {§, $})* and q0$w$ \jf ccqP for some q in F}.

Note that the endmarkers are on the input tape initially but are not considered

part of the word to be accepted or rejected. Since an LBA cannot move off the

input, there is no need to suppose that there is blank tape to the right of the $.

Equivalence of LBA's and CSG's

We now show that except for the fact that an LBA can accept c while a CSG
cannot generate e, the LBA's accept exactly the CSL's.

Theorem 9.5 If L is a CSL, then L is accepted by some LBA.

Proof The proof is almost the same as that for Theorem 9.3. The only difference

is that while the TM of Theorem 9.3 generated sentential forms of an unrestricted

grammar on a second tape, the LBA uses a second track of its input tape. Pre-

sented with §w$ on its tape, the LBA starts by writing the symbol S on a second

track below the leftmost symbol of w. If w = c, the LBA instead halts without

accepting. Next the LBA repeatedly guesses a production and a position in the

sentential form written on the second track. It applies the production, shifting the

portion of the sentential form to the right whenever the sentential form expands.

If, however, the new sentential form is longer than w, the LBA halts without

acceptance. Thus the LBA will accept w if there is a derivation S ^> w such that no
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intermediate sentential form is longer than w. But since the right side of any

production in a CSG is as long or longer than the left side, there could not be a

derivation S ^> a ^> w, where a is longer than w. Thus the LBA accepts all and only

the words generated by the CSG.

Theorem 9.6 If L = L(M) for LBA M = (Q, Z, T, S, q0 , $, F), then L - {e} is a

CSL.

Proof The proof parallels the construction of an unrestricted grammar from a

TM in Theorem 9.4. The differences are that the endmarkers on the LBA tape

must be incorporated into adjacent tape symbols, and the state must likewise be

incorporated into the symbol scanned by the tape head. The reason for this is that

if the CSG simulated the LBA using separate symbols for the endmarkers, or state,

it could not erase these symbols afterward, since that would necessitate shortening

a sentential form, and the right side of every CSG production is at least as long as

the left side. The generation of a sequence of pairs, the first component of which

forms the terminal string a
{
a2

m ~ an and the second of which forms the LBA tape

is accomplished by the productions

A 2
-* [a, a]A 2y A 2 -> [a, a$],

for all a in I - $}.

The LBA-simulating rules are similar to rules 6 and 7 in Theorem 9.4 and are

left as an exercise.

If q is final, then we have production

[a, aqp] -» a

for all a in I - $} and all possible a and P (that is, a and/or /? could include $,

and one tape symbol). Note that the number of productions defined is finite. We
also allow deletion of the second component of a variable if it is adjacent to a

terminal, by

[a, oi\b -> ab,

b[a, a] - ba

for any a and b in Z — {<(:, $} and all possible a's.

The productions shown explicitly are clearly context-sensitive. The LBA-

simulating productions can easily be made length preserving, so the resulting

grammar is a CSG. A proof that any word w but e is accepted byM if and only if it

is generated by the grammar parallels Theorem 9.4, and we omit it. Note that

there is no way for the grammar to set up the LBA input or simulateM on that

input. Thus e is not generated by the grammar whether or not it is in L(M).
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9.4 RELATIONS BETWEEN CLASSES OF LANGUAGES

The four classes of languages—r.e. sets, CSL's, CFL's, and regular sets—are often

referred to as languages of types 0, 1, 2, and 3, respectively. We can show that

except for the matter of the empty string, the type-/ languages properly include the

type-(i + 1) languages for i = 0, 1, and 2. We first need to show that every CSL is

recursive, and in fact, there are recursive languages that are not CSL's.

CSL's and recursive sets

Theorem 9.7 Every CSL is recursive.

Proof Given a CSG G = (V, T, P, S) and a word w in Z* of length n, we can test

whether w is in L(G) as follows. Construct a graph whose vertices are the strings in

(V u T)* of length n or less. Put an arc from a to p if a => /?. Then paths in the

graph correspond to derivations in G, and w is in L(G) if and only if there is a path

from the vertex for 5 to the vertex for w. Use any of a number of path-finding

algorithms (see Aho, Hopcroft, and Ullman [1974]) to decide whether such a path

exists.

Example 9.6 Consider the CSG of Example 9.5 and input w = aa. One way to

test for paths in the graph is to start with string S, and at the ith step find the

strings of length n or less having a path from S of length i or less. If we have the set

for i — 1, say Sf, then the set for i is ^ u {/? | a =>
f$ for some a in 5? and \fj\ <n}.

In our example we get the following sets:

i = 0: {S}

/=1: {S, [ACaB]}

i = 2: {S, [ACaB], [Aa][aCB]}

i = 3: {S, [ACaB], [Aa][aCB], [Aa][aDB], [Aa][aE]}

i = 6: {S, [ACaB], [Aa][aCB], [Aa][aDB], [Aa][aE],

[Aa][DaB], [Aa][Ea], [ADa][aB\ [AEa]a,

[ACa][aB], aa}

Since for i = 6 we discover that aa is reachable from S we need go no further.

In general, since the number of sentential forms of length n or less is finite for any

fixed grammar and fixed n, we know we shall eventually come to a point where no

new sentential forms are added. Since the set for i depends only on the set for

i — 1, we shall never add any new strings, so if we have not yet produced w, we
never will. In that case w is not in the language.
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To prove that the CSL's are a proper subset of the recursive languages we
prove something more general In particular, we show that any class of languages

that can be effectively enumerated, by listing one or more Turing machines that

halt on all inputs, for each member of the class, is a proper subclass of the

recursive languages.

Lemma 9.1 Let M l5 M 2 , ... be an enumeration of some set of Turing machines

that halt on all inputs. Then there is some recursive language that is not L(M,) for

any /.

Proof Let L be the subset of (0+1)* such that w is in L if and only ifM, does not

accept w, where i is the integer whose binary representation is w. L is recursive,

since given w we can generateM
i
and test whether or not w is in L(M,). But no TM

on the list accepts L. Suppose L were L(M
; ), and let x be the binary representation

ofj. If x is in L, then x is not in L(M;), and ifx is not in L, then x is in L(M,). Thus

L HMj) as supposed. Hence L is a recursive language that is not L(M
; )

for

any;.

Theorem 9.8 There is a recursive language that is not context-sensitive.

Proof By Lemma 9.1 we need only show that we can enumerate halting TM's for

the CSL's over alphabet {0, 1}. Let the 4-tuple representation for CSG's with

terminal alphabet {0, 1} be given some binary coding. For example, we could let 0,

1, comma, -,{,}, (, and ) be denoted by 10, 100, . .
. , 10

8
,
respectively, and let the

ith variable be denoted by 10' + 8
. Let M

}
be the Turing machine implementing the

algorithm of Theorem 9.7 that recognizes the language of the CSG with binary

code j. Clearly Mj always halts whether its input is accepted or not. The theorem

then follows immediately from Lemma 9.1.

The hierarchy theorem

Theorem 9.9 (a) The regular sets are properly contained in the context-free lan-

guages, (b) The CFL's not containing the empty string are properly contained in

the context-sensitive languages, (c) The CSL's are properly contained in the r.e.

sets.

Proof Part (a) follows from the fact that every regular grammar is a CFG, and

{0T|n > 1} is an example of a CFL that is not regular. Part (b) is proved by

noting that every CFG in Chomsky normal form is a CSG. {a
2i

\
i > 1} is a CSL

that is easily shown not to be a CFL by the pumping lemma. For part (c) every

CSG is surely an unrestricted grammar. Proper containment follows from

Theorem 9.8.
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EXERCISES

9.1 Construct left-linear and right-linear grammars for the languages

a) (0 + 1)*00(0 + 1)*

b) 0*(1(0 + 1))*

c) (((01 + 10)*11)*00)*

9.2 Show the following normal form for right-linear grammars and the analogous result

for left-linear grammars: If L is a regular set, then L - {e} is generated by a grammar in

which all productions are of the form A - aB or A a for terminal a and variables A
and B.

9.3 A context-free grammar is said to be simple if it is in Greibach normal form, and for

every variable A and terminal a, there is at most one string a such that A acc is a

production. A language is simple if it has a simple grammar. For example, L = {0T
|
n > 1}

has the simple grammar:

S - OA

A-+0AB\1

B- 1

Note that the more natural GNF grammar for L>

S-0S£|0B

£-> 1

is not simple because there are two S-productions whose right sides begin with 0. Prove

that every regular set not containing e is a simple language. [Hint : Use a DFA representa-

tion for the regular set.]

*9.4 A CFG is said to be self-embedding if there is some useful variable A such that

A ^> wAx, and neither w nor x is e. Prove that a CFL is regular if and only if it has a CFG
that is not self-embedding. [Hint: It is easy to show that no regular grammar is self-

embedding. For the "if" portion, show that a non-self-embedding grammar may be put in

Greibach normal form without making it self-embedding. Then show that for every non-

self-embedding GNF grammar, there is a constant k such that no left-sentential form has

more than k variables. Finally, show from the above that the non-self-embedding GNF
grammar can be converted to a regular grammar.]

*9.5 Give unrestricted grammars for

a) {ww
|
w is in (0 + 1)*} b) {0

1

'

2

j
i > 1}

c) {0'
|
i is not a prime} d) {0T2''

|
i > 1}

9.6 Give context-sensitive grammars for the languages of Exercise 9.5, excluding t in (a).

9.7 A CSL is said to be deterministic if it is accepted by some deterministic LBA. Show
that the complement of a deterministic CSL is also a deterministic CSL. [Hint: Show that

for every deterministic LBA there is an equivalent LBA that halts on every input.] It is,

incidentally, open whether every CSL is a deterministic CSL, and whether the CSL's are

closed under complementation. Obviously a positive answer to the former question would

imply a positive answer to the latter.
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*9.8

a) Show that every context-free language is accepted by a deterministic LBA.
b) Show that the Boolean closure of the CFL's is contained within the class of sets

accepted by deterministic LBA's.

c) Show that the containment in (b) is proper. [Hint: Consider languages over a one-

symbol alphabet.]

*9.9 Show that every CSL is generated by a grammar in which all productions are of the

form ocAp -» ayp, where A is a variable, a, /?, and y are strings of grammar symbols, and

*S9.10 Show that the CSL's are closed under the following operations:

a) union b) concatenation

c) intersection d) substitution

e) inverse homomorphism f) positive closure (recall L+ = U,= i
L)

*9.11 Show that the r.e. sets are closed under the following operations:

a) through e) same as Exercise 9.10.

f) Kleene closure.

9.12

a) Show that all the undecidable properties of CFL's mentioned in Sections 8.5, 8.6, and

8.7 are undecidable for CSL's, with the exception that "= X*" is trivially decidable

because no CSL contains c.

b) Show that "= I + " is undecidable for CSL's.

S9.13 Show that it is undecidable whether a given CSL is empty.

*S9.14 Show that every r.e. set is h(L\ where h is a homomorphism and L a CSL.

Solutions to Selected Exercises

9.10 The proofs are similar to the proofs of Theorems 6.1, 6.2, and 6.3 for CFL's.

However, there is one problem with which we have to deal. Consider the concatenation

construction. Suppose

Gx = (Vu Tu Pu S x ) and G 2 = (K2 , T2 ,
P2 ,

S2 )

are CSG's generating L, and L2 , respectively. In Theorem 6.1 for CFG's, we constructed

grammar

G4 = (Vr u V2 u {S4 }, Ti u T2 ,
P,uP2 u {S4 - 5, S2 }, S4 )

to generate Li L2 . This construction is correct for CFG's, provided V
r and V2 are disjoint.

For CSG's, however, we could have a production a ->
ft in Px or P 2 that was applicable in a

sentential form of G4 , say y<5, where Sx=>y and S 2 =>&> in such a position that a straddles

the boundary between y and <5. We might thus derive a string not in L x L2 .

Assuming Vx n V2 = 0 doesn't help, since a could consist of terminals only, and of

course we cannot assume that T
x
o T2

= 0. What we need is a normal form for CSG's that

allows only variables on the left sides of productions. Such a lemma is easy to prove. Let

G = (K, Ty P, S) be a CSG. Construct G' = (V\ 7, P', 5), where V consists of V plus the
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variables A a for each a in T. F consists of productions A a
-> a for each a, and production

a' - p for each ol-> ft in P, where a' is a with each occurrence of a terminal a replaced by
Aa , and /F is similarly related to /?.

Now, if we assume that G x and G 2 have disjoint sets of variables and are in the above

normal form, the constructions of Theorem 6.1 for union and concatenation carry over to

CSL's.

Positive closure presents another problem. If, in analogy with Theorem 6.1, we
construct

G5 = (K, u{S5 }, TU P X u{S 5 -S,S5 |Si}, S5 ),

we have not avoided the problem of the potential for applying a production a -> /? in such a

way that it straddles the strings derived from two or more instances of S x
. What we can do is

create grammar G\, which is G x with each variable A replaced by a new symbol A'. Then we
construct the grammar G 5 = (F5 , 7i, F5 ,

S5 ), where V5 consists of the variables of G x and

Gi, plus the symbols S5 and S'5 ;
F5 consists of the productions of Gj and G\, plus

S 5
-» Si S's \S l

S'5 -* S\ S s I
Si

As no CSL cbntains £, we can never have symbols derived from two instances of S x
or two

instances of Si adjacent, and we may be sure that each production of G 5 is applied to a

string derived from one instance of Si or Si.

Inverse homomorphism, intersection, and substitution are best handled by machine-

based proofs. Let L be a CSL accepted by LBA M and h a homomorphism. Suppose that

\h(a)\ < k for any a. Then we may construct LBA M' for h~ l
(L) as follows. M' takes its

input x and computes h(x)y storing k symbols per cell. There is sufficient space, since

\h(x)\ < k \x |. Then M' simulates M on h(x\ accepting if M accepts.

For intersection, let L x and L2 be CSL's accepted by LBA's M, and M 2 - Construct

LBA M 3 that treats its input as if it were written on two tracks. That is, we identify input

symbol a with [a, a]. On the first track, M 3 simulates M Y . If some sequence of choices of

move by M, causes it to accept, M 3 begins to simulate M 2 on the second track, accepting if

M 2 accepts. Thus M 3 accepts L x n L2 .

For substitution into CSL L ^ Z of CSL's La for symbols a in Z, construct an LBA that

works as follows. Given input a x a 2
'" an , nondeterministically guess which positions end

strings in some La , and mark them. If we guess that a,a
l + i

•• a
i

is in some particular La ,

simulate the LBA for La on that substring. If + ,
• • a

}
is in La ,

replace it by a. If all our

guesses are correct, take the resulting string in E* and simulate an LBA for L on it,

accepting a, a 2
" m an if that LBA accepts.

9.13 It is easy to design an LBA to accept the valid computations of a given Turing

machine. Thus the emptiness problem for Turing machines is reducible to the question

whether a given CSL is empty.

9.14 Let Li be an r.e. set and c a symbol not in the alphabet of L x . Let Mj be a TM
accepting L

x
and define

L2 = {wc' |Mi accepts w by a sequence of moves in which the head never

moves more than i positions to the right of w}.
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Then L2 is accepted by an LBA that simulates M lt treating c as the blank and halting if it

ever goes beyond the sequence of c's on its input. We have only to show that L t
= h(L2 ) for

some homomorphism h. Let h(a) = a for all symbols in the alphabet of L, and h(c) = e.

Combining Exercise 9.14 with Theorem 9.9, we observe that the CSL's are not closed

under homomorphism. This may seem paradoxical, since Exercise 9.10 claimed the CSL's

were closed under substitution. However, homomorphism is not a special case of substitu-

tion by a CSL, as a CSL may not contain e. In particular, for h defined above, h(c) = e is not

a CSL. The CSL's are, however, closed under homomorphisms that do not map any symbol

to 6.

BIBLIOGRAPHIC NOTES

The Chomsky hierarchy was defined in Chomsky [1956, 1959]. Chomsky and Miller [1958]

showed the equivalence of regular grammars and regular sets. Kuroda [1964] showed the

equivalence of LBA's and CSG's. Previously, Myhill [1960] had defined deterministic

LBA's, and Landweber [1963] showed that the deterministic LBA languages are contained

in the CSL's. Chomsky [1959] showed that the r.e. sets are equivalent to the languages

generated by type-0 grammars. Fischer [1969] gives some interesting characterizations of

the CSL's. Hibbard [1974] discusses a restriction on CSG's that yields the context-free

languages. Additional closure properties of CSL's are studied in Ginsburg and Griebach

[1966b] and Wegbreit [1969]. Basic decision properties of CSL's are given in Landweber

[1964].
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CHAPTER

10
DETERMINISTIC
CONTEXT-FREE
LANGUAGES

We now have machine models that define each class of languages in the Chomsky
hierarchy. At the extreme ends of the hierarchy, the machines—finite automata

and Turing machines—exhibit no difference in accepting ability between their

deterministic and nondeterministic models. For the linear-bounded automaton, it

is unknown whether the deterministic and nondeterministic varieties accept the

same class of languages. However, for pushdown automata, we do know that the

deterministic PDA's accept a family of languages, the deterministic context-free

languages (DCFL's), lying properly between the regular sets and the context-free

languages.

It turns out that the syntax ofmany programming languages can be described

by means of DCFL's. Moreover, modern compiler writing systems usually require

that the syntax of the language for which they are to produce a compiler be

described by a context-free grammar of restricted form. These restricted forms

almost invariably generate only DCFL's. We shall meet what is probably the most

important of these restricted forms—the LR-grammars. The LR-grammars have

the property that they generate exactly the DCFL's.

If a compiler writing system is to be used, it is generally necessary that the

language designer choose a syntax for his language that makes it a DCFL. Thus it

is useful to be able to determine whether a proposed language is in fact a DCFL. If

it is, one can often prove it so by producing a DPDA or LR-grammar defining the

language. But if the language L is not a DCFL, how are we to prove it? IfL is not a

CFL at all, we could use the pumping lemma, perhaps. However, L will often be a

CFL but not a DCFL. There is no known pumping lemma specifically for

DCFL's, so we must fall back on closure properties. Fortunately, the DCFL's are

closed under a number of operations, such as complementation, that do not

233
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234 DETERMINISTIC CONTEXT-FREE LANGUAGES

preserve CFL's in general. Thus, if L is a CFL but its complement is not, then Lis

not a DCFL.
Sections 10.1 through 10.4 develop various closure properties of DCFL's.

Section 10.5 briefly covers decision properties. Sections 10.6 and 10.7 treat

LjR-grammars.

10.1 NORMAL FORMS FOR DPDA's

Recall that PDA M = (Q, E, T, S, q0 ,
Z0 ,

F) is deterministic if:

1) whenever S(q, a, X) is nonempty for some a in Z, then S(q, e, X) is empty, and

2) for each q in Q, a in £ u {e} and X in T, (5(g, a, X) contains at most one

element.

Rule (1) prevents a choice between using the next input or making an e-move.

Rule (2) prevents a choice on the same input. For deterministic PDA's we shall

hereafter write 3(q, a, X) = (/?, y) rather than S(q, a, X) = {(/>, y)}.

Like PDA's in general, we can put DPDA's in a normalform where the only

stack operations are to erase the top symbol or to push one symbol. This form will

be proved in the next two lemmas. The first lemma shows that the DPDA need

never push more than one symbol per move, since it can push a string of symbols

one at a time, using c-moves. The second lemma shows that DPDA's need never

change the top stack symbol. Changes are avoided by storing the top stack symbol

in the finite control and recording changes to it there. The reader who grasps these

ideas should skip to the start of the next section.

Lemma 10.1 Every DCFL is L(M) for a DPDA M = (g, Z, T, S, q0 ,
Z0 ,

F) such

that if S(q, a, X) = (p, y), then \y\ < 2.

Proof If S(q, a, X) = (r, y) and | y \
> 2, let y = Y

t
Y2 • • • Yn , where n > 3. Create

new nonaccepting states pu p2 , pn -i, an<3 redefine

% a, X) = (pu Yn _ t
Yny

Then define

5(Ph £, n.,) = (pl+lf

for 1 < i < n — 3 and <5(p„_ 2 , ^2) — (
r

> ^1 ^2)- Thus, in state qy on input a, with X
on top of the stack, the revised DPDA still replaces X with Y

X
Y2 Yn = y and

enters state r, but it now takes n — 1 moves to do so.

Lemma 10.2 Every DCFL is L(M) for a DPDA M = (Q, £, T, (5, g0 , Zo> F) such

that if S(q, a, X) = (p, y), then y is either £ (a pop), X (no stack move), or of the

form YX (a push) for some stack symbol Y.

Proof Assume L = L(M'), where M' = (Q\ £, F, ^'
0 ,
X0 ,

F') satisfies Lemma
10.1. We construct M to simulate M' while keeping the top stack symbol ofM' in
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M's control. Formally, let

Q = Q' x F, g0 = [g'0 , Xol F = F x r and T = F u {Z0},

where Z0 is a new symbol not in F. Define 5 by:

i) If 5'(q, a, X) = (p, e), then for all Y, <5([g, X], a, Y) = ([p, 7], £). If M' pops its

stack, M pops its stack, picking up the symbol popped for its control.

ii) If S'(q, a, X) = (pt Y), then for all Z, S([q, X\ a9 Z) = ([p, Y], Z). If M'
changes its top stack symbol, M records the change in its own control but

does not alter its stack.

iii) If 5'(q, a, X) = (p, YZ), then for all W, S([q, X], a, W) = ([p, 7], ZJ^). If the

stack of M' grows, M pushes a symbol onto its stack.

It is easy to show by induction on the number of moves made that

fao, w, X0)\jr.(q,c,X l
X 2 --Xn )

if and only if

([q'0 ,
X0l w, Z0 ) bS" ^i], ^, *2*3 - XnZ0 ).

Thus L(M) = L(M').

10.2 CLOSURE OF DCFL's UNDER COMPLEMENTATION

To show that the complement of a DCFL is also a DCFL we would like to use the

approach employed in Theorem 3.2 to show closure of the regular sets under

complementation. That is, given a DPDA M we would like to interchange final

and nonfinal states and then be able to claim that the resulting DPDA accepts the

complement of L(M).

There are two difficulties that complicate the above approach. The first

difficulty is that the original DPDA might never move beyond some point on an

input string, because on reading input w either it reaches an ID in which no move
is possible or it makes an infinity of moves on oinput and never uses another

input symbol. In either case, the DPDA does not accept any input with w as a

prefix, and thus a DPDA accepting the complement should accept every string

with prefix w. However, if we simply changed final and nonfinal states, the result-

ing DPDA still would not move beyond w and therefore would not accept strings

with prefix w.

The second difficulty is due to the fact that after seeing a sentence x, the

DPDA may make several moves on e-input. The DPDA may be in final states

after some of these moves and in nonfinal states after others. In this case, inter-

changing the final and nonfinal states results in the DPDA still accepting x.
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Forcing DPDA's to scan their input

To remove the first difficulty, we prove a lemma stating that, given a DPDA M, we
can always find an equivalent DPDA M' that will never enter an ID from which it

will not eventually use another input symbol.

Lemma 10.3 Let M be a DPDA. There exists an equivalent DPDA M' such that

on every input, M' scans the entire input.

Proof We can assume without loss of generality that for every accessible ID and

input symbol, M has a next move. Otherwise, one can add an endmarker on the

stack to prevent M from erasing the stack entirely and thereby halting, without

scanning, the entire input. In addition, one can add a "dead state," d so that for

any combination of state, input symbol, and stack symbol for which M has no

next move, either using the input symbol or an £-input, a transfer to state d occurs.

On any input symbol, the only transition from state d is to state dy
and no change

of the stack occurs. Of course, d is not an accepting state.

Now, if for every ID and input symbol, M has a next move, then the only way
in which M might never reach the end of its input is if in some ID, M makes an

infinity of moves on e input. If in state q with Z on top of the stack, M makes an

infinity of 6-moves without erasing the symbol Z, then let M instead enter the dead

state d. This change cannot affect the language accepted unless M entered

an accepting state at some time during the infinite sequence of e-moves. However,

in this case, we introduce a new final state /, letting 5(q, e, Z) = (/, Z) and

5(f, e, Z) = (</, Z).

Formally, we propose the following construction. Let M = (Q, Z, T, d y q0 , Z0 ,

F). Define

M' = {Q\j {q0 , </,/}, Z, T u {X0 }, d\ q'
0 ,
X0y F u {/}),

where:

1) d'(q0 , e, X0 ) = (q0 ,
Z0X0 ). X0 marks the bottom of the stack.

2) If for some q in Q, a in Z and Z in T, S(q, a, Z) and S(q, e, Z) are both empty,

then

S'(q9 a, Z) = (</, Z).

Also for all q in Q and a in Z,

5'{q, a, X0 ) = (</, X0 ).

Enter the dead state if no move is possible.

3) S'{d, a, Z) = (d, Z) for all a in Z and Z in T u {X0 }.

4) If for q and Z and all i there exist q{
and yf

for which (g, 6, Z) (qh e, yt ),
then

d'(qy 6, Z) = (dy Z) provided no qt
is final and 5'(q, c,Z) = (f Z) whenever

one or more of the g,-'s is final. (Note we have not claimed that we can

determine whether d'(q, e, Z) should be (dy Z) or (/, Z). However, there are
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only a finite number of such decisions to be made. For each possible set of

choices there exists a DPDA. One of these DPDA's will be the desired one.

We shall subsequently show that the construction is effective.)

5) S'(f9 c, Z) = (d, Z) for all Z in T u {X0}.

6) For any q in Q, a in £ u {£}, and Z in T, if 5'(q, a, Z) has not been defined by

rule (2) or (4), then S'(q, a, Z) = 5{q9 a, Z).

The argument preceding the formal construction should convince us that

L(M') = L(M). To prove that M' uses all its input, suppose that for some proper

prefix x of xy,

(q'0 ,
xy, XQ ) hg- (q, y,Z l Z2 ~ ZkX0\

and from ID (q, y,Z l
Z2

~ m ZkX0 ), no symbol ofy is ever consumed. By rule (2) it

is not possible that M' halts. By rule (4), it is not possible that M' makes an infinite

sequence of c-moves without erasing Z
t

. Therefore M
x
must eventually erase Zv

Similarly M
1
must erase Z2 , . .

. , Zk and eventually enter an ID (q\ y, X0 ). By rule

(2) fa', y, XQ ) f^r (d, y\ X0 ), where y = ay' and a is in Z. Thus M' did not fail to

read past x as supposed, and M' satisfies the conditions of the lemma.

Let us now observe that the construction in rule (4) of Lemma 10.3 can be

made effective. Assume without loss of generality that M is in normal form. We
shall compute more information than is actually needed. In particular, we deter-

mine for each q and p in Q and Z in T, whether

1) {q, e, Z)tfr(p, £,Z),

2
) (fc e

.
z

) (P. ^ 4
3) (g, £, Z) ^- (p, £, y) for some y in r*

For each and Z we can determine from (3) whether M ever enters a state that

consumes the next symbol of y without erasing Z.f If not, then from (2) we can

determine if M erases Z. If neither event occurs, then either M' must enter the

dead state by rule (2), or rule (4) applies and again (3) tells us whether e, Z)

is (d, Z) or (/ Z).

Construct Boolean-valued tables Tu T2 , and T3 such that for i= 1, 2, and 3,

T}(q
y
Z, p) is true if and only if statement (i) is true for q, Z, and p. The tables are

initially all false and are filled inductively. The basis is to set T3 (q, Z, p) = true if

8{q, £, Z) = (p, YZ), to set T,fa, Z, p) = T3 (^, Z, p) = true if %, e, Z) = (p, Z),

and to set T2 (<7, Z, p) = true if S(q, e, Z) = (p, £). The inductive inferences are:

1) Whenever S(q, £, Z) = (r, YZ), then

a) if T2 (r, Y, 5) and T2 (s, Z, p) are true, set T2 (q, Z, p) = true;

b) if T2 (r, Y, s) and ^(5, Z, p) are true, set T^q, Z, p) = true;

t Note that by the construction of Lemma 10.2, the state p alone determines whether a non-£ input

move is to be made.
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c) if T2 (r, y, s) and T3 (s, Z, p) are true, or T
x
(r, Y, s) and T3 (s, y, p) are true,

set T3 (q, Z, p) = true;

d) if T3 (r, y, p) is true, set T3 (g, Z, p) = true.

2) Whenever S(q, e, Z) = (r, Z) then

a) if 7;(r, Z, p) is true, set Tx {q, Z, p) = true;

b) if T2 (r, Z, p) is true, set T2 (g, Z, p) = true;

c) if T3 (r, Z, p) is true, set T3 (g, Z, p) = true.

We leave as an exercise an efficient algorithm for filling in the true entries in

the tables and proving that the only true entries are the ones that follow from the

basis and rules (1) and (2) above.

Closure under complementation

We are now ready to prove that the DCFL's are closed under complementation.

To do so we must deal with the second problem mentioned at the beginning of this

section; the possibility that after reading input w, the DPDA makes a sequence of

e-moves, entering both final and nonfinal states. The solution is to modify the

DPDA by adding a second component to the state. The second component re-

cords whether a final state of the original DPDA has been entered since the last

time a true (non-e)-input was used in a move. If not, the DPDA accepting the

complement enters a final state of its own, just before it is ready to use the next

true input symbol.

Theorem 10.1 The complement of a DCFL is a DCFL.

Proof Let M = (Q, E, T, 5, q0 ,
Z0 ,

F) be a DPDA satisfying Lemma 10.3. Let

M' = (Q, Z, T, 5', q'
0 , Z0 ,

F) be a DPDA simulating M, where

2' =
{[<?, k]

|
q is in Q and & = 1, 2, or 3}.

Let F =
{[<?, 3]\qm Q}, and let

, = j[g0 , 1] if q0 is in F;

^°
2] if q0 is not in F.

The purpose of k in [q, k] is to record, between true inputs, whether or not M
has entered an accepting state. IfM has entered an accepting state since the last

true input, then k = 1. IfM has not entered an accepting state since the last true

input, then k = 2. If k = 1 when M reads a true input symbol, then M' simulates

the move ofM and changes k to 1 or 2, depending on whether the new state ofM
is or is not in F. If k = 2, M' first changes k to 3 and then simulates the move ofM,

changing k to 1 or 2, depending on whether the new state ofM is or is not in F.
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Thus, S' is defined as follows, for q and p in Q, and a in £.

1) If% £, Z) = (p, y), then for /c = 1 or 2,

/c],£,Z) = ([p, /c'], y),

where /c' = 1 if /c = 1 or p is in F; otherwise k' = 2.

2) If b(q, a, Z) = (p, y), for a in E, then

2], 6, Z) = ([<?> 3], Z)

and

8'([q, 1], fl, Z) = 5'([q, 3], a, Z) - ([p, fc], y)

where /c = 1 or 2 for p in F or not in F, respectively.

We claim that L{M ') is the complement ofL(M). Suppose that a
x
a2

' * an is in

L(M). Then M enters an accepting state after using an as an input. In that case, the

second component of the state of M' will be 1 before it is possible for M' to use a

true input after an . Therefore, M' does not accept (enter a state whose second

component is 3) while an was the last true input used.

If a
x
a 2

' '

' an is not in L(M), by Lemma 10.3 M' will some time after reading an

have no e-moves to make and will have to use a true input symbol. But, at this

time, the second component of M"s state is 2, since a
x
a2 an is not in L(M). By

rule (2), M' will accept before attempting to use a true input symbol.

Before concluding this section we state the following corollary.

Corollary Every deterministic CFL is accepted by some DPDA that, in an

accepting state, may make no move on t-input.

Proof The statement is implicit in the proof ofTheorem 10.1. Note that in a final

state (one in which k = 3) no £-move is possible.

It is possible to use Theorem 10.1 to show certain languages not to be

DCFL's.

Example 10.1 The language L = {04^2* \i=j or ; = k} is a CFL generated by the

grammar

S^AB\CD A->0Al\e

B-+2B\e C-0C|e D-+W2\e

However, L is not a DCFL. If it were, then L would be a DCFL and hence a CFL.
By Theorem 6.5, L x

= L n 0*1*2* would be a CFL. But L
x
= {tflJ2

k
\i + j and

j =fc k). A proof using Odgen's lemma similar to that of Example 6.3 shows that L
x

is not a CFL, so L is not a DCFL.
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10.3 PREDICTING MACHINES

For a number of other closure properties of DCFL's we need a construction in

which the stack symbols ofDPDA M are modified to contain information about a

certain finite automaton A. The information associated with the top stack symbol

tells, for each state q of M and p of A, whether there is some input string that

causes M to accept when started in state q with its current stack and simultan-

eously causes A to accept if started in state p.

Formally, let M = (QM,H,r,SMy q0y Z0f FM)bea. normal form DPDA and

A = (QA , <5/i> Po> Fa)- Then 7c(M, A), the predicting machine for M and A, is

defined by (QM , E, T x A, <5, q0 , X0y FM\ where A is the set of subsets of QM x QA .

The intention is that if n(M, A) is in ID (r, x, [Z, p]y), then p consists of exactly

those pairs (q, p) such that there is a w in E* for which SA (p, w) is in FA , and

(qy w, ZP) fa (s, e, a) for some s in FM and a and /? in T*, where /? is the string of

first components of y.

To define d and X0 we need additional notation. Let M
q Z beM with q and Z

made the start state and start symbol respectively. Let A
p
be A with p made the

start state. Then by our usual notation,

L(M
q.z)

= W |

w, Z) ^ (5, c, 7) for some s in FM and y in T*}

and

L(/4P)
= {w

I

w) is in FA }.

Let Nr(Mq Z ) be the set of strings that cause M
q Z to erase its stack and enter state

r, that is,

Nr(Mq ,z ) = {w\(q, w, Z)H£-(r, 6, e)}.

Surely L(M
q Z ) is a DCFL and L(^l

p ) is a regular set. It is also true that Nr(M q Z ) is

a DCFL. In proof, modify M to place a marker Y0 at the bottom of stack and then

simulate M in state q with stack ZY0 . If 70 becomes the top stack symbol, then

accept if the state is r and reject if not. Finally, let L5
(A

p ) = {w
\

d(p, w) = s}.

Clearly Ls
(A

p ) is regular.

Now we may define 3(r, a, [Z, p])y for r in gM , a in E u {c}, Z in T, and p. in A

as follows.

1) If dM (ry a, Z) = (5, c), then ^(r, a, [Z, /*]) = (s, c). Note that does not

influence the action of 7r(M, A), except in rule (3) below, where it influences

the second component of the stack symbol pushed.

2) If dM (r, a, Z) = (s, Z), then <5(r, a, [Z, p\) = (s, [Z, /<]).

3) If 3M (r, a, Z) = (5, YZ), then <5(r, a, [Z, = (s, [Y, v][Z, //]), where v consists

of those pairs (q f p) such that either

a) L(M
q y) n U(A

p ) is nonempty, or
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b) there is some t in QM and u in QA such that

N
t
(M

q ,Y ) n UAP )

is nonempty and (r, u) is in

Note that L(MqY ) and Nt
(MqY ) are CFL's, and L(/l

p ) and Ln(,4p ) are regular,

so by Theorems 6.5 and 6.6, we may determine whether the languages men-
tioned in (a) and (b) are empty.

Finally, let X0 = [Z0 , fi0 ], where

= p)\L(NfqtZo)nL(Ap)*0}.

Lemma 10.4 n(M, A) as defined above has the property that

(q0 , x, [Z0 , fi0]) h (r, y, [z l9 \i
x
\Z2 , n 2 ]

• • [Z„, nn])

if and only if

a) (q0 , x, ZQ ) \± (r, y, Z x
Z 2 Zn ), and

b) for 1 < i < n,

ft = P) I

fc>r some w, (4, w, Z
t
Zi+ ,

• • • Zn ) fa (s, e, y) for some

s in FM and y in T*, and SA (py w) is in FA }.

Proof (a) is obvious, since n(M, A) simulates M, carrying along the second

component of stack symbols but not allowing them to influence anything but

other second components of stack symbols.

We prove (b) by induction on /, starting at i = n and working down. The
basis, i = n is easy. Zn must be Z0 , since M is in normal form. The definition ofX0

plus rule (2) in the definition of S gives us the basis.

For the induction, suppose the result is true for i + 1. Then was constructed

from j as v is constructed from fx in rule (3). Suppose there is some w such that

(q, w, Z,Zi+1 --Zn)\±-(sy 6, y)

for s in FM , and SA (p, w) is in FA . Then there are two cases depending on whether

Z
i
is ever erased. If it is not, then w is in L(M

q Z) and also in L(A
p ), so by rule (3a),

(q, p) is in If Z
f
is erased, let w = w

x
w2 , where

(q, w l9 Z^ f£- (t, e, e) and (r, w2 , Z1+ 1
Z,.+2 - Zn ) H&- (s, e, y)

for some 5 in FM . Also let (^(p, Wj) = w, so ^(w, w2 ) is in FA . Then is in

N
t
(M

q Zi) and also in L^/lp). By the inductive hypothesis, (f, u) is in + j. Thus by

rule (3b), (q y p) is in n t
.

Conversely, if (q, p) is in ^ by rule (3a), then there is a w such that dA (p, w) is

in FA and (q, w, Z, Z
f + j

• • • Z„) ^- (5, £, y) for 5 in FM ,
by a sequence of moves in

which Z
t
is never erased. If (q, p) is in & by rule (3b), then there exists w

x
in Z*, f in
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QM and u 'mQA such that (q, w l9 Zf ) H§r (t, e, e), 5A (p, = u, and (t, u) is in fii+ v
By the inductive hypothesis, there exists w2 in £* such that (t, w2 ,

Zi+1 Zi+2
•••

Z„) (5, e, y) for some s in FM , and ^(w, w2 ) is in FA . Thus (g, w2 ,
Z,ZI+

1

• • •

Z„) ^ (5, e, y), and ^(p, w2 ) is in F*, so (q y p) belongs in pL
t
. This completes the

induction and the proof of the lemma.

Example 10.2 Let

M = ({q0 , ql9 q2 , qj, {0, 1}, {X, Z0 }, 5M , q0 ,
Z0 , {g3 }),

where

(5M(go> 0, Z0 ) = fao, XZ0\ SM(q l9 0, X) = (q2 ,
e),

Mflo. 0, *) = (q0 ,
XX)y SM(q2 , 0, X) = (g2 ,

e),

Mflo> 1, X) = (qu XX), SM (q2y £, Z0 ) = (g3 ,
e).

<5m(<7i> 1, = (<7i> XX),

Also let /4 = ({p0 , Pi}, {0, 1}, &A , p0 , {p0}), where

<MPo>0) = Pi> ^(Po, 0 = Po>

MPi»°) = Po. <UPi> 0 = Pi-

Observe that

L(M) = L(M90>Zo ) = {0' IV I / + j = k, i > 0 and j > 0}.

Also L(MquZo ) = 0 and L(M
g2 ,Zo ) = L(M

g3 .Zo ) = {c}.

L(A) = L(A
po ) = (1+01*0)*;

that is, strings with an even number of 0's, and L(A
pi ) = 1*0(1 + 01*0)* that is,

strings with an odd number of 0's. Thus L(MqoZo ) n L(A
po ) contains strings such

as 00110000, and L(MqoZo)nL(A pi ) contains strings such as 01110000.

L(M
q2 Zo ) n LiApJ and L(M

g3 Zo ) n L(/l
po ) each contain e, but the other four

intersections of the form L(M
q

. Zo ) n L(/t
p;)

are empty. Thus the start symbol of

n(M, A) is [Z0 ,
jU0 ], where

Mo = {(4o> Po), (<7o> Pi), (<?2> Po)> (?3> Po)}-

Now let us compute

5{q09 0, [Z0 , Mo]) = fao. [X, v][Z0 , /<0]).

To do so we need to deduce that L(M
q . x ) = 0 for 1 = 0, 1, or 2, since we cannot

accept without a Z0 on the stack and cannot write Z0 if it wasn't there originally.

Thus there is no contribution to v from rule (3a). However, L(Mq3tX ) n L(A
P0 )

=

{£}, so we add (q3y p0 ) to v.
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Consider rule (3b).

N„(Mqo ,x) = {0W |
/ + ; = k - 1 and j > 0},

N
q2
(MquX) = {W\j = k-l},

and

*
q2
(M

q2 ,x)
= {0}.

The other sets of the form N
q
.(M

qj X ) are empty. Also, L
Pi
(A

Pj)
is all strings with an

even number of O's if i = j and all strings with an odd number of O's if i ± j.

Since N
q
.(M

q . x ) is nonempty only if i = 2 and ; = 0, 1, or 2, we can only apply

rule (3b) successfully if the pair (ft, p0 ) is chosen from fi0 . We see N
q2
(M

qo X ) n
Lpo(^po) and N

q 2 (
Mqo>x) n L

Po
(A

Pl ) are both nonempty, yielding (ft, p0 ) and

(ft, Pi) for v. Similarly N
qi
(MqitX ) n L

Po(,4po ) and Nq2
(M9ltX ) n L

po
(/l

Pl ) are non-

empty, yielding (ft,p0 ) and (ft, Pi) for v. Also, N
q2
(Mq2tX ) n LPo(^Pl

)is nonempty,

yielding (ft, for v, but

Thus,

v = {(ft, Po), (ft, Pi), (ft, Po)> (ft, Pi), (ft, Pi), (ft, Po)}.

10.4 ADDITIONAL CLOSURE PROPERTIES OF DCFL's

Using the idea developed in the previous section we can prove a few closure

properties of deterministic context-free languages. Before proceeding, we present

one more technical lemma. The lemma asserts that we can define acceptance for a

DPDA by a combination of state and the top stack symbol; the language so

defined is still a deterministic language.

Lemma 10.5 Let M = (Q, I, T, 3, ft, Z0 , F) be a DPDA. Let B be any subset of

Q x T, that is, pairs of state and stack symbol. Define

L = {w
I (ft, w, Z0 ) \*f (q, c, Zy) for some (g, Z) in B}.

Then L is a DCFL.

Proof We define a DPDA M ', accepting L, as follows.

M' = (Q', S, T, S\ ft, Z0 ,
F),

where

Q' = {q, q" k in G} and F' = {g"
| q in Q}.

M' makes the same moves as M, except that M' moves from an unprimed state to

a singly primed state and then, on e-input, moves back to the corresponding

unprimed state, either directly or through a doubly primed version. The latter case

applies only if the pair of state and top symbol of the stack is in B.
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Formally,

1) if <%, a, Z) = (p, y), then a, Z) = (p', y);

2) (5'(</, e, Z) = (q9 Z) provided (qy Z) is not in B\

3) 5\q\ e, Z) = (q\ Z) and <%", £, Z) = (g, Z) if (g, Z) is in £.

Quotient with a regular set

Recall that the quotient of L
x
with respect to L2 , denoted L l /L2 > is

{x
|
there exists w in L2 such that xw is in L

x }.

In Exercise 6.4 we claimed that the CFL's were closed under quotient with a

regular set. (See Theorem 1 1.3 for a proof.) We shall now prove a similar result for

DCFL's.

Theorem 10.2 Let L be a DCFL and R a regular set. Then L/R is a DCFL.

Proof Let L = L(M) for M a DPDA that always scans its entire input.

Let R = L(A) for finite automaton A. Suppose M = (QM , Z, T, <5M , q0 , Z0 ,
FM)

and ,4 = (QA ,
Z, p0 ,

FA ). Then let

Af' = (QM , I, T x A, <5, ^o, [Z0 , Ho], FM )

be 7c(M, /i), the predicting machine for M and A. Let # be the subset of

Qm x (r x A) containing all (4, [Z, /z]) such that (g, p0 ) is in ,u.

Then by Lemma 10.5,

^i = {*
I fao> *> [Zo> M0]) |^ (g, £, [Z, juty) and (g, p0 ) is in h}

is a DCFL. By Lemma 10.4,

L
x
= {x

|
for some w in Z*, (g0 , x, Z0 ) ^- (<?, e, Z/)

and (q, w, Zy')[-£-(s, £, /?),

where s is in FM ,
y' is the first components of y, and ^(po, vv) is in FA }.

Equivalently,

L, = {x
|
for some w in Z*, xw is in L(M) and w is in L(A)}.

That is, Lj = L/K. Thus L/fl is a DCFL.

MIN and MAX

We now show two operations that preserve DCFL's but not arbitrary CFL's.

Recall that for each language L:

MIN(L) = {x |x is in L and no w in L is a proper prefix of x},

and

MAX(L) = {x |x is in L and x is not a proper prefix of any word in L}.
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Example 10.3 Let

L= {0W|i,y> k > 0, i + ; > /c}.

Then MIN(L) = 00*11*0, and MAX(L) = {0
l

P0' +

J

*

|
i, j > 0}.

Theorem 10.3 If L is a DCFL, then MIN(L) and MAX(L) are DCFL's.

Proof Let M = (QM ,
Z, T, <5M , g0 , Z0 ,

FM ) be a DPDA that accepts L and always

scans its entire input. Modify M to make no move in a final state. Then the

resulting DPDA M
x
accepts MIN(L). In proof, if w is in MIN(L), then let

(q0,^Z0 ) = lQ \w I
l \W '"\w lm (10.1)

be the sequence of ID's entered by M, where Im = (q9 £, y) for some y, and q is in

FM . Furthermore, since w is in MIN(L), none of 70 ,
I l9 . .

. , 7m _ j has an accepting

state. Thus (10.1) is also a computation ofM l9 so w is in L(M).

Conversely, if (g0 , w, Z0 ) = 70 I
x ^ • • • ^ 7m is an accepting computation

of Mj, then none of 70 , 7j,

7

m _ x
has an accepting state. Thus w is in MIN(L).

For MAX we must use the predicting machine. Let A = (QA , Z, SA , p0 ,
FA ) be

the simple F,4 of Fig. 10.1 accepting Z +
. Let M = (QM , Z, T x A, (5, #0 ,

[Z0 ,
ju0],

FM ) be 7c(M, A). Let £ = {(<?, [Z, ju])|g is in FM and (<?, p0 ) is not in Then by

Lemma 10.5,

= {*l(<7o, Z0 ) &-(<?> y)

for some q in FM , and for now^t

does (q, w, y) f*- (5, c, /?) for 5 in r M }

is a DCFL. But L, = MAX(L), so MAX(L) is a DCFL.

Any symbol in I

Fig. 10.1 The automaton A.

Example 10.4 Let us use Theorem 10.3 to show a CFL not to be a DCFL. Let

^ = {0' F2* \k < i or k < j). Then L
x

is a CFL generated by the grammar

S^AB\C

A^0A\e

B - l£2|l£|<:

C->0C2|0C|D

D 17)|c
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Suppose Lj were a DCFL. Then L2 = MAX^) would be a DCFL and hence a

CFL. But L2 = {0'P2*
|
/c = max(i, j)}. Suppose L2 were a CFL. Let n be the pump-

ing lemma constant and consider z = uvwxy = (Tl^". If neither v nor x has a 2,

then z' = uv
2wx2

y has 2's and at least (n + 1) O's or at least (n -f 1) l's. Thus z'

would not be in L2 as supposed.

Now consider the case where vx has a 2. If either u or x has more than one

symbol, then z' = wu
2wx 2

y is not of the form Qfl J2
k and would not be L2 . Thus

either 0 or 1 is not present in vx. Hence uwy has fewer than n 2's but has n O's or n

l's and is not in L2 . We conclude L2 is not a CFL, so Lj is not a DCFL.

Other closure properties

As a general rule, only those closure properties of CFL's mentioned in Section 6.2

that were given proofs using the PDA characterization carry over to DCFL's. In

particular, we can state the following.

Theorem 10.4 The DCFL's are closed under (a) inverse homomorphism, and (b)

intersection with a regular set.

Proof The arguments used in Theorems 6.3 and 6.5 work for DPDA's.

Theorem 10.5 The DCFL's are not closed under (a) homomorphism, (b) union,

(c) concatenation, or (d) Kleene closure.

Proof See Exercise 10.4 and its solution.

10.5 DECISION PROPERTIES OF DCFL's

A number of problems that are undecidable for CFL's are decidable for DCFL's.

Theorem 10.6 Let L be a DCFL and R a regular set. The following problems are

decidable.

1) Is L= K?

2) Is Rc=L?

3) Is L= 0?
4) Is La CFL?

5) Is L regular?

Proof

1) L = R if and only if L
x
= (L n R) u (L n R) is empty. Since the DCFL's are

effectively closed under complementation and intersection with a regular set,

and since the CFL's are effectively closed under union, Lj is a CFL, and

emptiness for CFL's is decidable.

2) R c L if and only if L n R = 0. Since L n R is a CFL, Ln R = 0 &

decidable.
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3) Since the DCFL's are effectively closed under complementation, L is a DCFL
and hence L = 0 is decidable.

4) The property L is a CFL is trivial for DCFL's and hence is decidable.

5) Regularity for DCFL's is decidable. The proof is lengthy and the reader is

referred to Stearns [1967] or Valiant [1975b].

Undecidable properties of DCFL's

Certain other properties undecidable for CFL's remain so even when restricted to

the DCFL's. Many of these problems can be proved undecidable by observing

that the languages Lj and L2 of Section 8.6, whose intersection is the valid compu-
tations of a Turing machine M, are DCFL's.

Theorem 10.7 Let L and L be arbitrary DCFL's. Then the following problems

are undecidable.

1) Is Ln L = 0?
2) Is LciL?

3) Is L n L a DCFL?

4) Is L n L a CFL?

5) Is L u L a DCFL?

Proof Given an arbitrary TM M we showed in Lemma 8.6 how to construct

languages L
x
and L2 such that L

x
n L2 = 0 if and only ifL(M) = 0. It is easy to

show that Lj and L2 are DCFL's by exhibiting DPDA's that accept them. Thus (1)

follows immediately from the fact that it is undecidable whether L(M) = 0. Since

DCFL's are closed under complement, and L c E if and only if L n L = 0, (2)

follows from (1).

To prove (3), (4), and (5), modify each TM M to make at least two moves

before accepting, as in Lemma 8.8. Then L
x
n L2 is either a finite set (in which

case it is surely a CFL and a DCFL) or is not a CFL depending on whether L(M)
is finite. Thus decidability of (3) or (4) would imply decidability of finiteness for

L(M), a known undecidable property. Since DCFL's are closed under

complementation, deciding whether L u L is a DCFL is equivalent to deciding if

L n L is a DCFL. Thus (5) follows from (3).

Theorem 10.8 Let L be an arbitrary CFL. It is undecidable whether L is a DCFL.

Proof Let L be the CFL of invalid computations of an arbitrary TM M that

makes at least two moves on every input. L is regular and, hence, a DCFL if and

only ifM accepts a finite set.

Finally we observe that the question ofwhether two DCFL's are equivalent is

an important unresolved problem of language theory.
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10.6 LR(0) GRAMMARS

Recall that one motivation for studying DCFL's is their ability to describe the

syntax of programming languages. Various compiler writing systems require syn-

tactic specification in the form of restricted CFG's, which allow only the represen-

tation of DCFL's. Moreover, the parser produced by such compiler writing

systems is essentially a DPDA. In this section we introduce a restricted type of

CFG called an LR(0) grammar. This class of grammars is the first in a family

collectively called LK-grammars. Incidentally, LR(0) stands for "left-to-right scan

of the input producing a rightmost derivation and using 0 symbols of lookahead

on the input."

The LR(0) grammars define exactly the DCFL's having the prefix property.

(L is said to have the prefix property if, whenever w is in L, no proper prefix of w is

in L.) Note that the prefix property is not a severe restriction, since the introduc-

tion of an endmarker converts any DCFL to a DCFL with the prefix property.

Thus L$ = {w$
|
w is in L} is a DCFL with the prefix property whenever L is a

DCFL.
While the LR(0) restriction is too severe to provide convenient and natural

grammars for many programming languages, the LR(0) condition captures the

flavor of its more useful generalizations, which we discuss in Section 10.8, and

which have been successfully used in several parser-generating systems.

L/?-items

To introduce the LR(0) grammars we need some preliminary definitions. First, an

item for a given CFG is a production with a dot anywhere in the right side,

including the beginning or end. In the case of an e-production, B -> e, B -> • is an

item.

Example 10.5 We now introduce a grammar that we shall use in a series of

examples.

S'^Sc S-+SA\A A^aSb\ab (10.2)

This grammar, with start symbol S\ generates strings of "balanced parentheses,"

treating a and b as left and right parentheses, respectively, and c as an endmarker.

The items for grammar (10.2) are

• Sc S^SA A^- aSb

S • c S^S- A A-+aSb
S'- Sc- S^SA • A^aS-b

A A^aSb-

S^A- A^ab
A^a-b
A -> ab •
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In what follows, we use the symbols => and => to denote rightmost deriva-

tions and single steps in a rightmost derivation, respectively. A right-sentential

form is a sentential form that can be derived by a rightmost derivation. A handle of

a right-sentential form y for CFG G is a substring /?, such that

and dfiw = y. That is, a handle of 7 is a substring that could be introduced at the

last step in a rightmost derivation of y. Note that in this context, the position of

P within y is important.

A viable prefix of a right-sentential form y is any prefix of y ending no farther

right than the right end of a handle of y.

Example 10.6 In grammar (10.2) there is a rightmost derivation

S' => Sc => SAc => SaSbc.

Thus SaSbc is a right-sentential form, and its handle is aSb. Note that in any

unambiguous grammar with no useless symbols, such as grammar (10.2), the

rightmost derivation of a given right-sentential form is unique, so its handle is

unique. Thus we may speak of "the handle*' rather than "a handle." The viable

prefixes of SaSbc are e y S, Sa, SaS, and SaSb.

We say an item A -> a • p is valid for a viable prefix y if there is a rightmost

derivation

SZ>dAwj>daPw

and <5a = y. Knowing which items are valid for a given viable prefix helps us find a

rightmost derivation in reverse, as follows. An item is said to be complete if the dot

is the rightmost symbol in the item. If A - a • is a complete item valid for y, then it

appears that A -> a could have been used at the last step and that the previous

right-sentential form in the derivation of yw was 3Aw.

Of course, we cannot more than suspect this since A^ol- may be valid for y

because of a rightmost derivation S ^> 5Aw' => yw'. Clearly, there could be two or

more complete items valid for y, or there could be a handle of yw that includes

symbols of w. Intuitively, a grammar is defined to be LR(0) if in each such situa-

tion 5Aw is indeed the previous right-sentential form for yw. In that case, we can

start with a string of terminals x that is in L(G) and hence is a right-sentential form

of G, and work backward to previous right-sentential forms until we get to S. We
then have a rightmost derivation of x.

Example 10.7 Consider grammar (10.2) and the right-sentential form abc. Since

S' h> Ac => abc,

we see that A ab • is valid for viable prefix ab. We also see that A - a • b is valid

for viable prefix a, and A -> - ab is valid for viable prefix e. As A ab • is a
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complete item, we might be able to deduce that Ac was the previous right-

sentential form for abc.

Computing sets of valid items

The definition of LR(0) grammars and the method of accepting L(G) for LR(0)

grammar G by a DPDA each depend on knowing the set of valid items for each

viable prefix y. It turns out that for every CFG G whatsoever, the set of viable

prefixes is a regular set, and this regular set is accepted by an NFA whose states

are the items for G. Applying the subset construction to this NFA yields a DFA
whose state in response to the viable prefix y is the set of valid items for y.

The NFA M recognizing the viable prefixes for CFG G = (K, T, P, S) is

defined as follows. Let M = (Q, V u T, <5, q0 , Q\ where Q is the set of items for G
plus the state q0 , which is not an item. Define

1) <H<?o> 0 = {S - * a |S a is a production},

2) 8{A - ol BP, e) = {B - •

y \
B - y is a production},

3) S(A - a Xfr X) = {A - aX • 0}.

Rule (2) allows expansion of a variable B appearing immediately to the right of the

dot. Rule (3) permits moving the dot over any grammar symbol X ifX is the next

input symbol.

Example 10.8 The NFA for grammar (10.2) is shown in Fig. 10.2.

Fig. 10.2 NFA recognizing viable prefixes for Grammar (10.2).
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Theorem 10.9 The NFA M defined above has the property that S(q0 , y) contains

A -+ a •

f! if and only if A -+ a •
ft is valid for y.

Proof

Only if: We must show that each item A a •
ft contained in d(q0 , y) is valid for y.

We proceed by induction on the length of the shortest path labeled y from q0 to

A -> a • P in the transition diagram for M. The basis (length 1) is straightforward.

The only paths of length one from q0 are labeled e and go to items of the form

S -> • a. Each of these items is valid for e because of the rightmost derivation S f> a.

For the induction, suppose that the result is true for paths shorter than k 9
and

let there be a path of length k labeled y from q0 to A a • /?. There are two cases

depending on whether the last edge is labeled e or not.

case 1 The last edge is labeled X, for X in V u T. The edge must come from a

state A -+ a' • AT/?, where a = ol'X. Then by the inductive hypothesis, A - a' • X/? is

valid for y', where y = y'X. Thus there is a rightmost derivation

S%>dAw=>doc'Xpw,rm rm '

where <5a' = y'. This same derivation shows that A ol'X /? (which is >4 a ft)

is valid for y.

case 2 The last edge is labeled c. In this case a must be c, and A -> a • /? is really

A-* -
ft. The item in the previous state is of the form i^-x^ • Afiu and is also

valid for y. Thus there is a derivation

where y = 3oc
l

. Let Pi^>x for some terminal string x. Then the derivation

S ^> SBw => &x, ,4/?i w ^> 5ol x
Axw => eta, tfxw

can be written

S ^> (5a, Axw => dot, Bxw.
rm 1 rm 1 "

Thus A • P is valid for y, as y = (5a P

//: Suppose ,4 a • /? is valid for y. Then

S^y^w^yja^w, (10.3)

where y 1
ct = y. If we can show that 3(q0 , y x ) contains A - • a/?, then by rule (3) we

know that S(q0 , y) contains A-kx- p. We therefore prove by induction on the

length of derivation (10.3) that S(q0 , y t ) contains /I • a/?.

The basis, one step, follows from rule (1). For the induction, consider the step

in S=>y x
Aw in which the explicitly shown A was introduced. That is, write

s kyi Aw as

S I? y2 Bx 7% 72 73 Ay^x |> y2 y 3 Ayx,

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


252 DETERMINISTIC CONTEXT-FREE LANGUAGES

where y2 y 3 = y x
and yx = w. Then by the inductive hypothesis applied to the

derivation

S^y2 Bxj>y2 y3 Ay4x9

we know that B •

y 3 Ay4 is in 5{qQ , y2 ). By rule (3), B y3 • y4y4 is in <5(<70 , y2 y3 ),

and by rule (2), A • a/? is in <%0 , y2 y3 ). Since y 2 y 3 = yj, we have proved the

inductive hypothesis.

Definition of LR(0) grammar

We are now prepared to define an LR(0) grammar. We say that G is an LR(0)

grammar if

1) its start symbol does not appear on the right side of any production, and

2) for every viable prefix y of G, whenever A a • is a complete item valid for y,

then no other complete item nor any item with a terminal to the right of the

dot is valid for y.|

There is no prohibition against several incomplete items being valid for y, as long

as no complete item is valid.

Theorem 10.9 gives a method for computing the sets of valid items for any

viable prefix. Just convert the NFA whose states are items to a DFA. In the DFA,
the path from the start state labeled y leads to the state that is the set of valid items

for y. Thus construct the DFA and inspect each state to see if a violation of the

LR(0) condition occurs.

Example 10.9 The DFA constructed from the NFA of Fig. 10.2, with the dead

state (empty set of items) and transitions to the dead state removed, is shown in

Fig. 10.3. Of these states, all but 70 ,
Iu / 3 , and 7 6 consist of a single complete item.

The states with more than one item have no complete items, and surely 5", the

start symbol, does not appear on the right side of any production. Hence grammar

(10.2) is LK(0).

10.7 LR(0) GRAMMARS AND DPDAs

We now show that every LR(0) grammar generates a DCFL, and every DCFL
with the prefix property has an LR(0) grammar. Since every language with an

LR(0) grammar will be shown to have the prefix property, we have an exact

characterization of the DCFL's; namely L is a DCFL if and only if L$ has an

LR(0) grammar.

t The only items that could be valid simultaneously with A -* a are productions with a nonterminal

to the right of the dot, and this can occur only if a = e; otherwise another violation of the LR(0)

conditions can be shown to occur.
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Fig. 10.3 DFA whose states are the sets of valid items.

DPDA's from LR(0) grammars

The way in which we construct a DPDA from an LR(0) grammar differs from the

way in which we constructed a (nondeterministic) PDA from an arbitrary CFL in

Theorem 5.3. In the latter theorem we traced out a leftmost derivation of the word

on the PDA's input, using the stack to hold the suffix of a left-sentential form

beginning at the leftmost variable. Now we shall trace out a rightmost derivation,

in reverse, using the stack to hold a viable prefix of a right-sentential form,

including all variables of that right-sentential form, allowing the remainder of the

form to appear on the input.

In order to clearly describe this process, it is useful to develop a new notation

for ID's of a PDA. We picture the stack with its top at the right end, rather than

the left. To distinguish the new notation from the old we use brackets rather than

parentheses: [q, a, w] is our synonym for (q, w, ol
r

).
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To simulate rightmost derivations in an LR(0) grammar not only do we keep

a viable prefix on the stack, but above every symbol we keep a state of the DFA
recognizing viable prefixes. If viable prefix X

X
X2

"' Xk is on the stack, then the

complete stack contents will be s0X 1 s 1
• • • Xk sk , where s

f
is 3(q0 ,

X
x

• • • X
t ) and 3

is the transition function of the DFA. The top state sk provides the valid items for

X
x X 2

'
'

' Xk .

If sk contains A a •
, then A a • is valid for X

x
Xk . Thus a is a suffix of

X x
• - - Xk ,

say ol = Xi+1 Xk (note a may be £, in which case i = k). Moreover,

there is some w such that X
x

••• Xk w is a right-sentential form, and there is a

derivation

rm 1 1 rm * K

Thus to obtain the right-sentential form previous to X
x

• • Xk w in a right deriva-

tion we reduce a to A, replacing Xi+ ,
• • • Xk on top of the stack by A. That is, by a

sequence of pop moves (using distinct states so the DPDA can remember what it

is doing) followed by a move that pushes A and the correct covering state onto the

stack, our DPDA will enter a sequence of ID's

[q, s0X x sk . x
Xk sk ,

w] \±- [q, s0X x

••• A>
f
/ls, w], (10.4)

where s = <5(s„ /I). Note that if the grammar is LR(0)9 sk contains only A a •

,

unless a = c, in which case sk may contain some incomplete items. However, by

the LR(0) definition, none of these items have a terminal to the right of the dot, or

are complete. Thus for any y such that X x
• - • Xk y is a right-sentential form, X

x
• •

•

Xi Ay must be the previous right-sentential form, so reduction of a to A is correct

regardless of the current input.

Now consider the case where sk contains only incomplete items. Then the

right-sentential form previous to X
x

- - Xk w could not be formed by reducing a

suffix of X
x

- - Xk to some variable, else there would be a complete item valid for

X
x

Xk . There must be a handle ending to the right of Xk in X
x

•
• Xk w, as

X
x

- Xk is a viable prefix. Thus the only appropriate action for the DPDA is to

shift the next input symbol onto the stack. That is,

[q, s0X x

••• sk . x
Xk sk ,

ay]\—[q, s0X x

• s^^^at, y], (10.5)

where t = 5(sk ,
a). If t is not the empty set of items, X

x
• • • Xk a is a viable prefix. If

f is empty, we shall prove there is no possible previous right-sentential form for

X
x

Xk ay, so the original input is not in the grammar's language, and the

DPDA "dies" instead of making the move (10.5). We summarize the above obser-

vations in the next theorem.

Theorem 10.10 If L is L(G) for an LR(0) grammar G, then L is N(M) for a DPDA
M.

Proof Construct from G the DFA D, with transition function 5, that recognizes

G's viable prefixes. Let the stack symbols ofM be the grammar symbols of G and
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the states of D. M has state q, which is its start state, along with the additional

states used to perform reductions by sequences of moves such as (10.4) above. We
assume the reader can specify the set of states for each reduction and the e-

transitions needed to effect a reduction. We also leave to the reader the

specification of the transition function of M needed to implement the moves

indicated by (10.4) and (10.5).

We have previously indicated why, if G is LR(0), reductions are the only

possible way to get the previous right-sentential form when the state of the DFA
on the top of Af's stack contains a complete item. We claim that when M starts

with w in L(G) on its input and only s0 on its stack, it will construct a rightmost

derivation for w in reverse order. The only point still requiring proof is that when

a shift is called for, as in (10.5), because the top DFA state on M's stack has only

incomplete items, then there could not be a handle among the grammar symbols

X x Xk found on the stack at that time. If there were such a handle, then some

DFA state on the stack, below the top, would have a complete item.

Suppose there were such a state containing A a . Note that each state,

when it is first put on the stack either by (10.4) or (10.5), is on top of the stack.

Therefore it will immediately call for reduction of a to A. If a £, then {A - a •
} is

removed from the stack and cannot be buried. If a = £, then reduction of e to A
occurs by (10.4), causing A to be put on the stack above X

t
••• Xk . In this case,

there will always be a variable above Xk on the stack as long as X
t

• • • Xk occupies

the bottom positions on the stack. But A e at position k could not be the handle

of any right-sentential form X
t

••• Xk f$,
where ft contains a variable.

One last point concerns acceptance by G. If the top state on the stack is

{S -> a •
}, where S is G's start symbol, then G pops its stack, accepting. In this case

we have completed the reverse of a rightmost derivation of the original input.

Note that as S does not appear on the right of any production, it is impossible that

there is an item of the form A - Sa valid for viable prefix S. Thus there is never

a need to shift additional input symbols when S alone appears on the stack. Put

another way, L[G) always has the prefix property if G is LR(0).

We have thus proved that if w is in L(G), M finds a rightmost derivation of w,

reduces w to S, and accepts. Conversely, if M accepts w, the sequence of right-

sentential forms represented by the ID's ofM provides a derivation of w from S.

Thus N(M) = L(G).

Corollary Every LR(0) grammar is unambiguous.

Proof The above argument shows that the rightmost derivation ofw is unique.

Example 10.10 Consider the DFA of Fig. 10.3. Let 0, 1, . . ., 8 be the names of the

states corresponding to the sets of items /0 ,
Iu / 8 ,

respectively. Let the input

be aababbc. The DPDA M constructed as in Theorem 10.10 makes the sequence

of moves listed in Fig. 10.4.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


256 DETERMINISTIC CONTEXT-FREE LANGUAGES

Stack Remaining input Comments

1) 0 aababbc Initial ID

2) 0a3 ababbc Shift

3) 0a3a3 babbc Shift

4) Oa3a3bl abbe Shift

5) 0a3A2 abbe Reduce by A -> ab

6) 0a3S6 abbe Reduce by S -> A

7) 0a3S6a3 bbc Shift

8) 0a3S6a3b7 be Shift

9) 0a3S6A5 be Reduce by A -> ab

10) 0a3S6 be Reduce by S -* SA

11) 0a3S6b% c Shift

12) 0A2 c Reduce by A -> aSb

13) 0S\ c Reduce by S -> A

14) 0S\c4 Shift

15) Accept

Fig. 10.4 Sequence of moves of DPDA M.

For example, in line (1), state 0 is on top of the stack. There is no complete

item in set /0 , so we shift. The first input symbol is a, and there is a transition from

/0 to / 3 labeled a. Thus in line (2) the stack is 0a3. In line (9), 5 is the top state. / 5

consists of complete item S -> SA. We pop SA off the stack, leaving 0a3. We then

push S onto the stack. There is a transition from / 3 to /6 labeled S, so we cover S

by 6, yielding the stack 0a3S6 in line (10).

LR(0) grammars from DPDA's

We now begin our study of the converse result—ifL is N(M) for a DPDA M, then

L has an LR(0) grammar. In fact, the grammar of Theorem 5.4 is LR(0) whenever

M is deterministic, but it is easier to prove that a modification of that grammar is

LR(0). The change we make is to put at the beginning of the right side of each

production a symbol telling which PDA move gave rise to that production.

Formally, let M = (g, Z, T, <5, qQj Z0 , 0) be a DPDA. We define grammar

GM = (V, Z, P, S) such that L(GM ) = N(M). V consists of the symbol 5, the

symbols [qXp] for q and p in Q and X in T, and the symbols AqaY for q in Q, a in

Z u {e} and Y in T. S and the [qXp]
y

s play the same role as in Theorem 5.3.

Symbol AqaY indicates that the production is obtained from the move of M in

3(q, a, Y). The productions of GM are as follows (with useless symbols and pro-

ductions removed).

1) S->[q0 Z0 p] for all p in Q.

2) If 3(q, a, Y) = (p, e), then there is a production [qYp] -> AqaY .
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3) If 5(q, a, Y) = (pu X X X2
'" Xk ) for k > 1, then for each sequence of states p2 ,

P3» •••» Pfc+i there is a production

[qYPk + i]-+AqaY[p 1
X

l p2]
•••

[phXkPk+ll

4) For all q, a, and Y, AqaY -> a.

Consider a rightmost derivation in GM . It starts with S=>[q0 Z0 p] for some
state p. Suppose for the sake of argument that d(q0 , a, Z0 ) = (r, XYZ). Then the

only productions for [q0 Z0 p] that derive strings beginning with a (a may be e)

have right sides AqoaZo[rXs][sYt][tZp] for some states s and t. Suppose that the

rightmost derivation eventually derives some string w from [tZp]. Then, if

S(s, b, Y) — (u, VW), we might continue the rightmost derivation as

S g> AqoaZo[rXs][sYt]w ^,oflZo[^^]^y["^][^r]w. (10.6)

Now consider the moves made by M before reading input w. The input

corresponding to derivation (10.6) is of the form ax
t
bx 2 x3 w y

where [rXs]^>x lt

[uVv] ^> x 2 , and [vWt] ^> x3 . The corresponding sequence of moves is of the form|

(qQ ,
ax

x
bx2 x$w, Z0 )

|— (r, x
x
bx 2 x3 w, XYZ)

p-(s, bx 2 x3 wy YZ)

x 2 x3 w, VWZ)

h-(r, x3 w, VKZ)

h-(^,vv,Z). (10.7)

If we compare (10.6) and (10.7) we note that stack symbols (Z in particular)

which remain on the stack at the end of (10.7) are the symbols that do not appear

(with two states attached in a bracketed variable) in the longest viable prefix of

(10.6). The stack symbols popped from the stack in (10.7), namely X y
V, and W,

are the symbols that appear in the viable prefix of (10.6). This situation makes

sense, since the symbols at the left end of a sentential form derive a prefix of a

sentence, and that prefix is read first by the PDA.
In general, given any viable prefix a of GM , we can find a corresponding ID /

of M in which the stack contains all and only the stack symbols that were in-

troduced in a rightmost derivation of some aw and later replaced by a string of

terminals. Moreover, / is obtained by havingM read any string derived from a. In

the case that M is deterministic, we can argue that the derivations of right-

sentential forms with prefix a have a specific form and translate these limitations

on derivations into restrictions on the set of items for a.

Lemma 10.6 If M is a DPDA and GM is the grammar constructed from M as

above, then whenever [qXp] ^> w, there is a unique computation (q y w, X) |-*- (p, £,

t Note that we have reverted to our original notation for ID's.
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e). Moreover, the sequence of moves made by M corresponds to the reverse of the

sequence in which subscripted A^'s are replaced by a, where A^y is deemed to

"correspond" to a move in which the state is s, Y is on top of the stack, and input a

is used.

Proof The existence of such a computation was proved in Theorem 5.3. Its

uniqueness follows from the fact that M is deterministic. To show the correspon-

dence between the moves ofM and the reverse of the sequence of expansions of

subscripted A's, we perform an easy induction on the length of a derivation. The

key portion of the inductive step is when the first expansion is by rule (3):

[qXp]=>AqaX[p 1
X

l p2][p2X 2 p3]
••

[pkXk p].

Then the explicitly shown AqaX will be expanded after all subscripted A's derived

from the other variables are expanded.

As the first move ofM

,

(q, w, X)\—(pu w\X l
X 2

- - Xk\

where w = aw\ corresponds to AqaX , we have part of the induction proved. The

remainder of the induction follows from observing that in the moves of M, X u

X 2 , . .., Xk are removed from the stack in order, by using inputs wu vv2 , . .., wfc ,

where WjWj ••• wk = w', while in the rightmost derivation of w from [qXp\ the

derivation of w
x
from [p {

X
x p 2] follows the derivation of w 2 from [p 2 X 2 p 3 ], and

so on. Since all these derivations are shorter than [qXp] => w, we may use the

inductive hypothesis to complete the proof.

Now, for each variable [qXp] of GM , let us fix on a particular string wqXp

derived from [gXpJ.t Let h be the homomorphism from the variables of GM to L*

defined by

KA qay) = <*, H[qXp]) = WqXp .

Let N(A qay ) = 1 and N([qXp]) be the number of moves in the computation corre-

sponding to [qXp]%> wqXp . Extend N to V* by N(B
l
B2 - Bk ) = JJ-i "(H

Finally, let us represent a move S(q, a, Y) of M by the triple (qaY). Let m be the

homomorphism from V* to moves defined by

1) m(AqaY)=(qaY);

2) m([qXp]) is the reverse of the sequence of subscripts of the A's expanded in the

derivation of wqXp from [qXp]. By Lemma 10.6, m([qXp]) is also the sequence

of moves (g, wqXpy X) p- (p, 6, e).

We can now complete our characterization of LR(0) grammars.

Lemma 10.7 Let y be a viable prefix of GM . (Note that by the construction of

GM , y is in V*). Then (q0 ,
h(y), Z0 ) \

Ĵ L
(p, ey P) for some p and 0, by the sequence

of moves m(y).

t We assume GM has no useless symbols, so wqXp exists.
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Proof As y is a viable prefix, there is some y in I* such that yy is a right-

sentential form. Then for some state r, [q0 Z0 r] => h(y)y. By Lemma 10.6, the last

N(y) expansions of A's in that derivation take place after the right-sentential form

yy is reached. Also by Lemma 10.6, there is a unique sequence ofmoves (q0 ,
h(y)y,

Z0 ) H*- (r, e, e), and the first N(y) of these must be m(y).

We are now ready to show that GM is LR(0). Since the start symbol obviously

does not appear in any right side, it suffices to show that each set of items with a

complete item B -> /? • contains no other complete item and no item of the form

A
q(lY

* 0 for a in £. We prove these facts in two lemmas.

Lemma 10.8 If / is a set of items of GM , and B ft
• is in /, then there is no item

A
qaY

-*
' a in /.

Proo/ Let / be the set of items for viable prefix y.

case 1 If B -> /? is a production from rule (1), then y = /?, and y is a single

variable [q0 Z0 p], since S appears on no right side. If AqaY -* • a is valid for y, then

there is a derivation S ^> yAqaY y j> yay. However, no right-sentential form begins

with a variable [q0 Z0 p] unless it is the first step of a derivation; all subsequent

right-sentential forms begin with a subscripted A, until the last, which begins with

a terminal. Thus y could not be followed by AqaY in a right-sentential form.

case 2 If B -> ft is introduced by rules (2) or (3), then we can again argue that

y'f$AqaY is a viable prefix, where y = y'p. However, in any rightmost derivation,

when B - /? is applied, the last symbol of /? is immediately expanded by rules (2),

(3), or (4), so ft could not appear intact in a right-sentential form followed by AqaY .

case 3 If B - P is Apbz
-> b introduced by rule (4), and AqaY - • a is valid for y,

then b must be c, else y/l
9fl y, which is a viable prefix, has a terminal in it. As

A
Pez

* ^ valid for y, it follows that y^4 pfZ is a viable prefix. Thus, by Lemma 10.7

applied to yA qaY and yA pcZ , the first N(y) + 1 moves made by M when given input

h{y)a are both m(y)(p£Z) and m(y)(qaY), contradicting the determinism of M.
(Note that in the first of these sequences, a is not consumed.)

Lemma 10.9 If / is a set of items of GM , and B ft
• is in /, then there is no other

item C -> a • in /.

Proo/ Again let y be a viable prefix with set of valid items /.

case 1 Neither B -> /? nor C a is a production introduced by rule (4). Then the

form of productions of types (2) and (3), and the fact that productions of type (1)

are applied only at the first step tell us that as a and ft
are both suffixes of y, we

must have p = a. If these productions are of type (1), B = C = 5, so the two items

are really the same. If the productions are of type (2) or (3), it is easy to check that

B = C. For example, if a = /? = AqaY , then the productions are of type (2), and B
and C are each [qYp] for some p. But rule (2) requires that d(q, a, Y) = (p, f), so

the determinism ofM assures that p is unique.
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case 2 B - P and C -> a are type (4) productions. Then yB and yC are viable

prefixes, and Lemma 10.7 provides a contradiction to the determinism ofM. That

is, if f$
= a = €, then the first N(y) + 1 moves ofM on input h(y) must be m(yB) and

must also be m(yC). If /? = a 6 and ai — b^e, then a = and the first N(y) + 1

moves ofM on input /i(y)a must be m(yB) and m(yC). If ft = a e and a = £, then

the first N(y) + 1 moves ofM on input h(y)a provides a similar contradiction.

case 3 B -> /? is from rule (1), (2), or (3) and C -> a is from rule (4), or vice versa.

Then yC is a right-sentential form, and y ends in We can rule out this possibility

as in cases (1) and (2) of Lemma 10.8.

Theorem 10.11 IfM is a DPDA, then GM is an LR(0) grammar.

Proof Immediate from Lemmas 10.8 and 10.9.

We can now complete our characterization of LR(0) grammars.

Theorem 10.12 A language L has an LK(0) grammar if and only if L is a DCFL
with the prefix property.

Proof

If: Suppose L is a DCFL with the prefix property. Then L is L(M') for a DPDA
Af '. We can make M' accept L by empty stack by putting a bottom-of-stack

marker on M' and causing M' to enter a new state that erases the stack whenever

it enters a final state. As L has the prefix property, we do not change the language

accepted, and L is accepted by empty stack by the new DPDA, M. Thus

L= L(GM ), and the desired conclusion follows from Theorem 10.11.

Only if: Theorem 10.10 says that L is N(M) for a DPDA, M. We may use the

construction of Theorem 5.2 to show that L is L(M') for a DPDA M'. The fact that

L has the prefix property follows from the fact that a DPDA "dies" when it

empties its stack.

Corollary L$ has LR(0) grammar if and only if L is a DCFL, where $ is not a

symbol of L's alphabet.

Proof LS> surely has the prefix property. If LS is a DCFL, then L = L$/$ is a

DCFL by Theorem 10.2. Conversely, if L is a DCFL, it is easy to construct a

DPDA for LS.

10.8 LR(k) GRAMMARS

It is interesting to note that if we add one symbol of "lookahead," by determining

the set of following terminals on which reduction by A a could possibly be

performed, then we can use DPDA's to recognize the languages of a wider class of

grammars. These grammars are called LR(l) grammars, for the one symbol of

lookahead. It is known that all and only the deterministic CFL's have LK(1)
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grammars. This class ofgrammars has great importance for compiler design, since

they are broad enough to include the syntax of almost all programming languages,

yet restrictive enough to have efficient parsers that are essentially DPDA's.

It turns out that adding more than one symbol of lookahead to guide the

choice of reductions does not add to the class of languages definable, although for

any k, there are grammars, called LR(k), that may be parsed with k symbols of

lookahead but not with k — 1 symbols of lookahead.

Let us briefly give the definition and an example of LR(l) grammars, without

proving any of the above contentions. The key extension of LR(0) grammars is

that an LR(1 ) item consists of an LR(0) item followed by a lookahead set consisting

of terminals and/or the special symbol $, which serves to denote the right end of a

string. The generic form of an LR(1) item is thus

A-+cc 0, {au a2 , ...,an}.

We say LR(l) item A -> a •
ft, {a} is valid for viable prefix y if there is a rightmost

derivation S => SAy j> Satfty, where Sol — y, and either

i) a is the first symbol of y, or

ii) y — e and a is $.

Also, A -> a •
/?, {au a 2 , . .

. , an] is valid for y if for each i, A a •
ft, {a,} is valid

for y.

Like the LR(0) items, the set of LR(l) items forms the states of a viable prefix

recognizing NFA, and we can compute the set of valid items for each viable prefix

by converting this NFA to a DFA. The transitions of this NFA are defined as

follows.

1) There is a transition on X from A -> a • Xft, {a ly a 2 , . .., an} to A olX •
ft,

{au a 2 ,
an}.

2) There is a transition on e from A -> a • Bp, {a u a2 , . . ., an} to B -* •

y, T, if

B -> y is a production and T is the set of terminals and/or $ such that b is in T
if and only if either

i) ft derives a terminal string beginning with b, or

ii) ft ^> e, and b is a
x
for some 1 < i < n.

3) There is an initial state q0 with transitions on e to S->- a, {$} for each

production S -> a.

Example 10.11 Consider the grammar

S-+A A - BA
|
£ B^aB\b (10.8)

which happens to generate a regular set, (a*b)*. The NFA for grammar (10.8) is

shown in Fig. 10.5, and the corresponding DFA is shown in Fig. 10.6. The NFA of

Fig. 10.5 is unusual in that no two items differ only in the lookahead sets. In

general, we may see two items with the same dotted production.
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To see how Fig. 10.5 is constructed, consider item 5 -> • A, {$}. It has e-

transitions to items of the form A -> • AB, T, and A -> •
, 7, but what should T be?

In rule (2) above, ft is e, so (2i) yields no symbols for T. Rule (2ii) tells us that $ is in

T, so T = {$}. Now consider item >4 -> • 2L4, {$}. There are e-transitions to

B-+ - aB, U and B-+ - b, U for some I/. Here, /? = A It is easy to check that A
derives strings beginning with a and b, so a and b are in U. A also derives e, so $ is

in 1/ because it is the lookahead set of A -> • &4, {$}. Thus (7 = {a, b, $}.

A grammar is said to be LR(1) if

1) the start symbol appears on no right side, and

2) whenever the set of items I valid for some viable prefix includes some com-
plete item A -> a •

, {au a2 , . .
. , a„}, then

i) no a
t
appears immediately to the right of the dot in any item of 7, and

ii) if , {bu b 2 ,
bk} is another complete item in 7, then a

{ J= b
}
for

any 1 < i < n and 1 < j < k.

Example 10.12 Consider Fig. 10.6. Sets of items Iu 74 ,
/ 5 , and I6 consist of only

one item and so satisfy (2). Set I0 has one complete item, A->-
y {$}. But $ does not

appear to the right of a dot in any item of 70 . A similar remark applies to J 2 , and

7 3 has no complete items. Thus grammar (10.8) is LR(\). Note that this grammar
is not LR(0); its language does not have the prefix property.

The automaton that accepts an LR(l) language is like a DPDA, except that it

is allowed to use the next input symbol in making its decisions even if it makes a

move that does not consume its input. We can simulate such an automaton by an

ordinary DPDA if we append $ to the end of the input. Then the DPDA can keep

the next symbol or $ in its state to indicate the symbol scanned. The stack of our

automaton is like the stack of the LR(0) grammar recognizing DPDA: it has

alternating grammar symbols and sets of items. The rules whereby it decides to

reduce or shift an input symbol onto the stack are:

1) If the top set of items has complete item A -> a •
, {au a2i . where A J= 5,

reduce by A -> a if the current input symbol is in {au a2t . . ., an}.

2) If the top set of items has an item S -> a , {$}, then reduce by S -> a and

accept if the current symbol is $, that is, the end of the input is reached.

3) If the top set of items has an item A a • aB, T, and a is the current input

symbol, then shift.

Note that the definition of an LK(1) grammar guarantees that at most one of

the above will apply for any particular input symbol or $. We customarily sum-

marize these decisions by a table whose rows correspond to the sets of items and

whose columns are the terminals and $.
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Example 10.13 The table for grammar (10.8), built from Fig. 10.6, is shown in

Fig. 10.7. Empty entries indicate an error; the input is not in the language. The

sequence of actions taken by the parser on input aabb is shown in Fig. 10.8. The

number i on the stack represents set of items /, from Fig. 10.6. The proper set of

items with which to cover a given grammar symbol is determined from the DFA
transitions (Fig. 10.6) exactly as for an LR(0) grammar.

a b $

h Shift Shift Reduce by A -> c

h Accept

h Shift Shift Reduce by A -> e

li Shift Shift

u Reduce by B -* b Reduce by B -* b Reduce by B -* b

h Reduce by A -> BA

h Reduce by B -* aB Reduce by B-+ aB Reduce by B -> aB

Fig. 10.7 Decision table for grammar (10.8).

Stack Remaining input Comments

0 aabb$ Initial

0a3 abb% Shift

Oa3a3 bb% Shift

Qa3a3M b% Shift

Oa3a3B6 b% Reduce by B -* b

Oa3B6 b% Reduce by B -> aB

0B2 b% Reduce by B -> aB

0B2M $ Shift

OB2B2 $ Reduce by B -* b

OB2B2A5 $ Reduce by A -> c

0B2A5 $ Reduce by A -> BA
0A\ $ Reduce by A -> BA

$ Reduce by S -+ A and accept

Fig. 10.8 Action of LR(\) parser on input aabb.

EXERCISES

10.1 Show that the normal form of Lemma 10.2 holds for nondeterministic PDA's.

10.2

a) Show that every DCFL is accepted by a DPDA whose only e moves are pop moves.

b) Show that the DPDA of part (a) can be made to satisfy the normal form of Lemma

10.2.
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*10.3 Give an efficient algorithm to implement rule (4) of Lemma 10.3.

*S10.4 Show that the DCFL's are not closed under union, concatenation, Kleene closure,

or homomorphism.

**10.5 Show that the following are not DCFL's.

Sa) {wwR
|
wis in (0 + 1)*} b) {OT

|
n > 1} u {0

n
l
2n

|
n > 1}

**10.6 Prove that

{WVa?
| U j > 1} u {0*1*2'

| U j > 1}

is a DCFL, but is not accepted by any DPDA without t-moves.

10.7 Show that if L is a DCFL, then L is accepted by a DPDA which, if it accepts

Oia 2
'" an , does so immediately upon consuming an (without subsequent amoves). [Hint:

Use the predicting machine.]

10.8 Does Greibach's Theorem (Theorem 8.14) apply to the DCFL's?

10.9 Construct the nonempty sets of items for the following grammars. Which are

LK(0)?

a) S' - S

S -> aSa
|

bSb \

c

b) 5' - S

S-+aSa\bSb\c

Sc) S-* Ei

E l -T3 E l
\T

l

E2 -+T3 E2 \T2
7\ -> a$

|

(E2 $

T2 ->a)|(E2 )

r3 ->0+ |(e2 +

10.10 Show the sequence of stacks used by the DPDA constructed from grammar 10.9(c)

when the input is a + (a + a)$.

10.11 Construct the nonempty sets of LR(l) items for the following grammars. Which are

LK(1)?

a) S^A
A-+AB\t
B-+aB\b

b) S-+E
E -> E + T\T
T-+a\(E)

10.12 Repeat Exercise 10.10 for grammar 10.11(b).

10.13 Let G be an LR(0) grammar with A -> a • , a ± c, valid for some viable prenx y.

Prove that no other production can be valid for y.

Solutions to selected exercises

10.4 Let U = {0T2'
|
ij > 0} and L2 = {tfl

J2J
\
ij > 0}. It is easy to show that L, and L2

are DCFL's. However, L {
u L2 is the CFL shown not to be a DCFL in Example 10.1. Thus

the DCFL's are not closed under union.
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For concatenation, let L3 = flL t u L2 . Then L3 is a DCFL, because the presence or

absence of symbol a tells us whether to look for a word in L x or a word in L2 . Surely a* is a

DCFL. However a*L3 is not a DCFL. If it were, then L4 = a*L3 n a0*l*2* would be a

DCFL by Theorem 10.4. But L4 = aL x u aL2 . If L4 is a DCFL, accepted by DPDA M,
then we could recognize L x u L2 by simulating M on (imaginary) input a and then on the

real input. As Li u L2 is not a DCFL, neither is L4 , and therefore the DCFL's are not

closed under concatenation.

The proof for closure is similar, if we let L5 = {a} u L3 . L5 is a DCFL, but L? is not, by

a proof similar to the above.

For homomorphism, let L6 = aL x
u bL2i which is a DCFL. Let L be the homomor-

phism that maps b to a and maps other symbols to themselves. Then h(L6 ) = L4 , so the

DCFL's are not closed under homomorphism.

10.5(a) Suppose L x
= {wwR

\
w is in (0 + 1)

+
} were a DCFL. Then by Theorem 10.4, so

would be

L2 = L,n (01)*(10)*(01)*(10)*.

Now

L2 = {(Ol)'(lOy(Oiy(lO)' > 0, i and ; not both 0}.

By Theorem 10.3, L3 = MIN(L2 ) is a DCFL. But

L3 = {(oiy(ioy(oiy(io)'|o <;</},

since if j > i, a prefix is in L2 . Let L be the homomorphism h(a) = 01 and h(b) = 10. Then

U = ! (L3 )
= |0 < ; < i}

is a DCFL by Theorem 10.4. However, the pumping lemma with z = a
n+ l

b
n
a
n
b
n+ 1 shows

that L4 is not even a CFL.

10.9(c) Before tackling this project, let us describe the language of the grammar. We first

describe "expression" and "term" recursively, as follows.

1) A term is a single symbol a which stands for any "argument" of an arithmetic expres-

sion or a parenthesized expression.

2) An expression is one or more terms connected by plus signs.

Then the language of this grammar is the set of all expressions followed by an endmar-

ker, $. Ei and T, generate expressions and terms followed by a $. E 2 and T2 generate

expressions and terms followed by a right parenthesis, and T3 generates a term followed by

a plus sign.

It turns out that LR(0) grammars to define arithmetic expressions, of which our gram-

mar is a simple example, are quite contorted, in comparison with an LR( 1 )
grammar for the

same language [see Exercise 10.11(b)]. For this reason, practical compiler-writing systems

never require that the syntax of a language be described by an LR(0) grammar; LK(1)

grammars, or a subset of these, are preferred. Nevertheless, the present grammar will serve

as a useful exercise. The DFA accepting viable prefixes has 20 states, not counting the dead

state. We tabulate these sets of items in Fig. 10.9. Figure 10.10 gives the transition table for

the DFA; blanks indicate transitions to the dead state.

Inspection of the sets of items tells us that certain sets, namely 1, 3, 6, 7, 8, 1 1, 14, 15, 16,

17, and 19, consist of a single complete item, while the remainder have no complete items.

Thus the grammar is LR(0).
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/o / 5 /10

E, ->
(

' E2 + £2 -* T3 • £2 T3 - (£2 + •

r,-(-E2 $ £2-- 7*
3 £2

£i - • T, £2-' 73E2 £2 -- r2
T3 -* * d -f- IL 2 —» i 2 i 3 * a -f- il \^2^>

T3 -> • (E2 + r3 - • a + T3 ^-(£2 +
T, -> • a$ T3 -> • (E2 +
Ti (E2 $ r2 ->

• a) 7i - • (£2 ) £2 -» T3 £2
•

T2 - • (E2 )

h / ,

,

S-E, • E
l -T3 E l

• £2 - T2
r
'2

rh
E, -> T3 • Ei T3 -» a • + T3 - (£2 • +
E! ->• T3 E! T2 ^a) T2 -» (£2 •

)

Ei -» ii

T3 - • fl +
T3 ->

• (E2 +
Tj -> • a$

Ti--(E2 $

7,1 3
/
' 8 ' 13

/

Ei -v T, •

Ti -* a% • T3 - ( • £2 + 7i -»(£,)•

7i - (
• £2)

£2 - • T3 £2

fi 2 -» '2

T3 -»
• a +

r3 -(£2 + -

r2 - • (£ 2 )

U 19

T3 - a • + T} - (£ 2 +
Tj - a • $ r, - (£ 2

• $

Fig. 10.9 Sets of items for Exercise 10.9(c).

BIBLIOGRAPHIC NOTES

Deterministic pushdown automata were first studied by Fischer [1963], Schutzenberger

[1963], Haines [1965], and Ginsburg and Greibach [1966a]. Lemma 10.3, the fact that

DPDA's can be made to consume all their input, is from Schutzenberger [1963]; Theorem

10.1, closure under complementation, was observed independently by various people. Most
of the closure and decision properties, Theorems 10.2 through 10.8, were first proved by

Ginsburg and Greibach [1966a]. An exception is the fact that it is decidable whether a

DCFL is regular, which was proved by Stearns [1967]. The predicting-machine construc-

tion is from Hopcroft and Ullman [1969b].
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a

0 4

1

2 4

3

4

5 12

6

7

8

9

10 12

11

12

13 12

14

Id

16

17

18

19

( ) $ Ei

14

13

13

13

15

17

16

18

2

2

11 10

11 10

11 10

14 19

Fig. 10.10 Transition table of viable prefix recognizing DFA.

LR(k) grammars and the equivalence of DPDA's to LR(l) grammars is from Knuth

[1965]. The latter work generalized a sequence of papers dealing with subclasses of the

CFG's having efficient parsing algorithms. The history of this development is described in

Aho and Ullman [1972, 1973]. Graham [1970] shows that a number of other classes of

grammars define exactly the CFL's.

Subsequent to Knuth [1965], a series of papers examined the class of LR(\) grammars

for a useful subclass for which parsers of reasonable size could be built. Korenjak's [1969]

was the first such method, although two subclasses of LR(\) grammars, called SLR(\) (for

"simple" LR) and LALR(\) (for "lookahead LR"\ due to DeRemer [1969, 1971] are the

methods used most commonly today. By way of comparison, a typical programming

language, such as ALGOL, has an LR(\) parser (viable prefix recognizing DFA) with

several thousand states, and even more are needed for an LR(0) parser. As the transition

table must be part of the parser for a language, it is not feasible to store such a large parser

in the main memory of the computer, even if the table is compacted. However, the same

languages have SLR(\) or LALR(l) parsers of a few hundred states, which fit easily with

compaction. See Aho and Johnson [1974] or Aho and Ullman [1977] for a description of

how LK-based parsers are designed and used.

A good deal of research has been focused on the open question of whether equivalence

is decidable for DPDA's. Korenjak and Hopcroft [1966] showed that equivalence isdecid-

able for a subclass of the DCFL's called "simple" languages.! These are defined by gram-

t These are not related to "simple" LR grammars in any substantial way.
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mars in Greibach normal form such that no two productions A-+ act and A^>ap exist. The

decidability of equivalence was extended to the LL(k) grammars of Lewis and Stearns

[1968], which are a proper subset of the LR(k) grammars, by Rosenkrantz and Stearns

[1970]. Valiant [1973] showed that equivalence was decidable for finite-turn DPDA's (see

Exercise 6.13 for a definition), among other classes; see also Valiant [1974], Beeri [1976],

and Taniguchi and Kasami [1976]. Friedman [1977] showed that equivalence for DPDA's
is decidable if and only if it is decidable for "monadic recursion schemes," which in terms of

automata can be viewed as one-state DPDA's that can base their next move on the current

input symbol, without consuming that symbol.

Additionally, work was done on extending the undecidability of containment for

DCFL's to small subsets of the DCFL's. The work culminated in Friedman [1976], which

proved that containment is undecidable even for the simple languages of Korenjak and

Hopcroft [1966].

A solution to Exercise 10.5(b) is found in Ginsburg and Greibach [1966a], and Exercise

10.6 is based on Cole [1969].
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CHAPTER

11
CLOSURE PROPERTIES

OF FAMILIES OF
LANGUAGES

There are striking similarities among the closure properties of the regular sets, the

context-free languages, the r.e. sets, and other classes. Not only are the closure

properties similar, but so are the proof techniques used to establish these proper-

ties. In this chapter we take a general approach and study all families of languages

having certain closure properties. This will provide new insight into the underly-

ing structure of closure properties and will simplify the study of new classes of

languages.

11.1 TRIOS AND FULL TRIOS

Recall that a language is a set of finite-length strings over some finite alphabet. A
family of languages is a collection of languages containing at least one nonempty

language. A trio is a family of languages closed under intersection with a regular

set, inverse homomorphism, and 6-free (forward) homomorphism. [We say a hom-

omorphism h is c-free if h(a) ± c for any symbol a.] If the family of languages is

closed under all homomorphisms, as well as inverse homomorphism and intersec-

tion with a regular set, then it is said to be a full trio.

Example 11.1 The regular sets, the context-free languages, and the r.e. sets are

full trios. The context-sensitive languages and the recursive sets are trios but not

full trios, since they are not closed under arbitrary homomorphisms. In fact,

closing the CSL's or the recursive sets under arbitrary homomorphisms yields the

r.e. sets (see Exercise 9.14 and its solution).

270
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Theorem 3.3 showed that regular sets are closed under intersection; hence

they are closed under "intersection with a regular set." Theorem 3.5 showed

closure of the regular sets under homomorphisms and inverse homomorphism,
completing the proof that the regular sets form a full trio. The corollary to

Theorems 6.2, 6.3, and 6.5 show that the CFL's are a full trio. Exercise 9.10 and its

solution provide a proof that the CSL's are closed under inverse homomorphism,
intersection (hence intersection with a regular set), and substitution (hence ofree

homomorphism, but not all homomorphisms, since e is not permitted in a CSL).

Thus the CSL's are a trio but not a full trio.

We shall prove that the recursive sets are a trio, leaving the proof that the r.e.

sets are a full trio as an exercise. Let h be a homomorphism and L a recursive

language recognized by algorithm A. Then /i

_1
(L) is recognized by algorithm B,

which simply applies A to h(w), where w is By

s input. Let g be an ofree homomor-
phism. Then g(L) is recognized by algorithm C which, given input w of length n,

enumerates all the words x of length up to n over the domain alphabet of g. For

each x such that g(x) = w, algorithm A is applied to x, and if x is in L, algorithm C
accepts w. Note that since g is e-free, w cannot be g(x) if

|
x

|
> \w\. Finally, ifR is

a regular set accepted by DFA M, we may construct algorithm D that accepts

input w if and only if A accepts w and M accepts w.

We conclude this section by observing that every full trio contains all regular

sets. Thus the regular sets are the smallest full trio. Also, the ofree regular sets are

the smallest trio. (A language is e-free if e is not a member of the language.)

Lemma 1 1.1 Every full trio contains all regular sets; every trio contains all e-free

regular sets.

Proof Let %J

be a trio, Z an alphabet, and R c Z* an ofree regular set. Since (€

contains at least one nonempty language, let L be in ^ and w be in L. Define

Z' = {a
|
a is in Z} and let h be the homomorphism that maps each a in Z to c and

each a' in Z' to w. Then L
x
= h~ l

(L) is in # because ^ is a trio. As w is in L, L
x

contains all strings in Z'Z*, and others as well. Let g be the homomorphism

g(a!) = g(a) = a for all a in Z. Then g being ofree, we know that L2 = g(L
t ) is in (€

and is either Z* or Z +
, depending on whether or not L

x
contains e. Thus

L2 n R = R is in proving our contention that every trio contains all ofree

regular sets.

If (€ is a full trio, we may modify the above proof by letting g'(a') = c and

g'(a) = a for all a in Z. Then L 2 = g'{L x )
= Z*. If R is any regular set whatsoever,

L2 n R = R is in <€.

We leave it as an exercise to show that the ofree regular sets are a trio and

hence the smallest trio. Note that they do not form a full trio, because they are not

closed under all homomorphisms.
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11.2 GENERALIZED SEQUENTIAL MACHINE MAPPINGS

In studying closure properties, one quickly observes that certain properties follow

automatically from others. Thus to establish a set of closure properties for a class

of languages one need only establish a set of properties from which the others

follow. In this section we shall establish a number of closure properties that follow

from the basic properties of trios and full trios.

The first operation we consider is a generalization of a homomorphism. Con-
sider a Mealy machine that is permitted to emit any string, including c, in a move.

This device is called a generalized sequential machine, and the mapping it defines

is called a generalized sequential machine mapping.

More formally a generalized sequential machine (GSM) is a 6-tupleM = (Q, Z,

A, 3, q0 ,
F), where Q, Z, and A are the states, input alphabet, and output alphabet,

respectively, 3 is a mapping from Q x Z to finite subsets ofQ x A*, q0 is the initial

state, and F is the set offinal states. The interpretation of (p, w) in 3(q, a) is thatM
in state q with input symbol a may, as one possible choice of move, enter state p
and emit the string w.

We extend the domain of 3 to Q x Z* as follows.

1) 6{q, C) = {(q, £ )}.

2) For x in Z* and a in Z,

3(q, xa) = {(p, w)
|
w = Wj w 2 and for some p

',

(p', w t ) is in d(q, x) and (p, w2 ) is in 3(p', a)}.

A GSM is e-free if 3 maps Q x Z to finite subsets ofQ x A +
. Let M(x), where

M is a GSM as defined above, denote the set

{y | (P* y) is i° 5(ao* x ) f°r some p in F}.

If L is a language over Z, let M(L) denote

{y|y is in M{x) for some x in L}.

We say that M(L) is a GSM mapping. If M is ofree, then M(L) is an t-free GSM
mapping. Note that L is a parameter of the mapping, not a given language.

Also let

M _1
(x) = {y|M(y) contains x},

and

M~ l

(L) = {y \x is in M(y) for some x in L}.

We say that M" 1
is an inverse GSM mapping. It is not necessarily true that

M~ X (M(L)) = M(M~ 1
(L)) = L, so M~ 1

is not a true inverse.

Example 11.2 Let

M = (bo, 111 {0, 1}, {a, fr}, 5, *o, {<h})-
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We define 5 by

%o> 0)

%o, 1)

5(qu 0)

%i> 1)

{(?o. «4 (9u b)},

{(?o. «)}.

0,

{(?.. 0}-

We may draw a GSM as a finite automaton, with an edge labeled a/w from state q
to state p if <5(g, a) contains (p, w). The diagram forM above is shown in Fig. 11.1.

Intuitively, as 0's are input to M,M has the choice of either emitting two a's or one

b. IfM emits the b, it goes to state q x
. If 1 is input to M, and M is in state g0 ,M can

only output an a. In state q l9 M dies on a 0-input, but can remain in state q l
with

no output on a 1-input.

Let L={0n l"\n> 1}. Then

M(L) = {a
2rt6|M>0}.

For as 0's are read by M, it emits two as per 0, until at some time it guesses that it

should emit the symbol b and go to state qv If Fs do not follow immediately on

the input, M dies. Or ifM chooses to stay in q0 when the first 1 is read, it can never

reach q {
if the input is of the form CI". Thus the only output made by M when

given input 0T is a
2n ' 2

b.

IfL, ={a 2nb\n>0}, then

M~ l (L
l ) = {wOr

I

i > 0 and w has an even number of l's}.

Note that M~ l (M(L))^L.

The GSM mapping is a useful tool for expressing one language in terms of a

second language having essentially the same structure but different external trap-

pings. For example, L
x
= {a

n
b
n

\
n > 1} and L2 = {a"ba

n
\

n > 1} in some sense have

the same structure, but differ slightly. L
x
and L2 are easily expressible in terms of

each other by GSM mappings. Figure 11.2(a) shows a GSM mapping L
t
to L2 ,

and Fig. 11.2(b) shows a GSM mapping L2 to Lv

Fig. 11.1 A GSM.
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(b)

Fig. 11.2 Two GSM's.

Closure under GSM mappings

A key fact about GSM mappings is that they can be expressed in terms of homo-

morphisms, inverse homomorphisms, and intersection with regular sets. Thus any

class of languages closed under the latter operations is closed under GSM
mappings.

Theorem 1 1.1 Every full trio is closed under GSM mappings. Every trio is closed

under ofree GSM mappings.

Proof Let % be a full trio, L a member of <€, and M = (g, I, A, d
y q0 ,

F) a GSM.
We must prove that M(L) is in (€. Let

Ai = {[q, a, x, p] \$(q, a) contains (p, x)}

and let h
x
and h 2 be the homomorphisms from Af to X* and Af to A* defined by

h
t ([q, 0, x, /?]) = a and h 2 ([q, a, x, p]) = x. Let R be the regular set of all strings in

A* such that

1) the first component of the first symbol is q0 , the start state of M;

2) the last component of the last symbol is a final state of M;

3) the last component of each symbol is the same as the first component of the

succeeding symbol.

It is easy to check that R is a regular set. A DFA can verify condition (3) by

remembering the previous symbol in its state and comparing it with the current

symbol.

If c is not in L, then M(L) = h 2 (hi
l

(L) n R). That is, h\
l maps M's input

to a string that has encoded in it, for each symbol of the input string, a possible

state transition ofM on the input symbol and a corresponding output string. The

regular set forces the sequence of states to be a possible sequence of state transi-

tions of M. Finally, h 2 erases the input and state transitions, leaving only the
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output string. Formally,

hi
1
(L) = {[Pi, au xu q x][p2 ,

a2 ,
x2 , q2]

•••
[pk , ak9 xk , qk]\a l a2 ak

is in L, the p£
's are arbitrary, and (qi9

x
f ) is in 3{pi9

a
£ )}.

Intersecting fcf^L) with K yields

£ = {[9o> a l9 x l9 qi][q» a2i x 2 , q2]
• • •

lf a*, x*,
|

a x a2
• • • ak

is in L, gfc
is in F, and a

{ ) contains (qh x,) for all f}.

Hence /i2(£) *s M(L) by definition.

If £ is in L and q0 is not a final state, then h2(L) is still M(L). But if £ is in L and

g0 is a final state, then M(e) = £, so we must modify the construction above to

make sure e is in the resulting language. Let E = h\ l

(L) n (R + e). Then

E = £u {e}, since £ is in /i

-1
(L). Hence /i 2 (L') = M(L). Since every full trio is

closed under intersection with a regular set, homomorphism, and inverse homo-
morphism, M(L) is in

The proof for trios and £-free GSM mappings proceeds in a similar fashion.

Since the GSM never emits £, the x in [q, a, x, p] is never £, and consequently h 2 is

an £-free homomorphism.

Limited erasing and inverse GSM mappings

Trios are not necessarily closed under homomorphisms that result in arbitrary

erasing. However, trios are closed under certain homomorphisms that allow eras-

ing, provided the erasing is limited. A class of languages is said to be closed under

k-limited erasing if for any language L of the class and any homomorphism h such

that h never maps more than k consecutive symbols of any sentence x in L to £,

h(L) is in the class. The class is closed under limited erasing if it is closed under

/c-limited erasing for all k. Note that if h(a) is e for some a, then whether h is a

limited erasing on L depends on L.

Lemma 11.2 Every trio is closed under limited erasing.

Proof Let ^ be a trio, L £ £* be a member of (
€, and h a homomorphism that is

/c-limited on L. Let

I 2 = {[x]|xis in If, |x| < k + 1, and h(x) + c}.

Let h
l
and h 2 be homomorphisms defined by

h l {[a l a2 am]) = a
l
a 2

- am and h 2([a x
a 2 am]) = % 1

fl 2 am ).

Since [a x a 2
••• am] is only in I 2 if h(a

l
a2

- am ) ± c, h 2 is £-free. Then h 2(h^
1
{L))

is in r^ since (€ is closed under £-free homomorphisms and all inverse homomor-

phisms. It is easy to check that h 2 (hy
l
(L)) = h(L).
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Theorem 11.2 Every trio is closed under inverse GSM mappings.

Proof Let ^ be a trio, L a member of and let M = (g, X, A, <5, g0 ,
F) be a GSM.

Without loss of generality assume that the sets X and A are disjoint. If not, replace

symbols in A by new symbols and restore them at the end of the construction by

an c-free homomorphism mapping each new symbol to the corresponding old

symbol. Let h
x
be the homomorphism mapping (X u A)* to A* defined by

f , , \a for a in A,
h

x
(a) =

|c for a in Z.

Let L! = hi
l

(L). Then is the set of strings in X*^ X*62
m ~ X*frn X*, such that

b
x
b 2 bn is in L
Let K be the regular set consisting of all words of the form a

l
x

l
a 2 x 2

• • • am xm
such that

1 ) the as are in X,

2) the x's are in A*,

3) there exist states q0 ,qu . . .,qm such that qm is in F and for 1 < i < m, 1? a,)

contains (g f ,
x

f ).

Note that x, may be (. The reader may easily show R to be a regular set by

constructing a nondeterministic finite automaton accepting R. This NFA guesses

the sequence of states q u q 2 , qm .

Now L, n K is the set of all words in R of the form a
l
x

l
a 2 x 2

••• am xmi

m > 0, where the as are in Z, the x's are in A*, x
x
x 2

• • • xm is in L, and (5(^f0 »

fl
i «2

" "

" am) contains (p, x,x2
• • • xm ), for some p in F. None of the x/s is of length

greater than k, where k is the length of the longest x such that (p, x) is in 6(q, a) for

some p and q in Q and a in X.

Finally, let /i 2 be the homomorphism that maps a to a for each a in X, and b to

( for each b in A. Then

M' l

(L) = h 2(L l
n R)

is in % by Lemma 1 1.2, since h 2 never causes more than k consecutive symbols to

be mapped to (.

11.3 OTHER CLOSURE PROPERTIES OF TRIOS

Trios and full trios are closed under many other operations. In this section we

present several of these closure properties.

Theorem 11.3 Every full trio is closed under quotient with a regular set.

Proof Let (£ be a full trio, L c X* a member of %, and R c I* a regular set. For

each a in Z
{
let a' be a new symbol, and let T.\ be the set of all such symbols. Let h t
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and h 2 be the homomorphisms from (Z
x
u li)* to Zf defined by h

x
(a) =

h
x
(ct) = a9 h 2 (a) = e and h2(a) = a. Then L/R = h 2 (h x

l

(L) n (I'i)*K), and hence

L/R is in That is, h
x

x
(L) is the words in L with each symbol primed or

unprimed independently. Thus h\ l
{L) n (Zi)*K is those words xy such that x

consists only of primed symbols, y consists only of unprimed symbols, y is in K,

and if z is x with the primes removed, then zy is in L It follows that

Theorem 11.4 Trios are closed under substitution by (-free regular sets, and full

trios are closed under substitution by regular sets.

Proof Let (€ be a trio, L c £* a member of# and s: If -> Z£ a substitution such

that for each a in Z 1? s(a) is regular. For the time being assume and I 2 are

disjoint, and .s(a) does not contain c.

Let x be a string in L. By an inverse homomorphism we can insert arbitrary

strings from X| among symbols of x. By intersecting with a regular set we can

assure that the string inserted after the symbol a is in s(a). Then by limited erasing

we can erase the symbols of x, leaving a string from s(x).

More precisely let h
x \ (L

x
u I 2)*->Zf be the homomorphism defined by

h
x
(a) = a for a in 2^ and /^(a) = c for a in Z 2 and let h 2 : (Zj u Z 2 )*

-> Zf be the

homomorphism defined by h 2 (a) = c for a "ml.
l
and /? 2 (a) = a for a in Z 2 . Then

is a regular set, since each s(a) is. Since s(a) is (-free, /7 2 erases at most every other

symbol, so s(L) is in
r6 by Lemma 1 1.2. The proof that full trios are closed under

substitution by regular sets is identical except for the fact that s may not be (-free.

If Zi and Z 2 are not disjoint, replace each symbol of Z 2 by a new symbol, and

follow the above operations by an (-free homomorphism to restore the old sym-

bols.

11.4 ABSTRACT FAMILIES OF LANGUAGES

Many of the families of languages we have studied have closure properties that are

not implied by the trio or full trio operations. Predominant among these are

h2(K
l
{L) n (Z',)*R)

is all strings z as described above, that is, L/R.

Now
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union, concatenation, and Kleene closure. For this reason, two other sets of

closure properties have had their consequences heavily studied, and in fact were

studied long before the trio and full trio. Define a class of languages to be an

abstract family of languages (AFL) if it is a trio and also closed under union,

concatenation, and positive closure (recall that L+ , the positive closure of L, is

{J?=l £)• Call a class of languages a full AFL if it is a full trio and closed under

union, concatenation, and Kleene closure.

For example, we proved in Chapters 3 and 6 that the regular sets and context-

free languages are full AFL's. The r.e. sets are also a full AFL, and we leave the

proof as an exercise. The CSL's are an AFL, but not a full AFL, since they are not

closed under general homomorphism (see Exercises 9.10 and 9.14).

We saw that the regular sets are the smallest full trio. They are also a full AFL
and therefore the smallest full AFL. The c-free regular sets are the smallest AFL,

as well as the smallest trio.

The next theorem states that AFL's are closed under substitution into regular

sets. That is, for each symbol of an alphabet, we associate a language from an AFL
r
6. Then replacing each symbol in each string in some regular set by the associated

language yields a language in

Theorem 11.5 Let (£ be an AFL that contains some language containing 6, and

let R ^ I* be a regular set. Let s be a substitution defined by s(a) — La for each a

in Z, where La is a member of Then s(R) is in
(€.

Proof The proof is by induction on the number of operators in a regular expres-

sion denoting R. If there are zero operators, then the regular expression must be

one of 0, (, or a, for a in Z. If it is a, then the result of the substitution is La , which

is in Hi. If the regular expression is 0, the result of substitution is 0, which is in #
by Lemma 11.1. If the regular expression is c, the result of the substitution is {e}.

We claim {(} is in
r
6\ because some L containing c is in f

6\ and L n {(} = {c} is in #
by closure under intersection with a regular set.

The induction step is easy. AFL's are closed under union and concatenation,

and we can show closure under * easily, given L in c6 containing c. That is, we

already showed {c} is in %'. If L
x

is any language in
r
6, then L\ is in

(
&, so

L\ = L\ u {(} is in
(£. Therefore, the AFL %' is closed under u, and *, from

which the inductive step follows. Thus (€ is closed under substitution into a

regular set.

In general, AFL's are not closed under substitution of languages in the family

into other languages in the family, although most of the common AFL's such as

the CFL's, the recursive sets, and the r.e. sets are. However, any AFL closed under

n is closed under substitution. The proof is similar to that of Theorem 1 1.5 and is

left as an exercise. We also leave as an exercise the fact that all AFL's, even those

with no language containing £, are closed under substitution into e-free regular

sets.
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11.5 INDEPENDENCE OF THE AFL OPERATIONS

The definition of an AFL requires six closure properties. However, to show that a

family of languages is an AFL, one need not show all six properties, since they are

not independent. For example, any family of languages closed under kj,
+

, e-free h,

h~ l and nR is necessarily closed under -.f Similarly, u follows from the other

five operations and the same holds for nR. We shall only prove the dependence

of-.

Theorem 11.6 Any family of languages closed under u,
+

, c-free h, h~ \ and nR
is closed under •.

Proof Let be such a family of languages, and let L
x
c X* and L2 X* be in (£.

We may assume without loss of generality that c is not in L
x
or L2 . This assump-

tion is justified by the fact that

L
1
L2 = (L

1
-{e})(L2 -{e})uL'1

u L'2 ,

where Lj is L
{

if 6 is in L2 and 0 otherwise; L2 is L2 if e is in L
t
and 0 otherwise.

As ^ is closed under union, if we can show that (L
x
— {(])(L2 — {e}) is in we

shall have shown that L
2
L2 is in c€.

Let a and 6 be symbols not in £. As # is a trio, Theorem 11.1 tells us # is

closed under ofree GSM mappings. Let M
l
be the GSM that prints a, followed by

its first input symbol, then copies its input, and let M 2 be another GSM that prints

b with its first input symbol, then copies its input. Then as c is not in L
x
or L2 ,

M
X (L X )

= aL
x
and M 2(L 2 ) = Z?L 2 ,and both are in %. By closure under u,

+
, and

nR,

[aL
x
u 6L2 )

+ n aZ*^Z* = aL^^

is in
(€. Define g to be the homomorphism g(a) = g(b) = c, and ^f(c) = c for all c in

X. Then g is a 2-limited erasing, since Lj and L2 are assumed c-free. By Lemma
1 1.2, g(aL

{
bL2 ) = L

x
L2 is in <€.

11.6 SUMMARY

We list in Fig. 11.3 some operations under which trios, full trios, AFL's and full

AFL's are closed. The properties have all been proved in this chapter or are

exercises. Recall that the regular sets, CFL's, and r.e. sets are full AFL's; the CSL's

and recursive sets are AFL's. The DCFL's are not even trios, however.

Some other operations do not fit into the theory of trios and AFL's. In Fig.

11.4 we summarize the closure properties of six classes of languages under these

operations. The question of whether the CSL's are closed under complementation

is a long-standing open problem, and is equivalent to their closure under MIN.

t We use n R for "intersection with a regular set," h for "homomorphism," and h' 1
for "inverse

homomorphism." The dot stands for concatenation.
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Trio Full trio AFL Full AFL

h~ l

ofree h

h

nR

ofree GSM mappings

GSM mappings

Inverse GSM mappings

Limited erasing

Quotient with regular set

INIT

Substitution into regular sets

Substitution by ofree regular sets

Substitution by regular sets

Fig. 11.3 Summary of closure properties.

While this chapter has concerned itself with closure properties and not deci-

sion properties, we have reached a good point to summarize these properties as

well, for the six classes of languages mentioned in Fig. 11.4. We show in Fig. 11.5

whether each of 10 important properties is decidable for the six classes. D means

decidable, U means undecidable, T means trivially decidable (because the answer

is always "yes"), and ? means the answer is not known. The results in Fig. 1 1.5 are

proved in various chapters, chiefly Chapters 3, 6, 8, and 10.
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Regular Recursive r.e.

sets CFL's DCFL's CSL's sets sets

Complementation y y ? y

Intersection / / y

Substitution y y

MIN / ? y

MAX /

CYCLE y y

Reversal y V

Fig. 11.4 Some other closure properties.

Question

Regular

sets DCFL's CFL's CSL's

Recursive

sets

r.e.

sets

Is w in L? D D D D D U

Is L= 0? D D D U U U

Is L = Z*? D D U U V U

Is Li = L2 ? D ? U U V U

Is Li c L2 ? D V U U U u

Is L,nL2 = 0? D u U U U u

Is L = where

K is a given

regular set? D D U U U u

Is L regular? T D U U u u

Is the intersection

of two languages a

language of the

same type? T U u T T T

Is the complement

of a language

also a language

of the same type? T U u ? T u

Fig. 1 1.5 Some decision properties.
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EXERCISES

*S11.1 Show that the linear languages are a full trio but not an AFL.

11.2 Show that the c-free regular sets are an AFL.

11.3 Show that a full trio is closed under INIT, SUB, and FIN, where

SUB(L) = {x
|

wxy is in L for some w and y},

and

FIN(L) = {x
|
wx is in L for some w}.

11.4 Show that not every AFL is closed under *, h, INIT, SUB, FIN, quotient with a

regular set or substitution by regular sets.

*11.5 Show that not every full trio is closed under u, \ *,
+

, or substitution into regular

sets. [Hint: The linear languages suffice for all but union. (To prove that certain languages

are not linear, use Exercise 6.11). To show nonclosure under union, find two full trios

and (€ 2 containing languages Li and L2 , respectively, such that L, u L2 is in neither ^ j nor
(€ 2 . Show that ^j u # 2 is also a full trio.]

11.6 Prove each of the closure and nonclosure properties in Fig. 11.4 (some have been

asked for in previous exercises or proved in previous theorems).

* 1 1.7 The interleaving of two languages L x and L2 , denoted IL(LU L2 ), is

{w
1
x,w 2 x 2

••• wk xk \k is arbitrary, w 1 w 2 wk is in L x
and x

t
x 2

• • xk is in L2}.t

Show that if
(€ is any trio, L is in (

€, and R is a regular set, then IL(L, R) is in
f
€.

11.8 Are the following closed under IL?

a) regular sets b) CFL's c) CSL's d) recursive sets e) r.e. sets

11.9 An A-transducer is a GSM that may move (make output and change state) on

(-input. Show that every full trio is closed under /4-transductions.

11.10 Find a GSM that maps a
1

to the set {ajbk
\i <j + k < 2i} for all i.

* 11.11 Show that any class of languages closed under h, h~ \ and nR is closed under

union.

* 11.12 Show that any class of languages closed under h y h~
l

,
-, and u is closed under nR.

** 11.13 Give examples of classes of languages closed under

a) u, •, <-free h, h~\ and nR, but not
+

;

b) u, •,
+

, c-free h, and nR, but not h~ 1

;

c) u, •,
+

,
fi"

1

, and nR, but not c-free h.

* 11.14 Show that an AFL is closed under complementation if and only if it is closed under

MIN.

* 11.15 A scattered-context grammar, G = (V, T, P, S), has productions of the form (A l9 ...»

A„)-+ (a,, a„), where each a, is in (V u T) +
. If (A ly A n )

-> (a^ a„) is in P, then

we write

P l A l p2 A 2
• • Pn A„Pn+l =>p

i
oc l p2 <x 2 P„<x„Pn+i .

t Note some w's and x's may be i.
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Let ^> be the reflexive, transitive closure of =>. The language generated by G is {x
\
x is in T+

and SU x}.

a) Prove that the scattered-context languages form an AFL.
b) What class of languages is generated by the scattered-context grammars if we allow

productions with the a,'s possibly £?

** 11.16 An AFL # is said to be principal if there is a language L such that # is the least AFL
containing L
a) Do the CFL's form a principal AFL?
b) Prove that the least AFL containing {a"b

n
\
n > 0} is properly contained in the CFL's.

c) Let ... be an infinite sequence of AFL's such that
{ £ % for all i > 0.

Prove that the union of the #,'s forms an AFL that is not principal.

d) Give an example of a nonprincipal AFL.

11.17 Show that if an AFL is closed under intersection, then it is closed under

substitution.

Solutions to Selected Exercises

11.1 To prove that the linear languages are closed under homomorphism, let G be a linear

grammar and h a homomorphism. If each production A -> wBx or A -> y is replaced by

A -> h(w)Bh(x) or A -> h(y), respectively, then the resulting grammar generates h(L(G)). To
show closure under h~ l and nR y we could use machine-based proofs analogous to the

proofs for CFL's, since by Exercise 6.13(a), the linear languages are characterized by

one-turn PDA's. We shall instead give grammar-based proofs.

Let G = (K, 7, P, S) be a linear CFG, and M = (Q, T, 5, q0 ,
F) a DFA. Construct linear

grammar G' = (V\ T, P\S') generating L(G) n L(M). Let V = {[qAp] \q and p are in Q and

A in V] \j {S'}. Then define P' to have productions

0 S* -+[q0 Sp] for all p in F,

^) [^P] w[rBs]x whenever A -> w£x is in P, w) = r and <5(s, x) = p, and

3) [<?/4p] -> y whenever ,4 -> y is in P and <5(g, y) = p.

An easy induction on derivation length shows that [qAp] => w if and only if A => w and <5(g,

w) = p. Thus S'=>vv if and only if S=>w and d(q 0 ,
vv) is a final state. Hence

L(G') = L(G) n L(M).

Now, let G = (K, T, P, S) be a linear grammar and h: Z* -» T* a homomorphism.

Suppose is such that for all a in Z, < /c, and if A - wBx or /I -»• w is in P, then

|w| < /c and |x| < fc. Let G" = (K", Z, P", [5]), where K" consists of all symbols [wAx] such

that /I is in V, and w and x in T* are each of length at most 2k — 1. Also in V" are

symbols [y], where \y \
< 3k — 1. Intuitively G" simulates a derivation of G in its variable

until the string of terminals either to the right or to the left of the variable of G is of

length at least k. Then G" produces a terminal a on the right or left and deletes h(a) from

what is stored in the variable.

The productions of P" are:

1) If A -> w
y
Bx

x
is in P, then for all w2 and x 2 of length at most k - 1, [w 2 /Lx 2 ]

-*

[w 2 w l
Bx l x 2 ] is in P". If A -> y is in P, then [w2 /lx 2 ]

-* [w 2yx 2] is in P".

2) For a in Z,

[/i^Wi/lx^ -> fl[wi^x il [w^x^fa)] -* [wjAxjJa, and [M fl )v] -> fl[y].
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284 CLOSURE PROPERTIES OF FAMILIES OF LANGUAGES

3) [€]-€.

It follows by induction on derivation length that

[S]^>w l [w2 Ax 2]x l

if and only if

S=j>h(w l )w2 Ax 2 h(x l ).

Thus [S]
f>

v if and only if S §> h(v)y and hence L(G") = h~ '(^(G)).

To show that the linear languages are not an AFL, we show they are not closed under

concatenation. Surely
1
i > 1} and {cjdj \j > 1} are linear languages, but their concaten-

ation is not, by Exercise 6.12.

BIBLIOGRAPHIC NOTES

The study of abstract families of languages was initiated by Ginsburg and Greibach [1969],

who proved Theorems 11.1 through 11.5 and Lemma 11.1. The central importance of the

trio in this theory is pointed out by Ginsburg [1975]. Theorem 1 1.6 on independence of the

operators appears in Greibach and Hopcroft [1969]; a solution to Exercise 11.13 can also

be found there. The notion of limited erasing is also due to Greibach and Hopcroft [1969].

That AFL's closed under intersection are closed under substitution was first proved by

Ginsburg and Hopcroft [1970]. An enormous amount of literature concerns itself with

abstract families of languages; we mention only Ginsburg and Greibach [1970], dealing

with principal AFL's (Exercise 1 1.16), and Greibach [1970], who attempts to work substitu-

tion into the theory. A summary and additional references can be found in Ginsburg [1975].

The theory of families of languages has, from its inception, been connected with the

theory of automata. Ginsburg and Greibach [1969] show that a family of languages is a full

AFL if and only if it is defined by a family of nondeterministic automata with a one-way

input. Of course, the notion of a "family of automata" must be suitably defined, but,

roughly, each such family is characterized by a set of rules whereby it may access or update

its storage. The "if" part was proved independently in Hopcroft and Ullman [1967b].

Chandler [1969] characterized families of deterministic automata with a one-way input, in

terms of closure properties, and Aho and Ullman [1970] did the same for deterministic

automata with a two-way input. Curiously, no characterization for two-way nondeter-

ministic automata is known.

There have also been attempts to codify a theory of grammars, chiefly subfamilies of

the CFG's. Gabriellian and Ginsburg [1974] and Cremers and Ginsburg [1975] wrote the

basic papers in this area.

The GSM was defined by Ginsburg [1962], and the study ofGSM mappings and their

properties commenced with Ginsburg and Rose [1963b]. An important unresolved issue

concerns testing for equivalence of two sequential transducers. That equivalence is decid-

able for Moore machines (and hence for Mealy machines, which GSM's generalize) was

known since Moore [1956]. Griffiths [1968] showed that the equivalence problem for e-free

GSM's was undecidable, while Bird [1973] gave a decision algorithm for the equivalence of

two-tape automata, which are more general than deterministic GSM's.

Scattered-context grammars (Exercise 11.15) are discussed in Greibach and Hopcroft

[1969].
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CHAPTER

12
COMPUTATIONAL
COMPLEXITY
THEORY

Language theory classifies sets by their structural complexity. Thus regular sets

are regarded as "simpler" than CFL's, because the finite automaton has less

complex structure than a PDA. Another classification, called computational

complexity, is based on the amount of time, space, or other resource needed to

recognize a language on some universal computing device, such as a Turing

machine.

Although computational complexity is primarily concerned with time and

space, there are many other possible measures, such as the number of reversals in

the direction of travel of the tape head on a single-tape TM. In fact one can define

a complexity measure abstractly and prove many of the results in a more general

setting. We choose to present the results for the specific examples of time and

space, since this approach renders the proofs more intuitive. In Section 12.7 we
briefly outline the more abstract approach.

12.1 DEFINITIONS

Space complexity

Consider the off-line Turing machine M of Fig. 12.1. M has a read-only input tape

with endmarkers and k semi-infinite storage tapes. If for every input word of

length h, M scans at most S(n) cells on any storage tape, then M is said to be an

S(n) space-bounded Turing machine, or of space complexity S(n). The language

recognized by M is also said to be of space complexity S(n).
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286 COMPUTATIONAL COMPLEXITY THEORY

i Input $

Finite

control

Storage tapes

V

Fig. 12.1 Multitape Turing machine with read-only input.

Note that the Turing machine cannot rewrite on the input and that only the

length of the storage tapes used counts in computing the tape bound. This restric-

tion enables us to consider tape bounds ofless than linear growth. If the TM could

rewrite on the input tape, then the length of the input would have to be included in

calculating the space bound. Thus no space bound could be less than linear.

Time complexity

Consider the multitape TM M of Fig. 12.2. The TM has k two-way infinite tapes,

one of which contains the input. All tapes, including the input tape, may be written

Finite

control

K

\
Input

region v—
Storage tapes

Fig. 12.2 Multitape Turing machine.
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upon. If for every input word of length n, M makes at most T(n) moves before

halting, then M is said to be a T(n) time-bounded Turing machine, or of time

complexity T(n). The language recognized by M is said to be of time complexity

T(n).

The two different models for time and space complexity were selected with an

eye toward making certain proofs simple, and some variation in the models is

feasible. For example, if S(n) > n, then we can use the single tape TM as our model
without changing the class of languages accepted in space S(n). We cannot,

however, when discussing time complexity, use the single tape TM, or TM's with

any fixed number of tapes, without possibly losing some languages from the class

of languages accepted in time T(n).

Example 12.1 Consider the language

L={wov*|win (0+1)*}.

Language L is of time complexity n + 1, since there is a Turing machine Mj, with

two tapes, that copies the input to the left of the c onto the second tape. Then,

when a c is found, M
x
moves its second tape head to the left, through the string it

has just copied, and simultaneously continues to move its input tape head to the

right. The symbols under the two heads are compared as the heads move. If all

pairs of symbols match and if, in addition, the number of symbols to the right and

left of the lone c are equal, then M, accepts. It is easy to see that M, makes at most

n + 1 moves if the input is of length n.

There is another Turing machine, M 2 , of space complexity log2 rc accepting L.

M2 uses two storage tapes for binary counters. First, the input is checked to see

that only one c appears, and that there are equal numbers of symbols to the right

and left of the c. Next the words on the right and left are compared symbol by

symbol, using the counters to find corresponding symbols. If they disagree, M 2

halts without accepting. If all symbols match, M 2 accepts.

Special assumptions about time and space complexity functions

It should be obvious that every TM uses at least one cell on all inputs, so if S(n) is

a space complexity measure, we may assume S(n) > 1 for all n. We make the useful

assumption that when we talk of "space complexity S(n)" we really mean
max (1, [5(71)1). For example, in Example 12.1, we said that TM M 2 was of "space

complexity log2 rc." This makes no sense for n = 0 or 1, unless one accepts that

"log2 >i" is shorthand for max (1, Hog2 /il).

Similarly, it is reasonable to assume that any time complexity function T(n) is

at least n -f 1, for this is the time needed just to read the input and verify that the

end has been reached by reading the first blank.t We thus make the convention

t Note, however, that there are TM's that accept or reject without reading all their input. We choose

to eliminate them from consideration.
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288 COMPUTATIONAL COMPLEXITY THEORY

that "time complexity T{n)" means max (n + 1, \T(n)\ For example, the value of

time complexity n log2 w at n = 1 is 2, not 0, and at n = 2, its value is 3.

Nondeterministic time and space complexity

The concepts of time- and space-bounded Turing machines apply equally well to

nondeterministic machines. A nondeterministic TM is of time complexity T(n) if

no sequence of choices of move causes the machine to make more than T(n)

moves. It is of space complexity S(n) if no sequence of choices enables it to scan

more than S(n) cells on any storage tape.

Complexity classes

The family of languages of space complexity S(n) is denoted by DSPACE(S(rc));

the languages of nondeterministic space complexity S(n) are collectively called

NSPACE(S(n)). The family of languages of time complexity T(n) is denoted

DTIME(T(n)) and that of nondeterministic time complexity T(n) is denoted

NTIME(T(n)). All these families of languages are called complexity classes. For

example, language L of Example 12.1 is in DTIME(n)t and in DSPACE(log2 «).

L is therefore also in NTIME(n) and NSPACE(log2 n) as well as larger classes

such as DTIME(h 2
) or NSPACE^).

12.2 LINEAR SPEED-UP, TAPE COMPRESSION, AND REDUCTIONS
IN THE NUMBER OF TAPES

Since the number of states and the tape alphabet size of a Turing machine can be

arbitrarily large, the amount of space needed to recognize a set can always be

compressed by a constant factor. This is achieved by encoding several tape sym-

bols into one. Similarly one can speed up a computation by a constant factor.

Thus in complexity results it is the functional rate of growth (e.g., linear, quad-

ratic, exponential) that is important, and constant factors may be ignored. For

example, we shall talk about complexity log n without specifying the base of

logarithms, since \ogh n and logcn differ by a constant factor, namely logb c. In

this section we establish the basic facts concerning linear speed up and compres-

sion as well as considering the effect of the number of tapes on complexity.

Tape compression

Theorem 12.1 If L is accepted by an S(n) space-bounded Turing machine with k

storage tapes, then for any c > 0, L is accepted by a cS(n) space-bounded TM.J

t Recall that n really means max (n + 1, n) = n + 1 for time complexity.

+ Note that by our convention, cS(n) is regarded as max (1, IcS(h)I).
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Proof Let Mi be an S(n) tape-bounded off-line Turing machine accepting L. The
proof turns on constructing a new Turing machine M 2 that simulates Mu where

for some constant r, each storage tape cell ofM 2 holds a symbol representing the

contents of r adjacent cells of the corresponding tape ofM
x

. The finite control of

M 2 can keep track of which of the cells of Mu among those represented, is

actually scanned by Mv
Detailed construction of the rules ofM 2 from the rules ofM

1
are left to the

reader. Let r be such that rc > 2. M 2 can simulateM
x
using no more than \S(n)/r]

cells on any tape. If S(n) > r, this number is no more than cS(n). If S(n) < r, then

M 2 can store in one cell the contents of any tape. Thus, M2 uses only one cell in

the latter case.

Corollary If L is in NSPACE(S(n)), then L is in NSPACE(cS(n)), where c is any

constant greater than zero.

Proof IfM
1
above is nondeterministic, let M 2 be nondeterministic in the above

construction.

Reduction in the number of tapes for space complexity classes

Theorem 12.2 If a language L is accepted by an S(n) space-bounded TM with k

storage tapes, it is accepted by an S(n) space-bounded TM with a single storage

tape.

Proof Let M
t
be an S(n) space-bounded TM with k storage tapes, accepting L.

We may construct a new TM M 2 with one storage tape, which simulates the

storage tapes ofM
x
on k tracks. The technique was used in Theorem 7.2. M 2 uses

no more than S(n) cells.

From now on we assume that any S(n) space-bounded TM has but one

storage tape, and if S(n) > rc, then it is a single-tape TM, rather than an off-line

TM with one storage tape and one input tape.

Linear speed up

Before considering time bounds, let us introduce the following notation. Let f(n)

be a function of n. The expression sup,,^^ f(n) is taken to be the limit as n -> oo of

the least upper bound off(n),f(n + 1),/(h + 2), . . . Likewise, \n[n^^f(n) is the

limit as w-> oo of the greatest lower bound off(n\f(n + l),f(n 4- 2), . . . If/(h)

converges to a limit as n -* oo, then that limit is both in^^^ f(n) and sup,,.^ f(n).

Example 12.2 Let f(n) = l/n for n even, and f(n) = n for n odd. The least upper

bound off(n),f(n 4- 1), ... is clearly oo for any n, because of the terms for odd n.

Hence sup^^ f (n) = oo. However, because of the terms with n even, it is also true

that inf^ co /(n) = 0.
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290 COMPUTATIONAL COMPLEXITY THEORY

For another example, suppose f(n) = n/(n 4- 1). Then the least upper bound
of n/(n 4- 1), (n 4- l)/(n 4- 2), ... is 1 for any n. Thus

The greatest lower bound of n/(n 4- 1), (n 4- l)/(n 4- 2), . . . is n/(n + 1) and

lim,,^ n/(n + 1) = 1, so inf,,.^ n/(n 4- 1) = 1 as well.

Theorem 12.3 If L is accepted by a /c-tape T(n) time-bounded Turing machine

Mi, then L is accepted by a /c-tape cT(w) time-bounded TM M 2 for any c> 0,

provided that /c > 1 and inf,,.^ T(n)/n = oo.

Protf/ A TM M 2 can be constructed to simulate M, in the following manner.

First M 2 copies the input onto a storage tape, encoding m symbols into one. (The

value of m will be determined later.) From this point on, M 2 uses this storage tape

as the input tape and uses the old input tape as a storage tape. M 2 will encode the

contents of M/s storage tapes by combining m symbols into one. During the

course of the simulation, M 2 simulates a large number of moves ofM, in one basic

step consisting of eight moves ofM 2 . Call the cells currently scanned by each of

M 2 's heads the home cells. The finite control ofM 2 records, for each tape, which of

the m symbols of M, represented by each home cell is scanned by the correspond-

ing head of M 2 .

To begin a basic step, M 2 moves each head to the left once, to the right twice,

and to the left once, recording the symbols to the left and right of the home cells in

its finite control. Four moves ofM 2 are required, after which M 2 has returned to

its home cells.

Next, M 2 determines the contents of all of M/s tape cells represented by the

home cells and their left and right neighbors at the time when some tape head of

M, first leaves the region represented by the home cell and its left and right

neighbors. (Note that this calculation by M 2 takes no time. It is built into the

transition rules of M 2 .) If M
1
accepts before some tape head leaves the repre-

sented region, M 2 accepts. If M
x

halts, M 2 halts. Otherwise M 2 then visits, on

each tape, the two neighbors of the home cell, changing these symbols and that of

the home cell if necessary. M 2 positions each of its heads at the cell that represents

the symbol that M/s corresponding head is scanning at the end of the moves

simulated. At most four moves of M 2 are needed.

It takes at least m moves for M, to move a head out of the region represented

by a home cell and its neighbors. Thus, in eight moves, M 2 has simulated at least

m moves of M,. Choose m such that cm > 16.

If Mj makes T(n) moves, then M 2 simulates these in at most 8[T(tt)/mlmoves.

Also, M 2 must copy and encode its input (m cells to one), then return the head of

the simulated input tape to the left end. This takes n 4- In/ml moves, for a total of

n+ \n/m]+S\T(n)/m] (12.1)
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moves. As \x] < x 4- 1 for any x, (12.1) is upper bounded by

n 4- n/m 4- &T(n)/m 4- 2. (12.2)

Now we have assumed that int^^ T(n)/n = oo, so for any constant d there is

an nd such that for all n > nd ,
T(n)/n > d, or put another way, n < T(n)/d. Thus

whenever n > 2 (so n + 2 < 2n) and n > nd , (12.2) is bounded above by

T(n)
8 2 J_
m d md

(12.3)

We have not yet specified d. Remembering that m was chosen so that cm > 16,

choose d — m/4 4- i, and substitute 16/c for m in (12.3). Then for all

n > max (2, wd ) the number of moves made by M 2 does not exceed cT(n).

To recognize the finite number of words of length less than the maximum of 2

and rcd ,
M 2 uses its finite control only, taking n 4- 1 moves to read its input and

reach the blank marking the end of the input. Thus the time complexity ofM 2 is

cT(n). Recall that for time complexity, cT(n) stands for max (n 4- 1, \cT(n)]).

Corollary If inf,,.^ T(n)/n = oo and c > 0, then

DTIME(T(h)) = DTIME(c7(n)).

Proof Theorem 12.3 is a direct proof for any language L accepted by a DTM
with 2 or more tapes in time T(n). Clearly if L is accepted by a 1-tape TM, it is

accepted by a 2-tape TM of the same time complexity.

Theorem 12.3 does not apply if T(n) is a constant multiple of m, as then

inf,,.^ T(n)/n is a constant, not infinity. However, the construction of Theorem

12.3, with a more careful analysis of the time bound of M 2 shows the following.

Theorem 12.4 If L is accepted by a fc-tape cn time-bounded TM, for k > 1 and

for some constant c, then for every e > 0, L is accepted by a fc-tape (1 -f ()«

time-bounded TM.

Proof Pick m = l/\6c in the proof of Theorem 12.3.

Corollary If T(n) = cn for some c> 1, then DTIME(7(n)) = DTIME((1 4- c)n)

for any c > 0.

Corollary (of Theorems 12.3 and 12.4)

a) If inf^ T(n)/n = oo, then NTIME(7(n)) = NTIME(cT(h)) for any c> 0.

b) If T(n) = cn for some constant c, then NTIME(7») = NTIME((1 4- c)n\ for

any e > 0.

-Pro*?/ The proofs are analogous to Theorems 12.3 and 12.4.
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Reduction in the number of tapes for time complexity classes

Now let us see what happens to time complexity when we restrict ourselves to one

tape. A language like L = {wcwR
|
w is in (a + b)*} can be recognized in linear time

on a two-tape machine, as we saw in Example 12.1. However, on a one-tape

machine, L requires time cn 2
for some c > 0. (The exercises give hints how this

may be proved.) Thus permitting only one tape can square the time necessary to

recognize a language. That this is the worst that can happen is expressed in the

next theorem.

Theorem 12.5 If L is in DTIME(T(w)), then L is accepted in time T2
(n) by a

one-tape TM.

Proof In the construction of Theorem 7.2, going from a multitape TM to a

one-tape TM, M 2 uses at most 6T2
(n) steps to simulate T(n) steps of M\. By

Theorem 12.3, we may speed up M, to run in time T(n)/^/6. Then M 2 is a

one-tape TM accepting L in T2
(n) steps.

Corollary If L is in NTIME(T(h)), then L is accepted by a one-tape NTM of

nondeterministic time complexity T2
(n).

Proof Analogous to the proof of the theorem.

If we restrict ourselves to two tapes, the time loss is considerably less than if

we restrict ourselves to one tape, as the next theorem shows.

Theorem 12.6 If L is accepted by a fc-tape T(n) time-bounded Turing machine

Mj, then L is accepted by a two-storage tape TM M 2 in time T(n) log T(n).

Proof The first storage tape of M 2 will have two tracks for each storage tape of

M,. For convenience, we focus on two tracks corresponding to a particular tape of

Mj. The other tapes ofM
x
are simulated in exactly the same way. The second tape

of M 2 is used only for scratch, to transport blocks of data on tape 1.

One particular cell of tape 1, known as B0 , will hold the storage symbols

scanned by each of the heads of M
x

. Rather than moving head markers, M 2
will

transport data across B0 in the direction opposite to that of the motion of the head

ofM
,
being simulated. Thus M 2 can simulate each move ofM

x
by looking only at

B0 . To the right of cell B0 will be blocks # 2 , ... of exponentially increasing

length; that is, B
t

is of length 2'~ !

. Likewise, to the left of B0 are blocks

B_ 2 , with B_i having length 2'" l

. The markers between blocks are assumed

to exist, although they will not actually appear until the block is used.

Let a0 denote the contents of the cell initially scanned by this tape head ofMi-

The contents of the cells to the right of this cell are au a 2 , ...,and those to the left,

a_ j, a. 2 , ... The values of the a^s may change when they enter B0 \ it is not their

values, but their positions on the tracks of tape 1 ofM 2 , that is important. Initially

the upper track ofM 2 for the tape ofM, in question is assumed to be empty, while

the lower track is assumed to hold . .
.

, a _ 2 , a_ i9 a0 ,
a ly a 2 , ... These are placed in

blocks ...,£_ 2 ,
B0 ,

Bu B2 , as shown in Fig. 12.3.
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Fig. 12.3 Blocks on tape 1.

As mentioned previously, data will be shifted across B0 and perhaps changed

as it passes through. After the simulation of each move ofM u the following will

hold.

1) For any i > 0, either B, is full (both tracks) and B_, is empty, or B, is empty

and B_, is full, or the bottom tracks of both B, and B_, are full, while the

upper tracks are empty.

2) The contents of any B, or B_, represent consecutive cells on the tape ofM
t

represented. For i > 0, the upper track represents cells to the left of those of

the lower track; for i < 0, the upper track represents cells to the right of those

of the lower track.

3) For i < j, Bi represents cells to the left of those of By

4) B0 always has only its lower track filled, and its upper track is specially

marked.

To see how data is transferred, imagine that the tape head ofM
l
in question

moves to the left. Then M 2 must shift the corresponding data right. To do so,M 2

moves the head of tape 1 from B0 , where it rests, and goes to the right until it finds

the first block, say Bh that does not have both tracks full. Then M 2 copies all the

data of B0 ,
Bu . .

. , B,_ l
onto tape 2 and stores it in the lower track of B,, B 2 ,

B,_
!
plus the lower track of B

f ,
assuming that the lower track of B, is not already

filled. If the lower track of B, is already filled, the upper track of B, is used instead.

In either case, there is just enough room to distribute the data. Also note the data

can be picked up and stored in its new location in time proportional to the length

ofB,.

Next, in time proportional to the length of Bh Tx
can find B_, (using tape 2 to

measure the distance from B, to B0 makes this easy). If B_, is completely full, T
x

picks up the upper track of B_, and stores it on tape 2. If B_, is half full, the lower

track is put on tape 2. In either case, what has been copied to tape 2 is next copied

to the lower tracks of B_
(I _ n ,

B_
(l
_ 2) ,

B0 . (By Rule 1, these tracks have to be

empty, since B,, B2 , . .
. , B,-_

{
were full.) Again, note that there is just enough room

to store the data, and all the above operations can be carried out in time propor-

tional to the length of B
f
. Also note that the data can be distributed in a manner

that satisfies rules (1), (2), and (3), above.

We call all that we have described above a Broperation. The case in which the

head of M, moves to the right is analogous. The successive contents of the blocks

as M, moves its tape head in question five cells to the left are shown in Fig. 12.4.
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Fig. 12.4 Contents of blocks of M
x

.

We note that for each tape of M,, M 2 must perform a 5,-operation at most

once per 2
1 " 1 moves of Mj, since it takes this long for B

x ,
£2 , . .., 1? which are

half empty after a #roperation, to fill. Also, a ^.-operation cannot be performed

for the first time until the 2'~ *th move of M,. Hence, if M, operates in time T(n),

M 2 will perform only /^-operations, for those i such that i < log2 T(n) + 1.

We have seen that there is a constant ra, such that M 2 uses at most mT moves

to perform a 5,-operation. If M, makes T(n) moves, M 2 makes at most

log 2 T(n)+l T(n\
TM)= I ™?^T (12-4)

i= 1
Z

moves when simulating one tape of
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From (12.4), we obtain

7i(n) = 2mT(n)\\og2 T(n) + 11, (12.5)

and from (12.5),

T
l
(n)<4mT{n) \og2 T(n).

The reader should be able to see that M 2 operates in time proportional to

7\(tt) even when M
l
makes moves using different storage tapes rather than only

the one upon which we have concentrated. By Theorem 12.3, we can modifyM 2 to

run in no more than T(n) log2 T(n) steps.

Corollary If L is accepted by a /c-tape NTM of time complexity T(n), then L is

accepted by a two-tape NTM of time complexity T(n) log T(n).

Proof Analogous to the proof of the theorem.

12.3 HIERARCHY THEOREMS

Intuitively, given more time or space, we should be able to recognize more lan-

guages or compute more functions. However, the linear speed-up and compression

theorems tell us that we have to increase the available space or time by more than a

constant factor. But what if we multiply the space or time by a slowly growing

function such as log log m? Is it possible that we cannot then recognize any new
languages? Is there a time or space bound f(n) such that every recursive language

is in DTIME(/(«)), or perhaps in DSPACE(/(«))?
The answer to the last question is "no," as we shall prove in the next theorem.

However, the answer to the first question depends on whether or not we start with

a "well-behaved" function. In this section we shall give suitable definitions of "well

behaved" and show that for well-behaved functions, small amounts of extra time

and space do add to our ability to compute.

In Section 12.6 we shall consider arbitrary total recursive functions and the

complexity classes they define. There we shall see that strange behavior is ex-

hibited. There are "gaps" in any complexity hierarchy, that is, there exists a

function T(n) for which DTIME(T2
(n)) = DTIME(T(n)), and in general, for any

total recursive function / there is a time complexity Tf(n) for which

DTIME(7}(n)) = DTIME(/(T/(m))). Similar statements hold for space, and

indeed for any reasonable measure ofcomputational complexity. We shall also see

that there are languages L for which no "best" recognizer exists; rather there is an

infinite sequence of TM's recognizing L, each of which runs much faster than the

previous one.

Theorem 12.7 Given any total recursive time-bound (space-bound) T(«), there is

a recursive language L not in DTIME(T(«)) or DSPACE(T(n)), respectively.

Proof We shall show the result for time; the argument for space is analogous.

The argument is basically a diagonalization. Since T(n) is total recursive, there is a
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halting TM M that computes it. We construct M to accept a language

L c (0 + 1)* that is recursive but not in DTIME(T(n)). Let x
f
be the ith string in

the canonical ordering of (0 + 1)*. In Chapter 8, we ordered single-tape TM's with

tape alphabet {0, 1, B}. We can similarly order multitape TM's with arbitrary tape

alphabets by replacing their transition functions by binary strings. The only sub-

stantial point is that the names of the tape symbols, like those of states, don't

matter, so we may assume that all TM's whose input alphabet is {0, 1} have tape

alphabet 0, 1, B, X4 ,
X 5 , ... up to some finite Xm , then encode 0, 1, and B by 0, 00,

and 000 and encode X
t
by 0', i > 4. We also permit an arbitrary number of l's in

front of the code for M to represent M as well, so M has arbitrarily long

encodings.

We are thus free to talk about M„ the ith multitape TM. Now define

L = {Xi
|

M, does not accept x
{
within T(

|

jc
t
-

1 )
moves}. We claim L is recursive. To

recognize L, execute the following algorithm, which can surely be implemented on

a Turing machine. Given input w of length n, simulate M on n to compute T(n).

Then determine i such that w = x,. The integer i written in binary is the transition

function of some multitape TM M, (if i in binary is of improper form for a

transition function, then M, has no moves). Simulate M, on w for T(n) moves,

accepting if M, either halts without accepting or runs for more than T(n) moves

and does not accept.

To see that L is not in DTIME(T(m)), suppose L = L(M,), and M, is T(n) time

bounded. Is x
f
in L? If so, M

t
accepts x,- within T(n) steps, where n =

|

x,
|

. Thus by

definition of L, x
t
is not in L, a contradiction. If x

f
is not in L, then M

{
does not

accept xh so by definition of L, x, is in L, again a contradiction. Both assumptions

lead to contradictions, so the supposition that M,- is T(n) time bounded must be

false.

If T'(n) > T(n) for all n, it follows immediately from the definition of a time

complexity class that DTIME(T(n)) c DTIME(T'(«)). If T(n) is a total recursive

function, Theorem 12.7 implies there exists a recursive set L not in DTIME(T(n)).

Let t(n) be the running time of some Turing machine accepting L and let T'(n) =

max {7», f(«)}. Then DTIME(T(n)) 5 DTIME(T'(n)), since L is in the latter but

not the former. Thus we know that there is an infinite hierarchy of deterministic

time complexity classes. A similar result holds for deterministic space complexity

classes, and for nondeterministic time and space classes.

Theorem 12.7 demonstrates that for any recursive time or space complexity

f(n), there is an f'(n) such that some language is in the complexity class defined by

f'(n) but not/(n). We now show that for a well-behaved function/ (n) only a slight

increase in the growth rate off(n) is required to yield a new complexity class.

Theorems 12.8 and 12.9 are concerned with the increase needed in order to obtain

a new deterministic complexity class. These theorems are used later to establish

lower bounds on the complexity of various problems. Similar results for non-

deterministic classes are very much more difficult; we shall touch on a dense

hierarchy for nondeterministic space in Section 12.5.
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A space hierarchy

We now introduce our notion of a "well-behaved" space complexity function. A
function S(n) is said to be space constructible if there is some Turing machine M
that is S(n) space bounded, and for each m, there is some input of length n on which

M actually uses S(n) tape cells. The set of space-constructible functions includes

log n, n
k

,
2", and nl If S^n) and S2 (n) are space constructible, then so are

S 1 (m)S2 (m), 2Sl(n)
, and S 1 (n)

S2(n)
. Thus the set of space-constructible functions is

very rich.

Note that M above need not use S(n) space on all inputs of length n, just on

some one input of that length. If for all h, M in fact uses exactly S(n) cells on any

input of length n, then we say S(n) is fully space constructible. Any space-

constructible S(n) > w is fully space constructible (exercise).

In order to simplify the next result we prove the following lemma.

Lemma 12.1 If L is accepted by an S(n) > \og2 n space-bounded TM, then L is

accepted by an S(n) space-bounded TM that halts on all inputs.

Proof Let M be an S(n) space-bounded off-line Turing machine with s states and

t tape symbols accepting L. If M accepts, it does so by a sequence of at most

(n + 2)sS(n)t
S(n) moves, since otherwise some ID repeats. That is, there are n + 2

input head positions, s states, S(n) tape head positions, and t
S(n)

storage tape

contents. If an additional track is added as a move counter, M can shut itself off

after (4stf
{n) > (n + 2)sS(n)t

S(n) moves. Actually, M sets up a counter of length

log n, and counts in base 4s*. Whenever M scans a new cell beyond the cells con-

taining the counter, M increases the counter length. Thus ifM loops having used

only i tape cells, then the counter will detect this when the count reaches

(
4sr

ynax(,Mog 2 n)

>
whjch js ^ + 2)SS(n)t

S(
"K

Theorem 12.8 If S2 (n) is a fully space-constructible function,

n^oo S 2{n)

and and S2 (n) are each at least log2 n, then there is a language in

DSPACE(S2 (h)) not in DSPACEfS^n)).

Proof The theorem is proved by diagonalization. Consider an enumeration of

off-line Turing machines with input alphabet {0, 1} and one storage tape, based on

the binary encoding of Section 8.3, but with a prefix of l's permitted, so each TM
has arbitrarily long encodings. We construct a TM M that uses S2 (n) space and

disagrees on at least one input with any S^n) space-bounded TM.
On input w,M begins by marking S 2 (n) cells on a tape, where n is the length of

w. Since S2 (n) is fully space constructible, this can be done by simulating a TM
that uses exactly S2 (n) cells on each input of length n. In what follows, if M
attempts to leave the marked cells, M halts and rejects w. This guarantees that M
is S 2 (n) space bounded.
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NextM begins a simulation on input w ofTMMw , the TM encoded by binary

string w. IfMw is S
t
(n) space bounded and has t tape symbols, then the simulation

requires space \\og2 t~\S^n). M accepts w only ifM can complete the simulation in

S2 (n) space and Mw halts without accepting jc.

Since M is S 2 (n) space bounded, L(M) is in DSPACE(S2 (n)). L(M) is not in

DSPACE(5
1
(m)). For suppose there were an S^n) space-bounded TM M with t

tape symbols accepting L(M). By Lemma 12.1 we may assume thatM halts on all

inputs. Since M appears infinitely often in the enumeration, and

there exists a sufficiently long w, |w| = n, such that riog2 fl5 1
(/i) < 52 (m) and Mw

is M. On input w, M has sufficient space to simulate Mw and accept if and only if

Mw rejects. Thus L(MW )
L(M), a contradiction. Thus L(M) is in

DSPACE(S 2 (n)) but not in DSPACE^Jn)).

While most common functions are fully space constructible, we need only

space constructibility to make Theorem 12.8 go through. We therefore state the

following.

Corollary Theorem 12.8 holds even if S2(n) is space constructible but not fully

space constructible.

Proof Let M, be a TM that constructs S2(n) on some input. Let Z be the input

alphabet of M,. We design M to accept a language over alphabet Z x {0, 1}. That

is, the input to M is treated as if it had two tracks: the first is used as input to Mu
the second as the code of a TM with input alphabet Z x {0, 1}. The only

modification to the design ofM is that M must lay off blocks on tapes 1 and 2 by

simulating M
x
on M's first track. We may show that M disagrees with any S x

(n)

space-bounded TM M on an input whose length, n, is sufficiently large, whose first

track is a string in Z" that causes M
x
to use S 2 (n) cells, and whose second track is

an encoding of M.

We leave as an exercise a proof that the condition S2 (n) > \og2 n in Theorem

12.8 and its corollary are not really needed. The proof is not a diagonalization, but

hinges on showing that

{wc'w
|
w is in (a + b)*,

|

w
|

= S 2 (n) and i = n- 2S 2 (n)}

is accepted in S 2 (n) space but not in S^n) space if

inf 5lW 0
n-oo S2 (n)

and S2 (n) < \og2 n.

Note that if inf^ [5 1
(m)/5 2 (m)] = 0 and S^n) < S 2 (n) for all «, then

DSPACE^Jm)) 5 DSPACE(52 (m)).
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However, if we do not have S
x
(n) < S2(n), then it is possible that DSPACEfS^n))

and DSPACE(S 2(m)) each have languages not in the other.

A time hierarchy

The deterministic time hierarchy is not as tight as the space hierarchy. The reason

is that aTM which diagonalizes over all multitape TM's has some fixed number of

tapes. To simulate a TM with a larger number of tapes we make use of the

two-tape simulation of a multitape TM, thereby introducing a logarithmic slow-

down. Before giving the construction we introduce the notion of time

constructibility.

A function T(n) is said to be time constructible if there exists a T(n) time-

bounded multitape Turing machine M such that for each n there exists some input

on which M actually makes T(n) moves. Just as for space-constructible functions

there is a rich hierarchy of time-constructible functions. We say that T(n) is fully

time-constructible if there is a TM that uses T(n) time on all inputs of length n.

Again, most common functions are fully time-constructible.

Theorem 12.9 If T2 (n) is a fully time-constructible function and

T2(n)

then there is a language in DTIME(T2 (m)) but not DTIME(T
1
(m)).

Proof The proof is similar to that of Theorem 12.8, and only a brief sketch of the

necessary construction is given. A T2 (n) time-bounded TM M is constructed to

operate as follows. M treats the input w as an encoding of a Turing machine M
and simulates M on w. A difficulty arises because M has some fixed number of

tapes, so for some w's M will have more tapes than M. Fortunately, by Theorem

12.6, only two tapes are needed to simulate any M, although the simulation costs a

factor of log T
x
(n). Also, since M may have many tape symbols, which must be

encoded into some fixed number of symbols, the simulation of T
x
(n) moves ofM

by M requires time cT
x
(n) log T

x
(n\ where c is a constant depending on M.

In order to assure that the simulation ofM is T2 (n) time bounded, M simul-

taneously executes steps of a TM (using additional tapes) that uses exactly T2(n)
time on all inputs of length n. This is the reason that T2(n) must be fully time

constructible. After T2 (n) steps,M halts. M accepts w only if the simulation ofM is

completed and M rejects w. The encoding of M is designed as in the previous

theorem, so each M has arbitrarily long encodings. Thus, if M is a T
x
(n) time-

bounded Turing machine, there will be a sufficiently large w encoding M so that

cT
x
(\w\) log TidwD^T.dwl),

and the simulation will carry to completion. In this case, w is in L(M) if and only if

w is not in L(M). Thus L(M) ^ L(M) for any M that is T
x
(n) time bounded.

Therefore L(M) is in DTIME(72 (m)) - DTIME ( 7^ (h)).
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Example 12.3 Let T^n) = 2
n and T2(n) = n

2
2
n

. Then

Til") n->oo "

Thus Theorem 12.9 applies, and DTIME(2n

) + DTIME(n 2
2
n
). Since T^n) < T2(n)

for all n, we may conclude that DTIME(2n
) £ DTIME(n 2

2
n
).

12.4 RELATIONS AMONG COMPLEXITY MEASURES

There are several straightforward relationships and one not-so-obvious relation-

ship among the complexities of a given language L according to the four complex-

ity measures we have defined. The straightforward relationships are stated in one

theorem.

Theorem 12.10

a) If L is in DTIME(/(n)), then L is in DSPACE(/(n)).

b) If L is in DSPACE(/(m)) and f(n) > log2 n, then there is some constant c,

depending on L, such that L is in DTIME(c/(n)
).

c) If L is in NTIME(/(m)), then there is some constant c, depending on L, such

that Lis in DTIME(V(n)
).

Proof

a) IfTM M makes no more than f(n) moves, it cannot scan more than/(«)+!
cells on any tape. By modifying M to hold two symbols per cell we can lower

the storage requirements to \[f(n) + l]/2\ which is at most f(n).

b) Observe that ifTM M
{
has s states and t tape symbols, and uses at most/(n)

space, then the number of different ID's ofM
x
with input of length n is at most

s(n + 2)f(n)t
f{n)

.
Since/(n) > log 2 n, there is some constant c such that for all

n > i,cf{n) >s(n + 2)f(n)t
f{n

\

Construct from M
t
a multitapeTM M 2 that uses one tape to count to c^^K

and two others to simulate M 2 . If Mj has not accepted when the count

reaches c
f{n

\ M 2 halts without accepting. After this number of moves, Mi
must have repeated an ID and so is never going to accept. Clearly M 2 is c

f(n)

time bounded.

c) Let M
l
be an /(h) time-bounded nondeterministic TM with s states, t tape

symbols, and k tapes. The number of possible ID's ofM
{
given input of length

n is at most s(f(n)+ lft
kf(n

\ the product of the number of states, head

positions, and tape contents. Thus d = s(t + \)
3k

satisfies

dfin) > s(f(n) + \ ft
kf{n)

for all n > 1.

A deterministic multitape TM can determine if M
x
accepts input w of

length n by constructing a list of all the ID's ofM
{
that are accessible from the

initial ID. This process can be carried out in time bounded by the square of
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the length of the list. Since the list of accessible ID's has length no greater than

df(n) times the length of an ID, which can be encoded in 1 + k(f(n) + 1)

symbols, the time is bounded by cf(n) for some constant c.

Theorem 12.11 (SavitcKs theorem) If L is in NSPACE(S(n)), then L is in

DSPACE(S2
(n)) provided S(n) is fully space constructible and S(n) > log2 n.

Proof Let L = L(Mj), whereM
t
is an S(n) space-bounded nondeterministic TM.

For some constant c, there are at most c
S(n)

ID's for an input of length n. Thus, if

Mj accepts its input, it does so by some sequence of at most c
S(n) moves, since no

ID is repeated in the shortest computation ofM
x
leading to acceptance.

Let I
t f^- 1 2 denote that the ID I 2 can be reached from l

x
by a sequence of at

most 2
1 moves. For i > 1, we can determine if 7

1
(-^-/ 2 DV testing each V to see if

I
t

- V and /'
|

(
'
~ l)

I 2 . Thus the space needed to determine if we can get from

one ID to another in 2' moves is equal to the space needed to record the ID /'

currently being tested plus the space needed to determine if we can get from one

ID to another in 2'~ 1 moves. Observe that the space used to test whether one ID is

reachable from another in 2'~ 1 moves can be reused for each such test.

The details for testing if w is in L(M j) are given in Fig. 12.5. The algorithm of

Fig. 12.5 may be implemented on a Turing machineM 2 that uses a tape as a stack

of activation records! for the calls to TEST. Each call has an activation record in

which the values of parameters / l5 I 2 , and i are placed, as well as the value of local

variable /'. As I l9 1 2 and V are ID's with no more than S(n) cells, we can represent

each of them in S(n) space. The input head position in binary uses log n < S(n)

cells. Note that the input tape in all ID's is fixed and is the same as the input to

begin

let
|
w

|
= n and m = Hog 2 cl;

let IQ be the initial ID of M, with input w;

for each final ID If of length at most S(n) do

if TEST (/0 , //, mS(n)) then accept;

end;

procedure TEST (I u 7 2 , /);

if i' = 0 and (I
{
= I 2 or l

x \

— 7 2 ) then return true;

if / > 1 then

for each ID V of length at most S(n) do

if TEST (7 l5
/', / - 1) and TEST (/', 7 2 , i - 1) then

return true;

return false

end TEST

Fig. 12.5 Algorithm to simulate Mj.

t An "activation record" is the area used for the data belonging to one call of one procedure.
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M 2 , so we need not copy the input in each ID. The parameter i can be coded in

binary using at most mS(n) cells. Thus each activation record takes space 0(S(n)).

As the third parameter decreases by one each time TEST is called, the initial

call has i = mS(n\ and no call is made when i reaches zero, the maximum number
of activation records on the stack is 0(S(n)). Thus the total space used is 0(S

2
(n)),

and by Theorem 12.1, we may redesign M 2 to make the space be exactly S2
(n).

Example 12.4

NSPACE(log n) c DSPACE(log2
n)

NSPACE(n 2
)
c DSPACE(m4

) and NSPACE(2n
)
c DSPACE(4").

Note that for S(n) > n, Savitch's theorem holds even if S(n) is space construc-

tible rather than fully space constructible. M 2 begins by simulating a TM M that

constructs on each input of length m, taking the largest amount of space used

as S(n) and using this length to lay out the space for the activation records.

Observe, however, that if we have no way of computing S(n) in even S2
(n) space,

then we cannot cycle through all possible values of If or /' without getting some

that take too much space.

12.5 TRANSLATIONAL LEMMAS AND NONDETERMINISTIC
HIERARCHIES

In Theorems 12.8 and 12.9 we saw that the deterministic space and time hierar-

chies were very dense. It would appear that corresponding hierarchies for non-

deterministic machines would require an increase of a square for space and an

exponential for time, to simulate a nondeterministic machine for diagonalization

purposes. However, a translational argument can be used to give a much denser

hierarchy for nondeterministic machines. We illustrate the technique for space.

A translation lemma

The first step is to show that containment translates upward. For example, sup-

pose it happened to be true (which it is not) that NSPACE(n 3
)
c NSPACE(n2

).

This relation could be translated upward by replacing n by n
2

,
yielding

NSPACE(n6
)
<= NSPACE(n4

).

Lemma 12.2 Let S
x
(n\ S 2(n\ and f(n) be fully space constructible, with

S 2 (n) > n and f(n) > n. Then

NSPACE(Si(n)) <= NSPACE(S 2 (n))

implies

NSPACE(S, (/(»))) c NSPACE(S2(/(w))).
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Proof Let L x
be accepted by M,, a nondeterministic 5 t (/ (n)) space-bounded

TM. Let

L2 = {x$
l
*

|

M
t accepts x in space 5 1 (

| x
|

4- /)},

where $ is a new symbol not in the alphabet of Then L2 is accepted by a TM
M 2 as follows. On input x$!

,M 2 marks offS^
|
x

\
+ i) cells, which it may do, since

Si is fully constructible. Then M 2 simulates M, on x, accepting if and only ifM t

accepts without using more than 5 1 (
|x | + i) cells. Clearly M 2 is S^n) space

bounded.

What we have done is to take a set L v
in NSPACE(S

1
(/(/i))) and pad the

strings with $'s so that the padded version L2 is in NSPACE(S
1 («)). Now by the

hypothesis that NSPACEfSjw)) ^ NSPACE(S2 (n)), there is a nondeterministic

S2 {n) space-bounded TM M 3 accepting L2 .

Finally we construct M4 accepting the original set L
t
within space S2 (f(n)).

M4 marks offf(n) cells and then S2(f(n)) cells, which it may do since/and S2 are

fully constructible. As S2 (n) > n,f(n) < S2(f(n)\ so M4 has not used more than

S2 (f(n)) cells.

Next M4 on input x simulates M 3 on x$' for i = 0, 1, 2, . . . To do thi£, M
must keep track of the head location ofM3 on x$\ If the head ofM 3 is within x,

M4's head is at the corresponding point on its input. Whenever the head ofM 3

moves into the $'s, M4 records the location in a counter. The length of the counter

is at most log i.

If during the simulation, M 3 accepts, then M4 accepts. IfM 3 does not accept,

then M4 increases i until the counter no longer fits on S2(f (
| x

| ))
tape cells. Then

M4 halts. Now, if x is in Lu then x$l

is in L2 for i satisfying Si(|x| -h i) =
Si (/( | x

|
)). Since

/

(n) > n, this equality is satisfied by i = /( | x
|

) —
|
x

|
. Thus the

counter requires log (/( | x
|

) -
|
x

| ) space. Since S2(f( \
x

|
)) > /( | x

|
), it follows

that the counter will fit. Thus x is in L(M4 ) if and only if x$' is in L(M 3 ) for some i.

Therefore L(M4 ) = L„ and L
x

is in NSPACE(S2 (/(n))).

Note that we can relax the condition that S 2 (n) > n, requiring only that

S2 (n) > log2 n, provided that S2 (f(n)) is fully space constructible. Then M4 can

lay off S 2 (f(n)) cells without having to lay offf(n) cells. As S2 (f(n)) > log/(n),

there is still room for M4's counter.

Essentially the same argument as in Lemma 12.2 shows the analogous results

for DSPACE, DTIME, and NTIME.

Example 12.5 Using the analogous translation result for deterministic time we

can prove that DTIME(2") £ DTIME(w2n
). Note that this result does not follow

from Theorem 12.9, as

. 2" log 2"

inf —— = 1.

n-oo n2
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Suppose that

DTIME(w2n
) s DTIME(2n

).

Then letting S^n) = nl
n

, S 2 (n) = 2", and f(n) = 2
n

, we get

DTIME(2n
2 2

") c DTIME(2 2
").

Similarly by letting /(rc) = n + 2" we get

DTIME((w + 2
n
)2

n2
2n

)
c DTIME(2n

2
2
").

Combining (12.6) with (12.7), we obtain

(12.7)

(12.6)

DTIME((n + 2
n
)2

n
2
2n

)
c DTIME(2 2

"). (12.8)

However,

inf
2
2 " log 2

2"

(n + 2
n
)2"2

2 '
r„ = inf

n + 2n

Thus Theorem 12.9 implies that (12.8) is false, so our supposition that

DTIME(w2n
)
c DTIME(2n

) must be false. Since DTIME(2n
)
c DTIME(n2"), we

conclude that DTIME(2") £ DTIME(«2n
).

Example 12.6 The translation lemma can be used to show that NSPACE(w3
) is

properly contained in NSPACE(n4
). Suppose to the contrary that

NSPACE(h4)c=NSPACE(h 3
). Then letting f(n) = n\ we get NSPACE(n 12

)

NSPACE(«9
). Similarly letting/(w) = n

4
, we get NSPACE(n 16

)
c NSPACE(rc 12

),

and/(n) = n
5
gives NSPACE(n20

)
c NSPACE(n !

5

). Putting these together yields

NSPACE(n20
)
c NSPACE(n9

). However, we know by Theorem 12.11 that

NSPACE(n9 )c= DSPACE(n 18
), and by Theorem 12.8, DSPACE(h 18

) £
DSPACE(h20

). Thus combining these results, we get

a contradiction. Therefore our assumption NSPACE(w4
) s NSPACE(h3

) is

wrong, and we conclude NSPACE(n 3
) £ NSPACE(n4

).

A nondeterministic space hierarchy

Example 12.6 can be generalized to show a dense hierarchy for nondeterministic

space in the polynomial range.

Theorem 12.12 If e > 0 and r > 0, then

NSPACE(nr
) S= NSPACE(nr+£

).

NSPACE(n 20
)
c NSPACE(w9

)
c DSPACE(n 18

)

£ DSPACE(n20
)
c NSPACE(n20

),
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Proof If r is any nonnegative real number, we can find positive integers s and t

such that r < s/t and r + e > (s + 1)11. Therefore it suffices to prove for all positive

integers s and r, that

NSPACE(ns/r

) £ NSPACE(n(s+1)/
').

Suppose to the contrary that

NSPACE(h(s+1)/
') <= NSPACE(ns/

').

Then by Lemma 12.2 with /(h) = n
(s+i)

', we have

NSPACE(h(s+1)(s+,)
)
c NSPACE(ns(s+i)

) (12.9)

for i = 0, 1, . .
.

, s. As s(s + i) < (s + l)(s + iI
— 1) for i > 1, we know that

NSPACE(hs(s+,)
)
c NSPACE(h(s+1)(s+,_1)

). (12.10)

Using (12.9) and (12.10) alternately, we have

NSPACE(n(s+1)(2s)
)
c NSPACE(ks(2s)

)

S NSPACE(n(s+ 1)(2s ~ l
>) c NSPACE(ns(2s " n

)

c • • • c NSPACE(n(s+ 1)s
)
c NSPACE(ns2

).

That is,

NSPACE(« 2s2 + 2s
)
c NSPACE(ns2

).

However, by Savitch's theorem,

NSPACE(ws2
)
c DSPACE(n 252

),

and by Theorem 12.8,

DSPACE(m 2s2
) £ DSPACE(n 2s2 + 2s

).

Clearly,

DSPACE(/72s2+2s
)
c NSPACE(n 2s2 + 2s

).

Combining these results, we get

NSPACE(n 2s2 + 2s
) 5 NSPACE(/7 2s2 + 2s

),

a contradiction. We conclude that our assumption

NSPACE(n(s+1)/t
)
c NSPACE(ns/

')

was wrong. Since containment in the opposite direction is obvious, we conclude

NSPACE(ns/
') £ NSPACE(h(s+ 1)/r

)

for any positive integers s and t.
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Similar dense hierarchies for nondeterministic space can be proved for ranges

higher than the polynomials, and we leave some of these results as exercises.

Theorem 12.12 does not immediately generalize to nondeterministic time, because

of the key role of Savitch's theorem, for which no time analog is known. However,

a time analog of Theorem 12.12 has been established by Cook [1973a].

12.6 PROPERTIES OF GENERAL COMPLEXITY MEASURES:
THE GAP, SPEEDUP, AND UNION THEOREMS

In this section we discuss some unintuitive properties of complexity measures.

While we prove them only for deterministic space complexity, they will be seen in

the next section to apply to all measures of complexity.

Theorems 12.8 and 12.9 indicate that the space and time hierarchies are very

dense. However, in both theorems the functions are required to be constructive.

Can this condition be discarded? The answer is no: the deterministic space and

time hierarchies have arbitrarily large gaps in them.

We say that a statement with parameter n is true almost everywhere (a.e.) if it

is true for all but a finite number of values of n. We say a statement is true infinitely

often (i.o.) if it is true for an infinite number of n's. Note that both a statement and

its negation may be true i.o.

Lemma 12.3 If L is accepted by a TM M that is S(n) space bounded a.e., then L is

accepted by an S(n) space-bounded TM.

Proof Use the finite control to accept or reject strings of length n for the finite

number of n where M is not S(n) bounded. Note that the construction is not

effective, since in the absence of a time bound we cannot tell which of these words

M accepts.

Lemma 12.4 There is an algorithm to determine, given TM M, input length n,

and integer m, whether m is the maximum number of tape cells used by M on some

input of length n.

Proof For each m and n there is a limit t on the number of moves M may make

on input of length n without using more than m cells of any storage tape or

repeating an ID. Simulate all sequences of up to t moves, beginning with each

input of length n.

Theorem 12.13 (Borodin s Gap Theorem) Given any total recursive function

g(n) > h, there exists a total recursive function S(n) such that DSPACE(S(n)) —

DSPACE(#(S(n))). In other words, there is a "gap" between space bounds S(n) and

g(S(n)) within which the minimal space complexity of no language lies.

Proof Let M
x ,
M 2 , ... be an enumeration of TM's. Let be the maximum

number of tape cells used by M, on any input of length n. If M, always halts, then

Si(n) is a total function and is the space complexity of M,, but if M, does not halt
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on some input of length w, then S,(«) is undefined.! We construct S(n) so that for

each k either

1) Sk (n) < S(n) a.e., or

2) Sk(n)>g(S(n)) i.o.

That is, no Sk(n) lies between S(n) and g(S(n)) for almost all n.

In constructing S(n) for a given value of n, we restrict our attention to the

finite set of TM's M u M2 , • • • ,
M„. The value for S(n) is selected so that for no i

between 1 and n does S,(w) lie between S(n) and gr(S(w)). If we could compute the

largest finite value of S,(w) for 1 < i < «, then we could set S(n) equal to that value.

However, since some S,(n) are undefined, we cannot compute the largest value.

Instead, we initially set ; = 1 and see if there is some M
t
in our finite set for which

Si(n) is between j + 1 and g(j). If there is some such S,-(n), then set ; to S,(w) and

repeat the process. If not, set S(n) to j and we are done. As there is but a finite

number of TM's under consideration, and by Lemma 12.4 we can tell whether

Si(n) = m for any fixed m, the process will eventually compute a value for j such

that for 1 < i < n either < j or S,(n) > g(j). Assign S(n) this value of

Suppose there were some language L in DSPACE(#(S(n)) but not in

DSPACE(S(h)). Then L = L(Mk ) for some k where Sk (n) < g(S(n)) for all n. By the

construction of S(n), for all n > k, Sk(n) < S(n). That is, Sk(n) < S(n) a.e., and hence

by Lemma 12.3, L is in DSPACE(5(m)), a contradiction. We conclude that

DSPACE(S(n)) = DSPACE(^(5(n))).

Theorem 12.13 and its analogs for the other three complexity measures have a

number of highly unintuitive consequences, such as the following.

Example 12.7 There is a total recursive function f(n) such that

DTIME(/(n)) = NTIME(/(n)) = DSPACE(/(m)) = NSPACE(/(n)).

Clearly DTIME(/(n)) is contained within NTIME(/(rc)) and DSPACE(/(r?)).

Similarly, both NTIME(/(«)) and DSPACE(/(«)) are contained within

NSPACE(/(m)). By Theorem 12.10, for all/(n) > log2 w, if L is in NSPACE(/(n)),

then there is a constant c, depending only on L such that L is in DTIME(c/(n)
).

Therefore, L = L(M) for some TM M whose time complexity is bounded above by

f(nY
(n)

a.e. By the DTIME analog of Lemma 12.3, L is in DTIME(/(M)/(n)
).

Finally, the DTIME analog of Theorem 12.13 with #(x) = xx
establishes the exist-

ence of/(n) for which DTIME(/(n)) = DTIME(f(nY {n)

\ proving the result.

Similarly, if one has two universal models of computation, but one is very

simple and slow, say a Turing machine that makes one move per century, and the

other is very fast, say a random-access machine with powerful built-in instructions

for multiplication, exponentiation, and so on, that performs a million operations

t We identify an undefined value with infinity, so an undefined value is larger than any defined value.
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per second, it is easily shown that there exists a total recursive T(n) such that any

function computable in time T(n) on one model is computable in time T(n) on the

other.

The speed-up theorem

Another curious phenomenon regarding complexity measures is that there are

functions with no best programs (Turing machines). We have already seen that

every TM allows a linear speed up in time and compression in space. We now
show that there are languages with no "best" program. That is, recognizers for

these languages can be sped up indefinitely. We shall work only with space and

show that there is a language L such that for any Turing machine accepting L,

there always exists another Turing machine that accepts L and uses, for example,

only the square root of the space used by the former. This new recognizer can of

course be replaced by an even faster recognizer and so on, ad infinitum.

The basic idea of the proof is quite simple. By diagonalization we construct L
so that L cannot be recognized quickly by any "small" machine, that is, a machine

with a small integer index encoding it. As machine indices increase, the diagonali-

zation process allows faster and faster machines recognizing L. Given any ma-

chine recognizing L, it has some fixed index and thus can recognize L only so fast.

However, machines with larger indices can recognize L arbitrarily more quickly.

Theorem 12.14 (Blums Speed-up Theorem) Let r(n) be any total recursive func-

tion. There exists a recursive language L such that for any Turing machine M,

accepting L, there exists a Turing machine Mj accepting L such that r(Sj(n)) <

Si(n), for almost all n.

Proof Without loss of generality assume that r(n) is a monotonically nondecreas-

ing fully space-constructible function with r(n) > n
2

(see Exercise 12.9). Define

h(n) by

/i(l) = 2, h(n) = r(h(n- 1)).

Then h(n) is a fully space-constructible function, as the reader may easily show.

Let M b M 2 y • •• be an enumeration of all off-line TM's analogous to that of

Section 8.3 for single-tape TM's. In particular, we assume that the code for M, has

length log 2 /. We construct L so that

1) if L(M,) = L, then S,(n) > h(n - i) a.e.;

2) for each k, there exists a Turing machine Mj such that L{M
})
= L and

Sj(n) <h(n- k).

The above conditions on L assure that for each M, accepting L there exists an

Mj accepting L with

S
t
(n) > r(Sj(n)) a.e.
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To see this, select Mj so that Sj(n) < h(n - i - 1). By (2), Af, exists. Then by (1),

Si(n) > h(n - i) = r(h{n - i - 1)) > r(S») a.e.

Now let us construct L ^ 0* to satisfy (1) and (2). For n = 0, 1, 2, ... in turn,

we specify whether 0" is in L. In the process, certain M, are designated as

"canceled." A canceled TM surely does not accept L Let a(n) be the least integer

j < n such that Sj(n) < h(n — j), and Mj is not canceled by i = 0, 1, — 1.

When we consider n, if <j(n) exists, Ma{n) is designated as canceled. Then 0" is

placed in L if and only if a(n) exists and 0" is not accepted by Ma{n) .

Next we prove that L satisfies condition (1), namely: if L(M,) = L, then

Si(n) > h(n — i) a.e. Let L(M.) = L. In constructing L, all TM's Mjt for j < i, that

are ever canceled are canceled after considering some finite number of n\ say up

to n0 . Note that n0 cannot be effectively computed, but nevertheless exists. Sup-

pose Si(n) < h(n — i) for some n > max(n0 ,
i). When we consider n, no MjJ < i9

is canceled. Thus a(n) = i, and A/, would be canceled had it not been previously

canceled. But a TM that is canceled will surely not accept L. Thus S,(n) > h(n — i)

for n > max(n0 ,
i), that is, S^n) > h(n — i) a.e.

To prove condition (2) we show that there exists, for given k, a TM M = M
}

such that L(M) = L, and Sj(n) < h(n — k)for all n. To determine whether 0" is in L,

M must simulate M„(n) on 0n
. To know what o(n) is, M must determine which M,-'s

have already been canceled by Of for f < n. However, constructing the list of

canceled TM's directly requires seeing if M, uses more than /?(/" — i) space for

0 < f < n and 1 ^ / < n. For i < k + f — n y this requires more than h(n — k)

space.

The solution is to observe that any TM Mh i < k, that is ever canceled, is

canceled when we consider some / less than a particular n
x

. For each f < w,,

incorporate into the finite control of M whether Of is in L, and also incorporate a

list of all TM's M, canceled by any f < n v Thus no space at all is needed by M if

n < n v If n > to compute a(n) and simulate M a(n) on 0", it will only be neces-

sary to simulate TM's M, on input (/, where n
x
< f < n and k < i < n, to see

whether M, is canceled by /.

To test whether M, is canceled by /, we need only simulate M, using /?(/ — i)

of M,'s cells, which is less than h(n — /c), as f < n and i > k. As n > it must be

that o(n), if it exists, is greater than k. Thus simulating Mn(n) on input 0" takes

h(n — o(n)) of M a{n)'s cells, which is less than h(n — k) cells.

Lastly, we must show that M can be made to operate within space h(n — k).

We need only simulate TM's M, for k < i < n on inputs (/, < / < «, to see

whether they get canceled, so we need represent no more than h(n — k — 1 ) cells of

M,'s tape for any simulation. Since / < ny the integer code for M, has length no

more than log2 n. Thus any tape symbol of M, can be coded using \og 2 n of M's

cells. As r(x) > x 2
, we know h(x) > 2

2x
. Also, by the definition of /?, h(n — k) >

[h(n -k - l)]
2 > 2

2n ' k ' x

h{n - k - 1). As 2
2n ' k ~ l > \og2 n a.e., /7(« - k) space is

sufficient for the simulation for almost all n.
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In addition to the space required for simulating the TM's, space is needed to

maintain the list of canceled TM's. This list consists of at most n TM's, each with a

code of length at most log2 n. The n log n space needed to maintain the list of

canceled TM's is also less than h(n — k) a.e. By Lemma 12.3,M can be modified to

recognize words 0", where n \og2 n < h(n — k) or 2 2"~ k ~ 1

< log2 n in its finite

control. The resulting TM is of space complexity h(n — k) for all h, and is the

desired M.

The union theorem

The last theorem in this section, called the union theorem, has to do with the-

naming of complexity classes. By way of introduction, we know that each polyno-

mial such as n
2
or n

3
defines a space complexity class (as well as complexity classes

of the other three types). However, does polynomial space form a complexity

class? That is, does there exist an S(n) such that DSPACE(S(n)) contains all sets

recognizable in a polynomial space bound and no other sets? Clearly, S(n) must

be almost everywhere greater than any polynomial, but it also must be small

enough so that one cannot fit another function that is the space used by some TM
between it and the polynomials, where "fit" must be taken as a technical term

whose meaning is defined precisely in the next theorem.

Theorem 12.15 Let {fj(n) \
i = 1, 2, . . .} be a recursively enumerable collection of

recursive functions. That is, there is a TM that enumerates a list of TM's, the first

computing/^, the second computing^, and so on. Also assume that for each i and

nyfi(n ) <fi+i(n Y Then there exists a recursive S(n) such that

DSPACE(S(n)) = (J DSPACE (/(>])).

i> 1

Proof We construct a function S(n) satisfying the following two conditions:

1) For each i, S(n) >fi(n) a.e.

2) If Sj(n) is the exact space complexity of some TM M
}
and for each i, Sj(n) >

fi(n) i.o., then Sj(n) > S(n) for some n (and in fact, for infinitely many n's).

The first condition assures that

U DSPACE(/(n)) ci DSPACE(S(n)).
i

The second condition assures that DSPACE(S(rc)) contains only those sets that

are in DSPACE(/(n)) for some /. Together the conditions imply that

DSPACE(S(«)) = (J DSPACE(y;(M)).
i

Setting S(n) = fn(n) would assure condition (1). However, it may not satisfy

condition (2). There may be a TM M
}
whose space complexity Sj(n) is greater than

each/j(n) i.o. but less thanfn(n) for all n. Thus there may be sets in DSPACE(/n(n))
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not in [ji DSPACE(fi(n)). To overcome this problem we construct S(n) so that it

dips below each Sj(n) that is i.o. greater than each /f
(n), and in fact, S(n) will dip

below Sj(n) for an infinity of ris. This is done by guessing for each TM Mj an ij

such that fi.(n) > Sj(n) a.e. The "guess" is not nondeterministic; rather it is subject

to deterministic revision as follows. If at some point we discover that the guess is

not correct, we guess a larger value for i
}
and for some particular n define S(n) to

be less than Sj(n). If it happens that Sj grows faster than any/j, S will infinitely

often be less than Sj. On the other hand, if some/ is almost everywhere greater

than Sp eventually we shall guess one such f{
and stop assigning values of S less

than Sj.

In Fig. 12.6 we give an algorithm that generates S(n). A list called LIST of

"guesses" of the form "i
7
- = k" for various integers j and k is maintained. For each j,

there will be at most one guess k on LIST at any time. As in the previous theorem,

M u M 2 , ... is an enumeration of all off-line TM's, and Sj(n) is the maximum
amount of space used by Mj on any input of length n. Recall that Sj(n) may be

undefined (infinite) for some values of n.

begin

1) LIST:= empty list

2) for«= 1,2, 3, ...do

3) if for all = k" on LIST,/*(«) > S» then

4) add "i„ = n" to LIST and define S(n) =fn(n)
else

begin

5) Among all guesses on LIST such that fk (n) < Sj(n), let = A" be the

guess with the smallest k 7 and given that k, the smallest j;

6) define S(n) = fk (n)\
7) replace = /T by = n" on LIST;

8) add "!„ = n to LIST
end

end

Fig. 12.6 Definition of S(n).

To prove that

DSPACE(S(*)) = (J
DSPACE(y;(«))

i

we first show that S(n) satisfies conditions (1) and (2). Consider condition (1). To
see that for each m, S(n) > fm(n) a.e. observe that S(n) is assigned a value only at

lines (4) and (6) of Fig. 12.6. Whenever S(n) is defined at line (4) for n > m 9 the

value of S(n) is at least fm (n). Thus for the values of S(n) defined at line (4),

S(n) >fm(n) except for the finite set of n less than m. Now consider the values of

S(n) defined at line (6). When n reaches m, LIST will have some finite number of
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guesses. Each of these guesses may subsequently cause one value of S(n\ for some
n > m, to be less than fm (n). However, when that happens, line (7) causes that

guess to be replaced by a guess "ij = p" for some p > m, and this guess, if selected

at line (5), does not cause S(n) to be made less than fm (n), since fp(n) >fm(n)

whenever p>m. Thus from line (6) there are only finitely many n greater than

m (at most the length of LIST when n = m) for which S(n) <fm (n). Since there

are only a finite number of ris less than m, S(n) >fm(n) a.e.

Next we must show condition (2), that if there exists TM M
j
such that for

each i, Sj(n) > f^n) i.o., then Sj(ri) > S(ri) for infinitely many ri. At all times after

n = j, LIST will have a guess for ij9
and LIST is always finite. For n = j we

place "ij = j
n
on LIST. As Sj(n) > fj(n) i.o., there will be arbitrarily many sub-

sequent values of n for which the condition of step (3) does not hold. At each of

these times, either our
4 — j

n
is selected at line (5), or some other one of the

finite number of guesses on LIST when n = j is selected. In the latter case, that

guess is replaced by a guess
4

H
p
= q" with q > j. All guesses added to LIST are

also of the form "/ = q" for q > j, so eventually our "f . = j
n

is selected at step (5),

and for this value of n, we have Sj(n) > fj(n) = S(n). Thus condition (2) is true.

Lastly we must show that conditions (1) and (2) imply

DSPACE(S(n)) = [j DSPACE(/i(«)).

i

Suppose L is in
(J f

DSPACE(/^)). Then L is in DSPACE(/m (^2)) for some par-

ticular m. By condition (1), S(n) >fm(n) a.e. Thus by Lemma 12.3, L is in

DSPACE(S(«)). Now suppose that L is in DSPACE(S(rc)). Let L = L(M
}\ where

Sj(n) < S(n) for all n. If for no i, L is in DSPACE(/(m)), then by Lemma 12.3,

for every i, each TM M k accepting L has Sk(n) >fi(n) i.o. Thus by condition (2)

there is some n for which Sk(n) > S(n). Letting k = j produces a contradiction.

Example 12.8 Let /(h) = ri. Then we may surely enumerate a sequence of TM's

M u M 2 , ... such that Mh presented with input 0", writes 0"' on its tape and

halts. Thus Theorem 12.15 says that there is some S(n) such that

DSPACE(S(n)) = (J DSPACE(«').

As any polynomial p(ri) is equal to or less than some ri a.e., DSPACE(5(n)) is

the union over all polynomials p(ri), of DSPACE(p(/i)). This union, which in the

next chapter we shall call PSPACE, and which plays a key role in the theory of

intractable problems, is thus seen to be a deterministic space complexity class.

12.7 AXIOMATIC COMPLEXITY THEORY

The reader may have observed that many theorems in this chapter are not depen-

dent on the fact that we are measuring the amount of time or space used, but only
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that we are measuring some resource that is being consumed as the computation

proceeds. In fact one could postulate axioms governing resources and give a

completely axiomatic development of complexity theory. In this section we briefly

sketch this approach.

The Blum axioms

Let Mj, M 2 , ... be an enumeration of Turing machines defining among them

every partial recursive function. For technical reasons we consider the M,'s as

computing partial recursive functions fa rather than as recognizing sets. The
reason is that it is notationally simpler to measure complexity as a function of the

input rather than of the length of the input. Let </>,(rc) be the function of one

variable computed by M
f , and let ^(h), Q>

2 (
n )i .... be a set of partial recursive

functions satisfying the following two axioms (Blums axioms).

Axiom 1 O
f
(n) is defined if and only if $,(n) is defined.

Axiom 2 The function R(i, n, m) defined to be 1 if <J>
t
(rc) = m and 0 otherwise, is a

total recursive function.

The function O
f
(n) gives the complexity of the computation of the ith Turing

machine on input n. Axiom 1 requires that <E>,(m) is defined if and only if the ith

Turing machine halts on input n. Thus one possible O, would be the number of

steps of the ith Turing machine. The amount of space used is another alternative,

provided we define the space used to be infinite if the TM enters a loop.

Axiom 2 requires that we can determine whether the complexity of the ith

Turing machine on input n is m. For example, if our complexity measure is the

number of steps in the computation, then given i, n, and m, we can simulate M, on
0" for m steps and see if it halts. Lemma 12.4 and its analogs are claims that Axiom
2 holds for the four measures with which we have been concerned.

Example 12.9 Deterministic space complexity satisfies Blum's axioms, provided

we say <!>,(«) is undefined if M, does not halt on input 0", even though the amount

of space used by M, on 0" may be limited. Deterministic time complexity likewise

satisfies the axioms if we say O
f(«) is undefined whenever M, runs forever or halts

without any 07 on its tape. To compute R(i, n, m), simply simulate M, for m steps

on input 0n
.

We may establish that nondeterministic time and space satisfy the axioms if

we make an intelligent definition of what it means for an NTM to compute a

function. For example, we might say that = j if and only if there is some

sequence of choices by M, with input 0" that halts with 07 on the tape, and no

sequence of choices that leads to halting with some 0\ k =f= j, on the tape.

If we define O.(m) = </>,(«), we do not satisfy Axiom 2. Suppose R(i', n, m) were

recursive. Then there is an algorithm to tell if M, with input 0" halts with 0m on its

tape. Given any TM M, we may construct M to simulate M. IfM halts with any
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tape, M erases its own tape. If i is an index for M, then R(i, n, 0) is true if and only

ifM halts on input 0". Thus if R(i, n, m) were recursive, we could tell if a given TM
M halts on a given input, which is undecidable (see Exercise 8.3).

Recursive relationships among complexity measures

Many of the theorems on complexity can be proved solely from the two axioms. In

particular, the fact that there are arbitrarily complex functions, the speed-up

theorem, the gap theorem, and the union theorem can be so proved. We prove

only one theorem here to illustrate the techniques. The theorem we select is that

all measures are recursively related. That is, given any two complexity measures Q>

and <f>, there is a total recursive function r such that the complexity of the TM M,
in one measure, 6,(rz), is at most r(rc, <t>,(rc)). For example, Theorems 12.10 and

12.11 showed that for the four measures of complexity with which we have been

dealing, at most an exponential function related any pair of these complexity

measures. In a sense, functions that are easy in one measure are "easy" in any

other measure, although the term "easy" must be taken lightly, as r could be a very

rapidly growing function, such as Ackermann's function.

Theorem 12.16 Let <t> and 6 be two complexity measures. Then there exists a

recursive function r such that for all /,

r(n, > 0>,(n) a.e.

Proof Let

r(n, m) = max {i>i(n) \i <n and O^rc) = m).

i

The function r is recursive, since <!>,(«) = m may be tested by Axiom 2. Should it be

equal to m, then </>,(/?) and <J>,(h) must be defined, by Axiom 1, and hence the

maximum can be computed. Clearly r(n, > <D
f
(n) for all n > i, since for

n > i, r(n, <t\(n)) is at least ^(n).

Although the axiomatic approach is elegant and allows us to prove results in

a more general framework, it fails to capture at least one important aspect of our

intuitive notion of complexity. If we construct a Turing machine Mk that first

executes M, on n and then executes M
}
on the result, we would expect the com-

plexity ofMk on n to be at least as great as M, on n. However, there are complexity

measures such that this is not the case. In other words, by doing additional

computation we can reduce the complexity of what we have already done. We
leave the construction of such a complexity measure as an exercise.

EXERCISES

12.1 The notion of a crossing sequence—the sequence of states in which the boundary

between two cells is crossed—was defined in Section 2.6 in connection with two-way finite

automata. However, the notion applies equally well to single-tape TM's. Prove the follow-

ing basic properties of crossing sequences.
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a) The time taken by single-tape TM M on input w is the sum of the lengths of the

crossing sequences between each two cells of M's tape.

b) Suppose M is a single tape TM that, if it accepts its input, does so to the right of the

cells on which its input was originally written. Show that ifM accepts input Wi w 2 , and

the crossing sequence between W! and w 2 is the same as that between x t and x 2 when
M is given input x t x 2 , then M accepts x

x
w2 .

*12.2 Use Exercise 12.1 to show that the languages

S a) {wcwR
|
w is in (a -f b)*} b) {wcw

|
w is in (a + b)*}

each require kn 2
steps on some input of sufficiently large odd length n, for some constant

k > 0. Thus the bound of Theorem 12.5 is in a sense the best possible.

*12.3 The notion of crossing sequences can be adapted to off-line TM's if we replace the

notion of "state" by the state, contents of storage tapes, and positions of the storage tape

heads. Theorem 12.8, the space hierarchy, applied only to space complexities of log n or

above. Prove that the same holds for fully space-constructible S 2 (n) below log n. [Hint:

Using a generalized crossing sequence argument, show that {wc'w
|
w is in (a + b)* and

|

w |

= 2S2<i+2M)} is in DSPACE(S 2 (n)) but not in DSPACE^m)).]

*12.4 Show, using generalized crossing sequence arguments, that if L is not a regular set

and L is in DSPACE(S(n)), then S(n) > log log n i.o. Show the same result for nondeter-

ministic space. Thus for deterministic and nondeterministic space there is a "gap" between

1 and log log n.

12.5 Show that Lemma 12.2, the "translation lemma," applies to

a) deterministic space

b) deterministic time, and

c) nondeterministic time.

12.6 Show that DTlME(2 2 " +n
)
properly includes DTIME(2 2

").

12.7 Show that NSPACE((c + e)
n

)
properly includes NSPACE(c") for any c> 1 and

c>0.

12.8 What, if any, is the relationship between each of the following pairs of complexity

classes?

a) DSPACE(n 2
) and DSPACE(/(m)), where/(n) = n for odd n and n

3
for even n.

b) DTIME(2") and DTIME(3 n

)

c) NSPACE(2n
) and DSPACE(5n

)

d) DSPACE(n) and DTIME([log2 Ml
n

)

12.9 Show that if r is any total recursive function, then there is a fully space-constructible

monotonically nondecreasing r' such that r'(n) > r(n), and r'(x) > x 2
for all integers x.

[Hint: Consider the space complexity of any TM computing r.]

12.10 Show that there is a total recursive function S(n) such that L is in DSPACE(S(n)) if

and only if L is accepted by some c
n space-bounded TM, for c > 1.

12.11 Suppose we used axioms for computational complexity theory as it pertains to

languages rather than functions. That is, let M x > M 2 , ... be an enumeration of Turing

machines and Li the language accepted by M
t . Replace Axiom 1 by:

Axiom 1': O^m) is defined if and only if M, halts on all inputs of length n.

Reprove Theorem 12.16 for Axioms 1' and 2.
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12.12 Show that the speed-up and gap theorem hold for NSPACE, DTIME and NTIME.
[Hint: Use Theorem 12.16 and the speed-up and gap theorems for DSPACE.]

12.13 Show that the following are fully time and space constructible:

a) n
2

b) 2" c) n\

12.14 Show that the following are fully space constructible:

a) Jn b) log2 M

Sc) Some function that is bounded above by log 2 log2 « and that is bounded below by

c log 2 log2 n, for some c > 0, infinitely often.

12.15 Show that if T2 (n) is time constructible, and

n-oo T2(n)

then there is a language accepted by a T2(n) time-bounded one-tape TM, but by no T
Y
(n)

time-bounded one-tape machine. [Hint: To simulate a one-tape TM M
t
by a one-tape

machine, move the description ofM
{
so that it is always near the tape head. Similarly, carry

along a "counter" to tell when M, has exceeded its time limit.]

*12.16 Show that if T2 (n) is time constructible and

T2 (n)

then for all k, there is a language accepted by a fc-tape 72 time-bounded TM but by no

/c-tape Ti(n) time-bounded TM, where \og*(m) is the number of times we must take logar-

ithms base 2 of m to get to 1 or below. For example, log*(3) = 2 and log*(2
65536

) = 5. Note

that this exercise implies Exercise 12.15.

*12.17 Show that for any complexity measure O satisfying the Blum axioms there can be

no total recursive function /such that O.(n) < f(n, (pi(n)). That is, one cannot bound the

complexity of a function in terms of its value.

12.18 The speed-up theorem implies that for arbitrarily large recursive functions r we can

find a language L for which there exists a sequence of TM's M M 2 , . . • , each accepting L,

such that the space used by M, is at least r applied to the space used by M
i + ,. However, we

did not give an algorithm for finding such a sequence; we merely proved that it must exist.

Prove that speed up is not effective, in that if for every TM accepting L, there is an M, on

the list using less space, then the list of TM's is not recursively enumerable.

*12.19 Which of the following are complexity measures?

a) <D,(n) = the number of state changes made by M, on input n.

b) <D,(n) = the maximum number of moves made by M, without a state change on input n.

c) O
t
(n) = 0 for all /' and n.

fV ^ . , 10 if din) is defined,
d) OJn) = '

(undefined otherwise.

*12.20 (Honesty theorem for space). Show that there is a total recursive function r such that

for every space complexity class r
6\ there is a function S(n) such that DSPACE(5(m)) = #

and S(n) is computable in r(S(n)) space.

*12.21 Theorem 12.7 shows that given S(n\ there is a set L such that any TM recognizing
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L uses more than S(n) space i.o. Strengthen this result to show there is a set E such that any

TM recognizing L uses more than S(n) space a.e.

**12.22 Let O be a complexity measure and let c(Uj) be any recursive function such that

when (j>i(n) and <t>j(n) are defined then so is <j>C(ij)(n). Prove there exists a recursive function h

such that

*c<m>(«) < M". *>iW H»)) a e -

**12.23 Show that if f(n) is fully space constructible then DTIME(/(>z) log/(n)) c
DSPACE(/(>z)).

12.24 Exhibit a TM that accepts an infinite set containing no infinite regular subset.

12.25 Consider one-tape TM's that use a constant one unit of ink each time they change a

symbol on the tape.

a) Prove a linear "speed-up" theorem for ink.

b) Give an appropriate definition of a "fully ink-constructible" function.

c) How much of an increase in the amount of ink is necessary to obtain a new complexity

class?

12.26 A Turing machine is said to be oblivious if the head position at each time unit

depends only on the length of the input and not on the actual input. Prove that if L is

accepted by a /c-tape T(n) time-bounded TM, then L is accepted by a 2-tape T(n) log T(n)

oblivious TM.

*12.27 Let L c (0 + 1)* be the set accepted by some T(n) time-bounded TM. Prove that

for each n there exists a Boolean circuit, with inputs x,, x„, having at most

T(n) log T(n) two-input gates and producing output 1 if and only if the values ofx u . .
. , xn

correspond to a string in L. The values ofx u . .
. , x n correspond to the string x if x, has value

true whenever the z'th symbol of x is 1 and x, has value false whenever the ith symbol of x is

0. [Hint: Simulate an oblivious TM.]

**12.28 Loop programs consist of variables that take on integer values and statements. A
statement is of one of the forms below.

1) (variable) := (variable)

2) (variable) := (variable) + 1

3) for i := 1 to (variable) do statement;

4) begin (statement); (statement); ... (statement) end;

In (3) the value of the variable is bound before the loop, as in PL/I.

a) Prove that loop programs always terminate.

b) Prove that every loop program computes a primitive recursive function.

c) Prove that every primitive recursive function is computed by some loop program.

d) Prove that a TM with a primitive recursive running time can compute only a

primitive recursive function.

12.29 Let F be a formal proof system in which we can prove theorems about one-tape

TM's. Define a complexity class

C T{n)
= {L(Mi) |

there exists a proof in F that T^n) < T(n) for all n}.

Can the time hierarchy of Exercise 12.16 be strengthened for provable complexity? [Hint:

Replace the clock by a proof that T^n) < T(n).]
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Solutions to Selected Exercises

12.2(a) Consider any string wcwR of length n and let £wA be the length of the crossing

sequence between positions /' and i + 1, for 1 < i < n/2, made by some one-tape TM M with

s states. Suppose the average of /W>1 over all words w of length (n - l)/2 is p(i). Then for at

least half of all w's, SwJ < 2p(i). The number of w's is 2
{n ~ 1)/2

, so there are at least 2
{n ~ 3)12

w's

for which tw i
< 2p(i). As the number of crossing sequences of length 2p(i) or less is

2p(i)

£ ^<s 2*i>+1
,

there must be at least 2
{n ~ 3)/2

/s
2p(,)+

1

w's with the same crossing sequence between posi-

tions i and i + 1. There are 2
(n " 1)/2 "' sequences of as and b's that may appear in positions

i + 1 through (n - l)/2 in these words, so if

?<n-3)/2

swl>2
,"-'" 2 - i (12.U)

Then two words with the same crossing sequence differ somewhere among the first i

positions. Then by Exercise 12.1(b), M accepts a word it should not accept.

Thus (12.11) is false, and s
2p(i)+ 1 > 2}~ l

. Therefore,

^^2Tog^-2
Surely there is some word w such that when presented with wcwR

, M takes at least

average time. By Exercise 12.1(a), this average is at least

<"-J>/
2

(""J,)/
2

/ - 1 n 1 1 In - 3 \ /n - 1 \ n - 1

12.14(c) We may design an off-line TM M of space complexity S(n) to test for i = 2, 3» —
whether its input length n is divisible by each i, stopping as soon as we encounter a value of

/ that does not divide n. As the test whether i divides n needs only log2 / storage cells, S(n) is

the logarithm of the largest / such that 2, 3, / all divide n. If we let n = kl we know that

S(n) > \og2 k. As k \ < k
k

, we know that

log2 n < k \og2 k

and

log2 log 2 « < \og2 k + log2 log 2 /c < 2 log2 /c.

Thus for those values of n that are k ! for some k, it follows that

S(n) > \ log2 log2 n.

We must show that for all n 7
S(n) < 1 + log2 log 2 /7. It suffices to show that the smallest

n for which S(n) > k, which is the least common multiple (LCM) of 2, 3, . .
.

, 2
k ~ 1 + 1, is at

least 2
2k_1

. That is, we need the fact that LCM(2, 3, ...,i) > 2
i_1

. A proof requires results in

the theory of numbers that we are not prepared to derive, in particular that the probability

that integer / is a prime is asymptotically 1/ln z, where In is the natural logarithm (see

Hardy and Wright [1938]). Since LCM(2, 3, i) is at least the product of the primes

between 2 and /, a lower bound on the order of e' for LCM (2, 3, . .
. , i) for large i is easy to

show.
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BIBLIOGRAPHIC NOTES

The study of time complexity can be said to begin with Hartmanis and Stearns [1965],

where Theorems 12.3, 12.4, 12.5, and 12.9 are found. The serious study of space complexity

begins with Hartmanis, Lewis, and Stearns [1965], and Lewis, Stearns, and Hartmanis

[1965]; Theorems 12.1, 12.2, and 12.8 are from the former. Seiferas [1977a,b] presents some
of the most recent results on complexity hierarchies. A number of earlier papers studied

similar aspects of computation. In Grzegorczyk [1953], Axt [1959], and Ritchie [1963] we
find hierarchies of recursive functions. Yamada [1962] studies the class of real-time comput-

able functions [T(n) = n]. Rabin [1963] showed that two tapes can do more than one in real

time, a result that has since been generalized by Aanderaa [1974] to k versus k — 1 tapes.

Theorem 12.6, showing that logarithmic slowdown suffices when one goes from many
tapes to two is from Hennie and Stearns [1966]. Theorem 12.11, the quadratic relationship

between deterministic and nondeterministic time, appears in Savitch [1970]. Translational

lemmas were pioneered by Ruby and Fischer [1965], while Theorem 12.12, the nondeter-

ministic space hierarchy, is by Ibarra [1972]. The nondeterministic time hierarchy alluded

to in the text is from Cook [1973a]. The best nondeterministic hierarchies known are found

in Sieferas, Fischer, and Meyer [1973]. Book and Greibach [1970] characterize the lan-

guages in (Jc>0 NTIME(cn).

The study of abstract complexity measures originates with Blum [1967]. Theorem

12.13, the gap theorem, is from Borodin [1972] and (in essence) Trakhtenbrot [1964]; a

stronger version is due to Constable [1972]. (Note that these and all the papers mentioned

in this paragraph deal with Blum complexity measures, not solely with space, as we have

done.) Theorem 12.14, the speed-up theorem, is from Blum [1967], and the union theorem is

from McCreight and Meyer [1969]. Theorem 12.16, on recursive relationships among
complexity measures, is from Blum [1967]. The honesty theorem mentioned in Exercse

12.20 is from McCreight and Meyer [1969]. The simplified approach to abstract complexity

used in this book is based on the ideas of Hartmanis and Hopcroft [1971].

Crossing sequences, discussed in Exercises 12.1 and 12.2, are from Hennie [1965]. The

generalization of crossing sequences used in Exercises 12.3 and 12.4 is developed in Hop-

croft and Ullman [1969a], although Exercise 12.4 in the deterministic case is from Hart-

manis, Lewis, and Stearns [1965]. Exercise 12.14(c) is from Freedman and Ladner [1975].

Exercise 12.16, a denser time hierarchy when TM's are restricted to have exactly k tapes, is

from Paul [1977]. Exercise 12.18, showing that speed up cannot be made effective, is from

Blum [1971]. Exercise 12.22 is from Hartmanis and Hopcroft [1971]. Exercise 12.23 is from

Hopcroft, Paul, and Valiant [1975]. See also Paul, Tarjan, and Celoni [1976] for a proof

that the method of Hopcroft et ai cannot be extended. Oblivious Turing machines and

Exercises 2.26 and 2.27 are due to M. Fischer and N. Pippenger. Loop programs and

Exercise 2.28 are from Ritchie [1963] and Meyer and Ritchie [1967].
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CHAPTER

13
INTRACTABLE
PROBLEMS

In Chapter 8 we discovered that one can pose problems that are not solvable on a

computer. In this chapter we see that among the decidable problems, there are

some so difficult that for all practical purposes, they cannot be solved in their full

generality on a computer. Some of these problems, although decidable, have been

proved to require exponential time for their solution. For others the implication is

very strong that exponential time is required to solve them ; ifthere were a faster way

of solving them than the exponential one, then a great number of important

problems in mathematics, computer science, and other fields—problems for which

good solutions have been sought in vain over a period of many years—could be

solved by substantially better means than are now known.

13.1 POLYNOMIAL TIME AND SPACE

The languages recognizable in deterministic polynomial time form a natural and

important class, the class
(J,->,

DTIME(n'), which we denote by It is an

intuitively appealing notion that & is the class of problems that can be solved

efficiently. Although one might quibble that an n
51

step algorithm is not very

efficient, in practice we find that problems in 0* usually have low-degree polyno-

mial time solutions.

There are a number of important problems that do not appear to be in & but

have efficient nondeterministic algorithms. These problems fall into the class

U,->i NTIME(n'), which we denote by Jr&. An example is the Hamilton circuit

problem: Does a graph have a cycle in which each vertex of the graph appears

exactly once? There does not appear to be a deterministic polynomial time algo-

320
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rithm to recognize those graphs with Hamilton circuits. However, there is a simple

nondeterministic algorithm
;
guess the edges in the cycle and verify that they do

indeed form a Hamilton circuit.

The difference between & and Jf& is analagous to the difference between

efficiently finding a proof of a statement (such as "this graph has a Hamilton
circuit") and efficiently verifying a proof (i.e., checking that a particular circuit is

Hamilton). We intuitively feel that checking a given proof is easier than finding

one, but we don't know this for a fact.

Two other natural classes are

PSPACE =
(J DSPACE(rt')
i> 1

and
NSPACE =

(J NSPACE(n').
i> 1

Note that by Savitch's theorem (Theorem 12.11) PSPACE = NSPACE, since

NSPACE(h') c DSPACE(« 2
'). Obviously, & c jf& c PSPACE, yet it is not

known if any of these containments are proper. Moreover, as we shall see, it is

unlikely that the mathematical tools needed to resolve the questions one way or

the other have been developed.

Within PSPACE we have two hierarchies of complexity classes:

DSPACE(log n) £ DSPACE(log2
n) £ DSPACE(log 3

n) £ •
•

and

NSPACE(log n) £ NSPACE(log2
n) 5 NSPACE(log 3

n) £

Clearly DSPACE(log* n) c NSPACE(log* n) and thus by Savitch's theorem

U NSPACE(log/t

n) = (J DSPACE(log,c

n).

k>l k>l

Although one can show that

0> + IJ DSPACE(logfc

n),

k>l

containment of either class in the other is unknown. Nevertheless

DSPACE(log n) c & c X9> c PSPACE,

and at least one of the containments is proper, since DSPACE(log n) 5 PSPACE
by the space hierarchy theorem.

Bounded reductibilities

Recall that in Chapter 8 we showed a language L to be undecidable by taking a

known undecidable language L and reducing it to L. That is, we exhibited a

mapping g computed by a TM that always halts, such that for all strings x, x is in
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L if and only if g(x) is in L. Then if L were recursive, L could be recognized by

computing g(x) and deciding whether g(x) is in L
By restricting g to be an easily computable function, we can establish that L is

or is not in some class such as JfzP, or PSPACE. We shall be interested

particularly in two types of reducibility: polynomial time reducibility and log-

space reducibility. We say that L is polynomial-time reducible to L if there is a

polynomial-time bounded TM that for each input x produces an output y that is

in L if and only if x is in L.

Lemma 13.1 Let L be polynomial-time reducible to L. Then

a) L is in . 1 if L is in Ar&,
b) L is in & if L is in J*.

Proof The proofs of (a) and (b) are similar. We prove only (b). Assume that the

reduction is Pi(n) time bounded and that L is recognizable in time p2 (rc), where p x

and p2 are polynomials. Then L can be recognized in polynomial time as follows.

Given input x of length m, produce y using the polynomial-time reduction. As the

reduction is Pi{n) time bounded, and at most one symbol can be printed per move,

it follows that \y\ < P\(n). Then, we can test if y is in L in time p 2{p\{n)). Thus the

total time to tell whether x is in L is Pi(n) -f p2 {P\{n)), which is polynomial in n.

Therefore, L is in P.

A log-space transducer is an off-line TM that always halts, having log n

scratch storage and a write-only output tape on which the head never moves left.

We say that L is log-space reducible to L if there is a log-space transducer that

given input x, produces an output string y that is in L if and only if x is in L.

Lemma 13.2 If L is log-space reducible to L, then

a) L is in & if L is in

b) L is in NSPACE(log* n) if L is in NSPACE(log* n),

c) L is in DSPACE(log* n) if L is in DSPACE(log* n).

Proof

a) It suffices to show that a log-space reduction cannot take more than polyno-

mial time, so the result follows from Lemma 13.1(b). In proof, note that the output

tape contents cannot influence the computation, so the product of the number of

states, storage tape contents, and positions of the input and storage tape heads is

an upper bound on the number of moves that can be made before the log-space

transducer must enter a loop, which would contradict the assumption that it always

halts. If the storage tape has length log /?, the bound is easily seen to be poly-

nomial in n.

There is a subtlety involved in the proofs of (b) and (c). We prove only (c), the

proof of (b) being essentially the same as for (c).
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c) Let Mj be the log-space transducer that reduces L to L, and letM2 be a log* n

space bounded TM accepting L. On input x of length n, M
x
produces an output

of length bounded by n
c
for some constant c. Since the output cannot be written

in log* n space, M
x
and M 2 cannot be simulated by storing the output ofM

x
on

a tape. Instead the output ofM x can be fed directly to M2 , a symbol at a time.

This works as long as M 2 moves right on its input. Should M 2 move left, M 2

must be restarted to determine the input symbol for M 2 , since the output of Mj
is not saved.

We construct M3 to accept L as follows. One storage tape ofM 3 holds the

input position of M 2 in base 2C
. Since the input position cannot exceed nc

, this

number can be stored in log n space. The other storage tapes ofM 3 simulate the

storage tapes ofM
x
and M 2 . Suppose at some time M 2's input head is at position

z, and M2 makes a move left or right. M3 adjusts the state and storage tapes ofM 2

accordingly. Then M 3 restarts the simulation ofM
t
from the beginning, and waits

until Mj has produced i — 1 or i + 1 output symbols ifM 2's input head moved left

or right, respectively. The last output symbol produced is the new symbol scanned

by M 2 's head, so M 3 is ready to simulate the next move ofM 2 . As special cases, if

i = 1 and M 2 moves left, we assume that M 2 next scans the left endmarker, and if

Mj halts before producing i + 1 output symbols (when M 2 moves right), we
assume that M 2 next scans the right endmarker. M 3 accepts its own input when-

ever M 2 accepts its simulated input. Thus M 3 is a log* n space bounded TM
accepting L.

Lemma 13.3 The composition of two log-space (resp. polynomial-time) reduc-

tions is a log-space (resp. polynomial-time) reduction.

Proof An easy generalization of the constructions in Lemmas 13.1 and 13.2.

Complete problems

As we have mentioned, no one knows whether ,Ar0* includes languages not in

so the issue of proper containment is open. One way to find a language in

j\fg> — ^ is to look for a "hardest" problem in „V'&. Intuitively, a language Lq is a

hardest problem if every language in Ar& is reducible to Lq by an easily comput-

able reduction. Depending on the exact kind of reducibility, we can conclude

certain things about Lq. For example, if all ofJ is log-space reducible to Lq, we
can conclude that if L0 were in ^, then & would equal . \

r&. Similarly, if Lq were

in DSPACE(log n\ then ^V0> = DSPACE(log n). If all of were polynomial-

time reducible to Lq, then we could still conclude that if Lq were in ^, then ^
would equal A but we could not conclude from the statement Lq is in

DSPACE(log n) that Jf& = DSPACE(log n).

We see from the above examples that the notion of "hardest" may depend on

the kind of reducibility involved. That is, there may be languages Lq such that all
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languages in Jf0> have polynomial-time reductions to Lq, but not all have log-

space reductions to Lq. Moreover, log-space and polynomial-time reductions do

not exhaust the kinds of reductions we might consider. With this in mind, we
define the notion of hardest (complete) problems for a general class of languages

with respect to a particular kind of reduction. Clearly the following generalizes to

an arbitrary type of reduction.

Let ^ be a class of languages. We say language L is completefor <6 with respect

to polynomial-time (resp. log-space) reductions ifL is in and every language in ^
is polynomial-time (resp. log-space) reducible to L. We say L is hard for with

respect to polynomial-time (resp. log-space) reductions if every language in # is

polynomial-time (resp. log-space) reducible to L, but L is not necessarily in

Two special cases are of primary importance, and we introduce shorthands for

them. L is NP-complete (NP-hard) if L is complete (hard) for with respect to

log-space reductions.! L is PSPACE-complete (PSPACE-hard) if L is complete

(hard) for PSPACE with respect to polynomial time reductions.

In order to show a first language Lq to be NP-complete, we must give a

log-space reduction of each language in Jf0> to Lq. Once we have an NP-
complete problem Lq, we may prove another language L

x
in to be NP-

complete by exhibiting a log-space reduction of Lq to L l9
since the composition of

two log-space reductions is a log-space reduction by Lemma 13.3. This same

technique will be used for establishing complete problems for other classes as well.

13.2 SOME MP-COMPLETE PROBLEMS

The significance of the class of NP-complete problems is that it includes many

problems that are natural and have been examined seriously for efficient solutions.

None of these problems is known to have a polynomial-time solution. The fact

that if any one of these problems were in & all would be, reinforces the notion that

they are unlikely to have polynomial-time solutions. Moreover, if a new problem

is proved NP-complete, then we have the same degree of confidence that the new

problem is hard that we have for the classical problems.

The first problem we show to be iVP-complete, which happens to be histor-

ically the first such problem, is satisfiability for Boolean expressions. We begin by

defining the problem precisely.

The satisfiability problem

A Boolean expression is an expression composed of variables, parentheses, and the

operators a (logical AND), v (logical OR) and —i (negation). The precedence of

these operators is
—

i highest, then a , then v . Variables take on values 0 (false)

and 1 (true); so do expressions. If E
x
and E2 are Boolean expressions, then the

t Many authors use the term "./VP-complete" to mean "complete for with respect to polynomial

time reductions," or in some cases, "with respect to polynomial time Turing reductions."
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value of E
x
a E2 is 1 if both E

x
and E2 have value 1, and 0 otherwise. The value of

E
l
v E 2 is 1 if either E

x
or E2 has value 1, and 0 otherwise. The value of ~i E x

is 1 if

E
x

is 0 and 0 ifE
x

is 1. An expression is satisfiable if there is some assignment of O's

and Vs to the variables that gives the expression the value 1. The satisfiability

problem is to determine, given a Boolean expression, whether it is satisfiable.

We may represent the satisfiability problem as a language L^at as follows.

Let the variables of some expression be x lf x 2 ,
...,xm for some m. Code x

t
as the

symbol x followed by i written in binary. The alphabet of L sat is thus

{a, v,-n,(,),x,0, 1}.

The length of the coded version of an expression of n symbols is easily seen to

be no more than \n log2 «l, since each symbol other than a variable is coded by one

symbol, there are no more than \n/2] different variables in an expression of length

n, and the code for a variable requires no more than 1 + riog 2 nl symbols. We
shall henceforth treat the word in L^at

representing an expression of length n as if

the word itself were of length n. Our results will not depend on whether we use n or

n log n for the length of the word, since log(>? log n) < 2 log n, and we shall deal

with log-space reductions.

A Boolean expression is said to be in conjunctive^ normalform (CNF) if it is of

the form E
x
a E2 a - • • a Ek , and each called a clause (or conjunct), is of the form

a
f , v ai2 v • • • v a fr ., where each au is a literal, that is, either x or

—
i x, for some

variable x. We usually write x instead of ~i x. For example, (x
y
vx 2)a

(x
x
v x 3 v x4 ) a x 3 is in CNF. The expression is said to be in 3-CNF if each clause

has exactly three distinct literals. The above example is not in 3-CNF because the

first and third clauses have fewer than three literals.

Satisfiability is /VP-complete

We begin by giving a log-space reduction of each language in J t^ to L^,.

Theorem 13.1 The satisfiability problem is NP-complete.

Proof The easy part of the proof is that JUa ,
is in X0>. To determine if an

expression of length n is satisfiable, nondeterministically guess values for all the

variables and then evaluate the expression. Thus L^, is in

To show that every language in j\
r& is reducible to L^, for each NTM M

that is time bounded by a polynomial p(n\ we give a log-space algorithm that

takes as input a string x and produces a Boolean formula Ex that is satisfiable if

and only ifM accepts x. We now describe Ex .

Let #/?0#/?i#
•• #/?p

(n)
be a computation of M, where each ft is an ID

consisting of exactly p(n) symbols. If acceptance occurs before the p(n)lh move, we

allow the accepting ID to repeat, so each computation has exactly p(n) + 1 ID's.

t "Conjunctive" is an adjective referring to the logical AND operator (conjunction). The term disjunc-

tive is similarly applied to logical OR.
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In each ID we group the state with the symbol scanned to form a single composite

symbol. In addition, the composite symbol in the zth ID contains an integer m
indicating the move by which the (i + l)st ID follows from the ith. Numbers are

assigned to moves by arbitrarily ordering the finite set of choices that M may
make given a state and tape symbol.

For each symbol that can appear in a computation and for each i, 0 < i <
(p(n) + l)

2
, we create a Boolean variable cix to indicate whether the zth symbol in

the computation is X. (The Oth symbol in the computation is the initial #.)The

expression Ex that we shall construct will be true for a given assignment to the

cix s if and only if the cix s that are true correspond to a valid computation.

The expression Ex states the following:

1 ) The Cix s that are true correspond to a string of symbols, in that exactly one

CiX is true for each i.

2) The ID
f}0 is an initial ID of M with input x.

3) The last ID contains a final state.

4) Each ID follows from the previous one by the move of M that is indicated.

The formula Ex is the logical AND of four formulas, each enforcing one of

the above conditions. The first formula, stating that for each i between 0 and

(p(n) + l)
2 - 1, exactly one Cix is true is

For a given value of i the term \/x CiX forces at least one CiX to be true and
~~

1 \Jx + y (Qv a Ct) forces at most one to be true.

Let x = a
l
a 2

m " an - The second formula expressing the fact that f$0 is an

initial ID is in turn the AND of the following terms.

i) c0# AcplB)+1>t . The symbols in positions 0 and p(n) + 1 are #.

ii) c 1Vl v c, y , v- v c
iyjk , where Y,, Y2 ,

Yk are all the composite symbols that

represent tape symbol a
x

, the start state q0 , and the number of a legal move of

M in state q0 reading symbol a
x

. This clause states that the first symbol of/?0

is correct.

iii) f\ 2 <i< n c
iQt

- The 2nd through /7th symbols of /i0 are correct.

iv
) A«<'<pin) cin- Tne remaining symbols of fi0 are blank.

The third formula says that the last ID has an accepting state. It can be

written , v

p{n)(p(n)+ l)<i<{p(n)+ 1)2 \ X in F
V V

where F is the set of composite symbols that include a final state.
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To see how to write the fourth formula stating that each ID ft, i > 1, follows

from ft_ j
by the move appearing in the composite symbol of ft_ l5 observe that

we can essentially deduce each symbol of ft from the corresponding symbol of

ft _ ! and the symbols on either side (one of which may be #). That is, the symbol
in ft is the same as the corresponding symbol in ft _ j unless that symbol had the

state and move, or one of the adjacent symbols had the state and move, and the

move caused the head position to shift to where the symbol of ft in question was.

Note that should this symbol of ft be the one representing the state, it also

represents an arbitrary legal move of M, so there may be more than one legal

symbol. Also note that if the previous ID has an accepting state, the current and

previous ID's are equal.

We can therefore easily specify a predicate f(W, X, Y, Z) that is true if and

only if symbol Z could appear in position j of some ID given that W, X, and Y are

the symbols in positions j — I, j, and j + 1 of the previous ID [W is # if j = 1

and Y is # if / = p(n)]. It is convenient also to declare /(H7
, #, X, #) to be true,

so we can treat the markers between ID's as we treat the symbols within ID's.

We can now express the fourth formula as

It is easy, given an accepting computation ofM on x to find truth values for

the clV's that make Ex true. Just make cix true if and only if the ith symbol of the

computation is X. Conversely, given an assignment of truth values making Ex

true, the four formulas above guarantee that there is an accepting computation of

M on x. Note that even though M is nondeterministic, the fact that a move choice

is incorporated into each ID guarantees that the next state, symbol printed, and

direction of head motion going from one ID to the next will all be consistent with

some one choice of M.
Furthermore, the formulas composing Ex are of length 0(p

2
(n)) and are

sufficiently simple that a log-space TM can generate them given x on its input. The

TM only needs sufficient storage to count up to (p(n) + l)
2

. Since the logarithm of

a polynomial in n is some constant times log n, this can be done with 0(log n)

storage. We have thus shown that every language in NP is log-space reducible to

L^,, proving that L^, is NP-complete.

We have just shown that satisfiability for Boolean expressions is NP-
complete. This means that a polynomial-time algorithm for accepting L,M could

be used to accept any language in „V'&. Let L be the language accepted by some

p(n) time-bounded nondeterministic Turing machine M, and let A be the log-

space (hence polynomial-time) transducer that converts x to £ v , where Ex is

satisfiable if and only ifM accepts x. Then A combined with the algorithm for L^a ,

A ( V
(p(n) + 1)2 \ W.AW.Zsueh

that f(W,X,Y,Z)
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— Algorithm

constructing

Ex from x

Algorithm

for L
sat

Deterministic polynomial time algorithm for

arbitrary language in^V.y

Fig. 13.1 Algorithm for arbitrary set L in Jf& given algorithm for L sa,

.

as shown in Fig. 13.1 is a deterministic polynomial-time algorithm accepting L
Thus the existence of a polynomial-time algorithm for just this one problem, the

satisfiability of Boolean expressions, would imply 0> = jV0>.

Restricted satisfiability problems that are /VP-complete

Recall that a Boolean formula is in conjunctive normal form (CNF) if it is the

logical AND of clauses, which are the logical OR of literals. We say the formula is

in k-CNF if each clause has exactly k literals. For example, (x v y) a(x vz)a

(y v z) is in 2-CNF.

We shall now consider two languages, Lcsat , the set of satisfiable Boolean

formulas in CNF, and L3sat , the set of satisfiable Boolean formulas in 3-CNF. We
give log-space reductions of L^, to Lc sat and Lcsat to L3sal ,

showing the latter two

problems NP-complete by Lemma 13.3. In each case we map an expression to

another expression that may not be equivalent, but is satisfiable if and only if the

original expression is satisfiable.

Theorem 13.2 Ltsat , the satisfiability problem for CNF expressions, is NP-

complete.

Proof Clearly Ltsat is in since I*at is. We reduce to as follows. Let E
be an arbitrary Boolean expression of length n.| Certainly, the number of variable

occurrences in E does not exceed n, nor does the number of a and v operators.

Using the identities

-i(Ei aE2 ) = -i(E
1 )v-i(E2 ),

-i(E
1
vE 2 ) = -!(£,) a^(E2 ),

(13.1)

i \E^ = Eu

we can transform E to an equivalent expression £', in which the —i
operators are

applied only to variables, never to more complex expressions. The validity of Eqs.

(13.1) may be checked by considering the four assignments of values 0 and 1 to£i

t Recall that the length of a Boolean expression is the number of characters, not the length of its code,

and recall that this difference is of no account where log-space reduction is concerned.
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and £2 . Incidentally, the first two of these equations are known as DeMorgan's

laws.

The transformation can be viewed as the composition of two log-space trans-

formations. As a result of the first transformation, each negation symbol that

immediately precedes a variable is replaced by a bar over the variable, and each

closing parenthesis whose matching opening parenthesis is immediately preceded

by a negation sign is replaced by )r~. The symbol r~ indicates the end of the scope

of a negation. This first transformation is easily accomplished in log-space using a

counter to locate the matching parentheses.

The second transformation is accomplished by a finite automaton that scans

the input from left to right, keeping track of the parity (modulo 2 sum) of the

active negations, those whose immediately following opening parenthesis but not

closing parenthesis has been seen. When the parity of negations is odd, x is

replaced by x, x by x, v by a , and a by v . The symbols —i and r— are deleted.

That this transformation is correct may be proved using (13.1) by an easy induc-

tion on the length of an expression. We now have an expression E in which all

negations are applied directly to variables.

Next we create £", an expression in CNF that is satisfiable if and only if E' is

satisfiable. Let V
x
and V2 be sets of variables, with V

x
c V2 . We say an assignment

of values to V2 is an extension of an assignment of values to V
x

if the assignments

agree on the variables of V
x

. We shall prove by induction on r, the number of a 's

and v 's in an expression £', all of whose negations are applied to variables, that if

\E'
|

= n, then there is a list of at most n clauses, F l9
F 2 ,

FkJ over a set of

variables that includes the variables of E' and at most n other variables, such that

£' is given value 1 by an assignment to its variables if and only if there is an

extension of that assignment that satisfies F
x
a F 2 a • • • a Fk .

Basis r = 0. Then E! is a literal, and we may take that literal in a clause by itself

to satisfy the conditions.

Induction If E = E
x
aE2 , let Fu F 2 ,

Fk and G X
,G 2 ,

G
z
be the clauses for

E x
and E2 that exist by the inductive hypothesis. Assume without loss of genera-

lity that no variable that is not present in E appears both among the F's and

among the G's. Then Fu F2 , . .
. , FkJ G x ,

G 2 , . .
. , G t

satisfies the conditions for E.

If E = E x
v £2 , let the F's and G's be as above, and let y be a new variable.

Then yv F i9 yv F 2 ,
yw Fk ,

j/v G l9
yvG 2 , . .., j/vG z

satisfies the conditions.

In proof, suppose an assignment of values satisfies E. Then it must satisfy E
x
or

£2 . If the assignment satisfies E
x , then some extension of the assignment satisfies

F
x ,
F2 ,

Fk .
Any further extension of this assignment that assigns y = 0 will

satisfy all the clauses for E. If the assignment satisfies £2 , a similar argument

suffices. Conversely, suppose all the clauses for E are satisfied by some assign-

ment. If that assignment sets y = 1, then all of G u G 2 , . .
. , G z

must be satisfied, so

£2 is satisfied. A similar argument applies ify = 0. The desired expression E" is all

the clauses for E connected by a 's.
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To see that the above transformation can be accomplished in log-space, con-

sider the parse tree for E. Let yk
be the variable introduced by the ith v . The final

expression is the logical AND of clauses, where each clause contains a literal of the

original expression. In addition, if the literal is in the left subtree of the ith v , then

the clause also contains yt
. If the literal is in the right subtree of the ith v , then the

clause contains y\. The input is scanned from left to right. Each time a literal is

encountered, a clause is emitted. To determine which y^s and y ;
's to include in the

clause, we use a counter of length log n to remember our place on the input. We
then scan the entire input, and for each v symbol, say the ith from the left, we
determine its left and right operands, using another counter of length log n to

count parentheses. If the current literal is in the left operand, generate y t ; if it is in

the right operand, generate yh and if in neither operand, generate neither y t
nor y f

.

We have thus reduced each Boolean expression £ to a CNF expression E"

that is in L^, if and only if E is in L^at . Since the reduction is accomplished in

log-space, the AfP-completeness of Z^at implies the ATP-completeness of LeSal .

Example 13.1 Let

E = —1(—l(x x
V X 2 ) A (—IX! V X 2 )).

Applying DeMorgan's laws yields

E = (Xi vx 2)v(x t
AX3 ).

The transformation to CNF introduces variables y Y
and y2 to give

E" = (xj vy,v y2 ) a (x 2 v y x
v y2 ) a (x

x
v y2 ) a (x 3 v y2 )

Theorem 13.3 L3sat , the satisfiability problem for 3-CNF expressions, is NP-

complete.

Proof Clearly, L3sal is in jV'sP, since L^at is. Let E = P
x
a F2 a • • • a Fk be a CNF

expression. Suppose some clause F, has more than three literals, say

Pi = a
i
v a2 v " * v fyy £ >7>.

Introduce new variables yu y2 , y^_ 3 , and replace F
t
by

(a, v a 2 v y ,
) a (a 3 v y l

v y 2 ) a (a4 v y 2 v j/3 ) a • •
•

a (a,- 2 v jv_ 4 v y(_ 3 ) a (a, _
{
v v yf_ 3 ). (13.2)

Then F, is satisfied by an assignment if and only if an extension of that assignment

satisfies (13.2). An assignment satisfying F- must have a
7
- = 1 for some Thus

assume that the assignment gives literals o^, a 2 , a
7
_! the value 0 and gcj the

value 1. Then ym = 1 for m < j - 2 and ym = 0 for m >j - 1 is an extension of the

assignment satisfying (13.2).
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Conversely, we must show that any assignment satisfying (13.2) must have

(Xj = 1 for some j and thus satisfies F
f
. Assume to the contrary that the assignment

gives all the am's the value 0. Then since the first clause has value 1, it follows that

y x
= 1. Since the second clause has value 1, y2 must be 1, and by induction, ym = 1

for all m. But then the last clause would have the value 0, contradicting the

assumption that (13.2) is satisfied. Thus any assignment that satisfies (13.2) also

satisfies F,.

The only other alterations necessary are when F
£
consists of one or two

literals. In the latter case replace ol
x
v a 2 by (o^ v a 2 v y) a (a

t
v a 2 v y), where y is a

new variable, and in the former case an introduction of two new variables suffices.

Thus E can be converted to a 3-CNF expression that is satisfiable if and only ifE
is satisfiable. The transformation is easily accomplished in log-space. We have

thus a log-space reduction of L^, to L3sat and conclude that L3sat is NP-
complete.

The vertex cover problem

It turns out that 3-CNF satisfiability is a convenient problem to reduce to other

problems in order to show them NP-complete, just as Post's correspondence

problem is useful for showing other problems undecidable. Another NP-complete

problem that is often easy to reduce to other problems is the vertex cover problem.

Let G = (V, E) be an (undirected) graph with set of vertices V and edges E. A
subset A ^ V is said to be a vertex cover of G if for every edge (v, w) in £, at least

one of v or w is in A. The vertex cover problem is: Given a graph G and integer /c,

does G have a vertex cover of size k or less?

We may represent this problem as a language L^, consisting of strings of the

form: k in binary, followed by a marker, followed by the list of vertices, where v
t
is

represented by v followed by i in binary, and a list of edges, where (vh Vj) is

represented by the codes for v
{
and Vj surrounded by parentheses. consists of all

such strings representing k and G, such that G has a vertex cover of size k or less.

Theorem 13.4 L^, the vertex cover problem, is NP-complete.

Proof To show L^ c in Jf&, guess a subset of k vertices and check that it covers

all edges. This may be done in time proportional to the square of the length of the

problem representation. is shown to be NP-complete by reducing 3-CNF
satisfiability to U,c .

Let F = Fj aF2 a--- AF
q
be an expression in 3-CNF, where each F, is a

clause of the form (an val2 val3 ), each being a literal. We construct an un-

directed graph G = (K, E) whose vertices are pairs of integers (Uj), 1 < i < q,

1 < j < 3. The vertex (i, j) represents the jth literal of the ith clause. The edges of

the graph are

!) [('">./)> (*\ *)] provided; + k, and

2) [(UM*. 01 if «i; = -»«*•
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Each pair of vertices corresponding to the same clause are connected by an edge in

(1) . Each pair of vertices corresponding to a literal and its complement are con-

nected by an edge in (2).

G has been constructed so that it has a vertex cover of size 2q if and only ifF is

satisfiable. To see this, assume F is satisfiable and fix an assignment satisfying F.

Each clause must have a literal whose value is 1. Select one such literal for each

clause. Delete the q vertices corresponding to these literals from V. The remaining

vertices form a vertex cover of size 2q. Clearly for each i, only one vertex of the

form (i, j) is missing from the cover, and hence each edge in (1) is incident upont

at least one vertex in the cover. Since edges in (2) are incident upon two vertices

corresponding to some literal and its complement, and since we could not have

deleted both a literal and its complement, one or the other of these vertices is in

the cover. Thus we indeed have a cover of size 2q.

Conversely, assume we have a vertex cover of size 2q. For each i the cover

must contain all but one vertex of the form (Uj), for if two such vertices were

missing, an edge [(i,j), (i, k)] would not be incident upon any vertex in the cover.

For each i assign value 1 to the literal a
{j
corresponding to the vertex not in

the cover. There can be no conflict, because two vertices not in the cover cannot

correspond to a literal and its complement, else there would be an edge in group

(2) not incident upon any vertex of the cover. For this assignment F has value 1.

Thus F is satisfiable. The reduction is easily accomplished in log-space. We can

essentially use the variable names in the formula F as the vertices of G, appending

two bits for the j-component in vertex Edges of type (1) are generated

directly from the clauses, while those of type (2) require two counters to consider

all pairs of literals. Thus we conclude that is NP-complete.

Example 13.2 Consider the expression

F = (Xj V x 2 v X 3 ) A (Xj v x 2 v x4 ) a (x 2 v x 3 v x 5 ) a (x 3 V x4 V x 5 ).

The construction of Theorem 13.4 yields the graph of Fig. 13.2. x
{
= 1, x 2 = 1,

x 3
= 1, x4 = 0 satisfies F and corresponds to the vertex cover [1, 2], [1, 3], [2, 1],

[2, 3], [3, 1], [3, 3], [4, 1], and [4, 3].

The Hamilton circuit problem

The Hamilton circuit problem is: Given a graph G, does G have a path that visits

each vertex exactly once and returns to its starting point? The directed Hamilton

circuit problem is the analogous problem for directed graphs. We represent these

problems as languages and Iyh by encoding graphs as in the vertex cover

problem.

t An edge (i\ w) is incident upon v and w and no other vertices.
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Fig. 13.2 Graph constructed by Theorem 13.4.

Double circles indicate vertices in set cover.

Theorem 13.5 L^, the directed Hamilton circuit problem, is NP-complete.

Proof To show Ldh in jV'Pf, guess a list of arcs and verify that the arcs form a

simple cyclef through all the vertices. To show Iy h is iVP-complete, we reduce

3-CNF satisfiability to Ldh .

Let F = F
x
aF2 a-- aFq

be an expression in 3-CNF, where each F, is a

clause of the form (an vai2 val3 ), each a
l7
being a literal. Let x u x„ be the

variables of F. We construct a directed graph G that is composed of two types of

subgraphs. For each variable x, there is a subgraph //, of the form shown in Fig.

13.3(a), where m, is the larger of the number of occurrences of x, and 5c
f
in F. The

H-s are connected in a cycle, as shown in Fig. 13.3(b). That is, there are arcs from

d
t
to ai+ !, for 1 < i < n and an arc from dn to a

x
.

Suppose we had a Hamilton circuit for the graph of Fig. 13.3(b). We may as

well suppose it starts at a
x

. If it goes next to b XOy we claim it must then go to c 10 ,

else c 10 could never appear on the cycle. In proof, note that both predecessors of

c 10 are already on the cycle, and for the cycle to later reach c 10 it would have to

repeat a vertex. (This argument about Hamilton circuits occurs frequently in the

proof. We shall simply say that a vertex like c 10 "would become inaccessible")

Similarly, we may argue that a Hamilton circuit that begins a
x
,b x0 must continue

c ioy ^1 1' c
\ i' ^i2> C! 2 , ... If the circuit begins a

x , c 10 , then it descends the ladder of

Fig. 13.3(a) in the opposite way, continuing b 10 ,
c

x ,, b x x ,
c X2 , ... Likewise we may

argue that when the circuit enters each H
(
in turn it may go from a, to either b i0 or

cl0 , but then its path through H
t
is fixed; in the former case it descends by the arcs

cu i>
an^ in the latter case by the arcs bi} ciJ+ x

.ln what follows, it helps

to think of the choice to go from a
i
to bi0 as making x, true, while the opposite

choice makes x
f
false. With this in mind, observe that the graph of Fig. 13.3(b) has

t A simple cycle has no repeated vertex.
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(O

Fig. 13.3 Graphs concerned with directed Hamilton circuits.

exactly 2n Hamilton circuits that correspond in a natural way to the 2n assign-

ments to the variables of F.

For each clause F
}
we introduce a subgraph lp shown in Fig. 13.3(c). /,-has

the properties that if a Hamilton circuit enters it at rp it must leave at u
}

\
if it

enters at sp it must leave at vy, and if it enters at tj9 it must leave at vv,-. In proof,

suppose by symmetry that the circuit enters Ij at ry

case 1 The next two vertices on the circuit are Sj and t
}

. Then the circuit must

continue with vv,, and if it leaves at vv,. or vj9 Uj is inaccessible. Thus in this case it

leaves at u
}

.
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case 2 The next two vertices on the circuit are Sj and Vj. If the circuit does not

next go to ttj, then Uj will be inaccessible. If after u
}

it goes to wp vertex t
}
cannot

appear on the circuit because its successors are already on the circuit. Thus in this

case the circuit also leaves by ur

case 3 The circuit goes directly to u
}

. If it next goes to vv,, the circuit cannot

include tjt because its successors are already used. So again it must leave by Uj.

Observe that the above argument holds even though the circuit may enter Ij

more than once. Finally, the graph /, has the additional property that entering I
}

at r
j9 sp or tjy it can traverse all six vertices before exiting.

To complete the construction of the graph, connect the 7/s to the 77,'s as

follows. Suppose the first term in F, is x,. Then pick some cip that has not yet been

connected to any Ik and introduce an arc from cip to r
}
and from u

}
to b

ifP + j. If the

first term is xh pick an unused bip and introduce arcs bip -+rj and Uj-*citP+1 .

Make analogous connections with Sj and Vj for the second term of Fj9 and analo-

gous connections with t
}
and Wj for the third term. Each 77, was chosen sufficiently

long that enough pairs of 6,/s and c
f
/s are available to make all the connections.

If the expression F is satisfiable, we can find a Hamilton circuit for the graph

as follows. Let the circuit go from a
t
to bi0 if x,- is true in the satisfying assignment,

and from a
{
to ci0 otherwise. Then, ignoring the 7

y
's, we have a unique Hamilton

circuit for the subgraph of Fig. 13.3(b). Now, whenever the constructed circuit

uses an arc bik
-» c

i k+

1

or cik
-> b

itk + u and b ik or c,
fc ,

respectively, has an arc to an

Ij subgraph that has not yet been visited, visit all six vertices of Ip emerging at

Ci,k+i or biM+lJ respectively. The fact that F is satisfiable implies that we can

traverse l
}
for all j.

Conversely, we must show that the existence of a Hamilton circuit implies F is

satisfiable. Recall that in any Hamilton circuit an l
}
entered at rj9 sj9 or t

i
must be

left at Uj, Vj, or wj9
respectively. Thus as far as paths through the 77,'s are con-

cerned, connections to an Ij look like arcs in parallel with an arc bik
-*> cLk+ j or

cik~~* bi.k+i- N excursions to the 7/s are ignored, it follows that the circuit must

traverse the 7/,'s in one of the 2
n ways which are possible without the 7/s; that is, it

may follow the arc a
x

-> bi0 or a
x
-> ci0 for 1 < i < n. Each set of choices determines

a truth assignment for the x^s. If one set of choices yields a Hamilton circuit,

including the 7/s, then the assignment must satisfy all the clauses. For example, if

we reach Ij from b ik
in the circuit, then x, is a term in F

;
-, and it must be that the

circuit goes from a
{
to cl0 , which corresponds to the choice x, = 0. Note that if the

circuit goes from a
t
to bi0 , then it must traverse b

i k+l before c
i k + x

and we could

not traverse Ij between bik and cifk+l , as bik+l could never be included in

the circuit.

As a last remark, we must prove we have a log-space reduction. Given F, we
can list the vertices and arcs of 77, simply by counting occurrences of x, and x

f
. We

can list the connections between the 77,'s and 7/s easily as well. Given a term like

x, in Fj, we can find a free pair of vertices in 77, to connect to Ij by counting
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occurrences of x
f
in F l9

F2 ,
Fj- V As no count gets above the number of

variables or clauses, log n space is sufficient, where n is the length of F.

Example 13.3 Let F be

(Xj V X 2 V X3 ) A (Xj V x2 v x 3 ).

The graph constructed from F by Theorem 13.5 is shown in Fig. 13.4. A Hamilton

circuit corresponding to the assignment Xj = 1, x2 = 0, x 3 = 0 is drawn in heavy

lines.

Finally we show that the Hamilton circuit problem is ATP-complete by reduc-

ing the directed Hamilton circuit problem to it.

Theorem 13.6 Lh , the Hamilton circuit problem for undirected graphs, is NP-
complete.

Proof To show that Lh , is in J/'&, guess a list of the edges and verify that they

form a Hamilton circuit. To show Lh iVT-complete we reduce Ldh to it. Let

G = (V, E) be a directed graph. Construct an undirected graph G' with vertices t?0 ,

vu and v 2 for each v in V, and edges

1) (
yo> v i) f°r eacn y *n K

2) (f i, ^2) f°r eacn y ^n K
3) (^2» wo) if an^ only if v -> w is an arc in E.

Each vertex in K has been expanded into three vertices. Vertices with subscript 1

have only two edges, and since a Hamilton circuit must visit all vertices, the

subscript of the vertices in any Hamilton circuit of G' must be in the order 0, 1, 2,

0, 1, ... or its reverse. Assume the order is 0, 1, 2, ... Then the edges whose

subscript goes from 2 to 0 correspond to a Hamilton circuit in G. Conversely, a

Hamilton circuit in G may be converted to a Hamilton circuit in G' by replacing

an arc v -> w by the path from v0 to to v 2 to w0 . Thus G' has a Hamilton circuit

if and only if G has a Hamilton circuit. The reduction of G to G' is easily accom-

plished in log-space. Thus we conclude that Lh is NP-complete.

Integer linear programming

Most known NP-complete problems are easily shown to be in jV'efi, and only the

reduction from a known NP-complete problem is difficult. We shall now give an

example of a problem where the opposite is the case. It is easy to prove that

integer linear programming is NF-hard but difficult to show it is in The

integer linear programming problem is: Given an m x n matrix of integers A and a

column vector b of n integers, does there exist a column vector of integers x such
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Fig. 13.4 Graph constructed for Example 13.3.
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that Ax > b? The reader may formalize this problem as a language in an obvious

way, where the words of the language are the elements of A and b written in

binary.

Lemma 13.4 Integer linear programming is iVP-hard.

Proof We reduce 3-CNF satisfiability to integer linear programming. Let

E = Fj a F2 a • • • a F
q
be an expression in 3-CNF, and let x u x 2 , . . • , x„ be the

variables of E. The matrix A will have a column for each literal x, or x
f , 1 < i < n.

We may thus view the inequality Ax > b as a set of linear inequalities among the

literals. For each /, 1 < i < n, we have the inequalities

x, + Xi > 1, x, > 0,

— x, — x, > — 1, x, > 0,

which has the effect of saying that one of x, and x, is 0, the other is 1. For each

clause a
1
v a 2 v a 3 , we have the inequality

ct
l -f a 2 -f a 3 > 1,

which says that at least one literal in each clause has value 1. It is obvious that A
and b can be constructed in log-space and the inequalities are all satisfied if and

only if E is satisfiable. Thus linear integer programming is iVP-hard.

To show integer linear programming is in . 4 we may guess a vector x and

check that Ax > b. However, if the smallest solution has elements that are too

large, we may not be able to write x in polynomial time. The difficulty is to show

that the elements of x need not be too large, and for this we need some concepts

from linear algebra, specifically determinants of square matrices, the rank of a

matrix, linear independence of vectors, and Cramer's rule for solving simultaneous

linear equations, with all of which we expect the reader to be familiar.

In what follows, we assume matrix A and vector b form an instance of the

integer linear programming problem and that A has m rows and n columns. Let a

be the magnitude of the largest element of A or b. Note that the number of bits

needed to write out A and b is at least mn + log 2 a, and we shall use this quantity

as a lower bound on the input size; our nondeterministic solution finder will work

in NTIME(p(mrt + log2 a)) for some polynomial p. Further, we define a„ for

1 < i < m, to be the vector of length n consisting of the zth row of A. We let b
{
be

the zth element of b and we let x = (x„ x 2 , . . ., x„) be a vector of unknowns. We
use

| / 1 for the magnitude of integer i and det B for the determinant of matrix B. A

series of technical lemmas is needed.

Lemma 13.5 If £ is a square submatrix of A, then |det£| < (aq)9,
where

q = max (m, n).

Proof Recall that the determinant of a k x k matrix is the sum or difference of k\

terms, each of which is the product of k elements. Therefore, if B is a k x k
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submatrix, k l(x
k

is an upper bound on
|
det B

\

. As k ! < k
k and k < g, we have our

lemma. .

" "

Lemma 13.6 Let A have rank r.t If r < rc, then there is an integer vector z = (zu
z2 , . . z„), z not identically zero, such that Az = 0 (0 is a vector of all O's) and no

Zj exceeds (<xq)
2q

in magnitude, where q = max (m, n).

Proof Assume without loss of generality that B, the r x r submatrix of A in the

upper left corner, has a nonzero determinant. Let C be the first r rows ofA and let

D be the last m — r rows ofA As any r -f 1 rows of A are linearly dependent, and

the rows of C are linearly independent (because B has a nonzero determinant),

each row of D can be expressed as a linear combination of rows of C. That is,

D = £C for some (m — r) x r matrix E. Then Az = 0 if and only if Cz = 0 and

ECz = 0. It suffices, therefore, to show that we can make Cz = 0. If we choose

zn — — 1, and zr+1 = zr+2 = • • • = z„_
l
= 0, then Cz = 0 if and only if By = w,

where y is the vector (z l5 z2 , . .
. ,

zr ) and w is the nth column of C. By Cramer's rule,

By = w is satisfied if we take z
f
= det B

£
/det B, where B

f
is £ with the ith column

replaced by w. By Lemma 13.5, these determinants do not exceed (aq)q in magni-

tude. The resulting z may not have integer components, but if we multiply all

components by det £, they will be integers, and will still satisfy Az = 0. When we
do so, z„ = —det B; the magnitudes of the first r components of z do not exceed

((<xq)q
)

2 = {oiq)
2q

, and components r + 1 through n — 1 are 0.

It follows that the solution z can be written with a number of bits that is at

most the second power of mn + log2 a, the size of the problem statement.

Lemma 13.7 Let A be a matrix with at least one nonzero element. If there is a

solution to Ax > b, x > 0, then there is a solution in which for some i, b
t
< a

4
x <

b
t
4- a, where a is the magnitude of the largest element of A.

Proof Let x0 be a solution to Ax > b. Suppose a,x0 > • + a for all i. Adding or

subtracting 1 from some component of x0 must reduce some product a,x0 .

Furthermore, no product can decrease by more than a. Thus the new x is also a

solution. The process cannot be repeated indefinitely without obtaining a solution

x for which there is an i such that b
t
< a,x < b-

t
+ a.

Theorem 13.7 Integer linear programming is iVP-complete.

Proof By Lemma 13.4 we have to show only that the problem is in . \
r&. We

begin by guessing the signs of the x
f
's in some hypothetical solution and adding n

constraints x
i

< (>)0 depending on the sign guessed. Then guess a row i and a

constant c
x
in the range b

x
< c-, < b

i

{

+ a such that in some solution x 0 , we have

a,x0 = c
t

. Now suppose that after reordering rows if necessary, we have correctly

t Recall that the rank of r is equivalently defined as the maximum number of linearly independent

rows, the maximum number of linearly independent columns, or the size of the largest square subma-

trix with a nonzero determinant.
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guessed cv c2 ,
ck such that

1) bi < Ci < bi + (aq)
2q+

\ and

2) Ax > b has a nonnegative integer solution if and only if

a,x = ch 1 < i < k,

a,x > b^ k < i < n%

has such a solution.

Let A k be the first k rows of A, and let c be the vector (c ly c2 ,
ck ).

case 1 The rank of A k is less than n. By Lemma 13.6 there is an integer vector z,

z 0, none of whose components has a magnitude greater than (ocq)
2q

, such that

A kz = 0. Therefore, if A k\Q = c, it follows that A k(\0 + dz) = c for any integer d. If

it is also true that a,x0 > b
t
+ (ctq)

2q+ 1
for all i > k, then we may repeatedly add or

subtract 1 from d until for some j > k, Zj(x0 + dz) drops below b
}
+ (<xq)

2q * 1
.

Since z has some nonzero component, the row a, [corresponding to a constraint

x, < (> )0] that is all zero except for a one in that component, must have f > k.

Thus some a^fxo 4- dz) for j > k must eventually drop below bj + (a^)
2?+

*• Since

each component of z is bounded in magnitude by (aq) 2q
>
changing d by 1 cannot

change any a
7
(x0 + dz) by more than ctn(aq)

2q
, which is no more than (ocq)

2q * 1
.

Therefore a
;
(x 0 + dz) > b

} . By reordering rows, we may assume j = k + 1 and

repeat the above process for k + 1 in place of k.

case 2 The rank of is n. In this case, there is a unique x satisfying A kx = c. By

Cramer's rule, the components of x are ratios of two determinants whose magni-

tudes do not exceed <f(a + ((xq)
2q+ l

)aq~ \ which is less than (2aq)
3q+ 1

. We may

check whether this x consists only of integers and satisfies a^x > bj for j > k.

The nondeterministic process of guessing c/s repeats at most n times, and for

any sequence of choices requires a number of arithmetic steps that is polynomial

in q [since Cramer's rule can be applied in 0(r
4

) arithmetic steps tor xr matrices]

applied to integers whose length in binary is polynomial in aq. The arithmetic

steps that are multiplication or division of integers can be performed in time

proportional to the square of the length of the integers in binaryf and addition

and subtraction can be performed in linear time. Thus the entire process takes

time that is polynomial in the input length, since that length is at least mn +
log 2 a.

Other /VP-complete problems

There is a wide variety of other known iVP-complete problems. We shall list some

of them here.

t Actually in considerably less time (see Aho, Hopcroft, and Ullman [1974]), although this is of no

importance here.
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1) The Chromatic Number Problem. Given a graph G and an integer k, can G be

colored with k colors so that no two adjacent vertices are the same color?

2) The Traveling Salesman Problem. Given a complete graph with weights on the

edges, what is the Hamilton circuit of minimum weight? To express this

problem as a language, we require the weights to be integers and ask whether

there is a Hamilton circuit of weight k or less. This problem is iVP-complete

even if we restrict the weights to 0 and 1, when it becomes exactly the Hamil-

ton circuit problem.

3) The Exact Cover Problem. Given a collection of sets S l9 S2 , . .., Sk , all being

subsets of some set U, is there a subcollection whose union is U such that each

pair of sets in the subcollection is disjoint?

4) The Partition Problem. Given a list of integers iu i 2 , . . ., ik , does there exist a

subset whose sum is exactly \(i
x + i2 + •• + ik ). Note that this problem

appears to be in & until we remember that the length of an instance is not

*i + i*2 + + l
k->

DUt tne sum of the lengths of the i-s written in binary or

some other fixed base.

Among the NP-complete problems are many, including the ones mentioned

in this section, for which serious effort has been expended on finding polynomial-

time algorithms. Since either all or none of the iVP-complete problems are in tP,

and so far none have been found to be in it is natural to conjecture that none

are in More importantly, if one is faced with an iVP-complete problem to solve,

it is questionable whether one should even bother to look for a polynomial-time

algorithm. We believe one is much better off looking for heuristics that work well

on the particular kinds of instances that one is likely to encounter.

Extended significance of /VP-completeness

We have inadvertently implied that the only issue regarding NP-complete prob-

lems was whether they required polynomial or exponential time. In fact, the true

answer could be between these extremes; for example, they could require n
,ogn

time. If all languages in are log-space or even polynomial-time reducible to L,

and L is in, say DTIME(Mlog
"), then every language in . \ is in DTIME(rcclogn

)

for some constant c. In general, if L were log-space or polynomial-time complete

for . S yj>, and L were in DTIME(T(n)), then

.i'^c
(J DTIME(T(/ic

)).

c>0

13.3 THE CLASS co- I P

It is unknown whether the class . t 'i? is closed under complementation. Should it

turn out that jV*& is not closed under complementation, then clearly & ± J'eP,

since & is closed under complementation. There is no NP-complete problem
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whose complement is known to be in For example, to determine non-

satisfiability for a Boolean formula with n variables, it appears necessary to test

every one of the 2" possible assignments, even if the algorithm is nondeterministic.

In fact if any NP-complete problem is discovered to have its complement in

Jf0>, then Jf& would be closed under complementation, as we show in the next

theorem.

Theorem 13.8 Jf& is closed under complementation if and only if the comple-

ment of some NP-complete problem is in Jf&.

Proof The "only if part is obvious. For the "if" part let 5 be an NP-complete

problem, and suppose S were in Jf&. Since each L in Jf& is log-space reducible

to S, each L is log-space reducible to S. Thus L is in Jf&.

We shall define the class co-J^g? to be the set of complements of the lan-

guages in Jf0>. The relationship between ^\ Jf0>, zo>-Jf0> and PSPACE is shown

in Fig. 13.5, although it is not known for certain that any of the regions except

the one labeled e/> are nonempty.

Fig. 13.5 Relations among some language classes.

The problem of primality

It is interesting to consider a problem in A'i? such as "nonprimeness" for which

there is no known polynomial time algorithmf and furthermore which is not

known to be NP-complete.J To test an integer to see if it is not a prime, one

simply guesses a divisor and checks. The interesting observation is that the com-

plementary problem is in Jf&, which suggests that there may be sets in the

intersection of J/'& and co-yK that are not in

We now consider a nondeterministic polynomial-time algorithm for testing

whether an integer is prime.

Lemma 13.8 Let x and y be integers, with 0 < x, y < p. Then

1) x + y (mod p) can be computed in time 0(log p);

t Although Miller [1976] presents strong evidence that one exists.

% This is another problem that appears to be in & until one remembers that the size of input p is log 2 P>

not p itself.
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2) xy (mod p) can be computed in time 0(log
2
p);

3) xy (mod p) can be computed in time 0(log
3
p).

Proof (1) and (2) are obvious since an integer mod p requires only log p bits. For

(3) compute xy by repeated squaring to get x2
, x4 ,

x 8
, x2

' mod p, where

i = [log2 y J, then multiply the appropriate powers of x to get xy
.

We shall, in what follows, make use of Fermat's theorem : p > 2 is a prime

if and only if there exists an x of order p — 1, that is, for some x, 1 < x < p,

1) xp
~

1 = 1 mod p, and

2) x l

1 mod p, for 1 < i < p - 1.

Theorem 13.9 The set of primes is in JfgP.

Proof If x = 2, then x is prime. If x = 1 or x is an even integer greater than 2,

then x is not prime. To determine if p is prime for odd p greater than 2, guess an x,

0 < x < p, and verify that

1) xp
~ 1 = 1 mod p, and

2) x l

1 mod p for all z, 1 < i < p - 1.

Condition (1) is easily checked in 0(log
3
p) steps. We cannot check condition (2)

for each i directly since there are too many fs. Instead, guess the prime factoriza-

tion of p — 1. Let the factorization be p — 1 = p x p2
* * pk . Recursively verify that

each pj is a prime. Verify that p — 1 is the product of the p/s. Finally verify

x(p-i)/pj
| mo(j p observe that if x 17

' 1 = 1 mod p, then the least i satisfying

x 1 = 1 mod p must divide p — 1. Furthermore, any multiple of this i, say ai, must

also satisfy xai = 1 mod p. Thus, if there is an / such that x 1 = 1 mod p, then for

some p^ xip~ 1)1p
j = 1 mod p.

Assume that the nondeterministic time to recognize that p is prime is bounded

by c log
4
p. Then we need only observe that

k k

X c log
4
py + X c

i
log

3
A + c i

IosV ^ c lQg
4
p

for some sufficiently large constant c.

13.4 PSPACE-COMPLETE PROBLEMS

We now show several problems to be complete for PSPACE with respect to

polynomial time.

Quantified Boolean formulas

Quantified Boolean formulas (QBF) are built from variables, the operators a , v ,

and —i,
parentheses, and the quantifiers 3 ("there exists") and V ("for all"). When
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defining the QBFs recursively, we find it useful simultaneously to define free

occurrences of variables (occurrences to which no quantifier applies), bound

occurrences of variables (occurrences to which a quantifier applies), and the scope

of a quantifier (those occurrences to which the quantifier applies).

1) If x is a variable, then it is a QBF. The occurrence of x is free.

2) If E
x
and £ 2 are QBFs, so are -i(£i), (E

t ) a (£2 ), and (£ x ) v (E2 ). An occur-

rence of x is free or bound, depending on whether the occurrence is free or

bound in E
x
or E2 . Redundant parentheses can be omitted.

3) If £ is a QBF, then 3x(£) and Vx(£) are QBFs. The scopes of 3x and Vx are

all free occurrences of x in £. (Note that there may also be bound occurrences

of x in £; these are not part of the scope.) Free occurrences of x in £ are

bound in 3x(£) and Vx(£). All other occurrences of variables in £ are free or

bound, depending on whether they are free or bound in £.

A QBF with no free variable has a value of either true or false, which we
denote by the Boolean constants 1 and 0. The value of such a QBF is determined

by replacing each subexpression of the form 3x(£) by £0 v E x
and each subexpres-

sion of the form Vx(£) by £0 a Eu where £0 and £ t
are £ with all occurrences of x

in the scope of the quantifier replaced by 0 and 1, respectively. The QBF problem is

to determine whether a QBF with no free variables has value true.

Example 13.4 Vx [Vx[3y(x v y)] a
—
ix] is a QBF. The scope of the inner Vx is the

first occurrence of x; the scope of the outer Vx is the second occurrence. To test the

truth of the above formula, we must check that Vx[3y(x v yj] a~ix is true when

free occurrences of x (that is, the second occurrence only) are set to 0 and also

when set to 1. The first clause Vx(3y(x v y)) is seen to be true, as when this x is 0 or

1 we may choose y = 1 to make x v y true. However, ~ix is not made true when

x = 1, so the entire expression is false.

Note a Boolean expression £ with variables x
x ,
x 2 , . .

. , xk is satisfiable if and

only if the QBF 3x
x
3x 2

" m 3xk(Ek ) is true. Thus the satisfiability problem is a

special case of the problem of whether a QBF is true, which immediately tells us

that the QBF problem is NP-hard. It does not appear that QBF is in . \

r9
however.

PSPACE-completeness of the QBF problem

Lemma 13.9 QBF is in PSPACE.

Proof A simple recursive procedure EVAL can be used to compute the value of a

QBF with no free variables. In fact, EVAL will handle a slightly more general

problem, where the Boolean constants 0 and 1 have been substituted for some

variables. If the QBF consists of a Boolean constant, EVAL returns that constant.
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If the QBF consists of a Boolean operator applied to subformula(s), then EVAL
evaluates the subformulas recursively and then applies the operator to the

result(s). If the QBF is of the form 3x(E) or Vx(£), then EVAL replaces all

occurrences of x in E that are in the scope of the quantifier by 0 to obtain E0 and

then evaluates E0 recursively. Next EVAL replaces the occurrences of x by 1 to

obtain Eu and evaluates E
x
recursively. In the case of 3x(£), EVAL returns the

OR of the two results. In the case of Vx(£), EVAL returns the AND.
Since the number of operators plus quantifiers is at most n for a QBF of

length n, the depth of recursion is at most n. Using a Turing tape for the stack of

activation records (as in Theorem 12.11), we see that the tape need never grow

longer than the square of the length of the original QBF. Thus the QBF problem

is in PSPACE.

Theorem 13.10 The problem of deciding whether a QBF is true is PSPACE
complete.

Proof By Lemma 13.9, we need show only that the language of coded true

QBF's is PSPACE-hard. That is, we must show that every language in PSPACE is

polynomial-time reducible to L^.
Let M be a one-tape polynomial space-bounded DTM accepting a language

L. Then for some constant c and polynomial p, M makes no more than c
p(n) moves

on inputs of length n. We can code ID's of M as in Theorem 13.1, using the

Boolean variables clX , 1 < i < p(n), and X a tape symbol or a composite symbol

representing a symbol and the state of M. Since M is deterministic, there is no need

to code a choice of moves in the composite symbol. Our goal is to construct for

each 0 <j < p(/i)log c, a QBF Fj(I l9 l 2 \ where

1) /j and 1 2 are each distinct sets of variables, one for each i, 1 < i < p(n), and

each tape symbol or composite symbol X, analogous to the cix s of Theorem

13.1. Say

=
{
cix \

1 ^ * < p(n) and X is such a symbol},

and

1 2 = Kt 1 1 < i < p(n) and Y is such a symbol}.

2) Fj(Iu I2 ) is true if and only if I
x
and I 2 represent ID's /? x

and p2 °fM y
that is,

for each i, exactly one cix and dlX is true, and f$ x ^- fi2 by a sequence of at

most 2j moves, where p x
= X

x
X 2

- • Xp{n) , /?2 = Y
x
Y2 • • Yp{n)y and X {

and Y
{

are the symbols such that cix . and diYt
are true.

Then given x of length n we may write a QBF

Qx = 3I0 3If[Fmc(Io, //) a INITIAL(/0 ) a FINAL(// )],

where 3/0 and 31f stand for a collection of existentially quantified variables, one

for each symbol X and integer i, 1 < i < p(n\ as above. INITIAL(/0 ) is a proposi-

tional formula that says the variables in the set /0 represent the initial ID of M
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with input x, and FINAL(// )
expresses the fact that If represents an accepting ID

of M. Then Qx is true if and only if x is in L(M). INITIAL and FINAL can be

written in time that is polynomial in n using the techniques of Theorem 13.1.

We now show how to construct, for each j, the formula Fj(I l9 I2 ). The basis,

j = 0, is easy. Using the technique of Theorem 13.1, we have only to express as a

Boolean formula the facts that

1) l
x
and 1 2 represent ID's, say fi t

and /?2 ; that is, exactly one variable for each

position in /?j and /?2 is true.

2) Either fi x
=

fi2 or p 1 |— p 2 .

For the induction step, we are tempted to write

Fj{Iu / 2 ) = (3I)[Fj_ ,(/„/) a F,_,(/, / 2 )].

However, if we do so, F, has roughly double the length of F
y _ l9

and the length of

F
p(„)log2C

will be at least c
p(n

\ and therefore cannot be written in polynomial time.

Instead we use a trick that enables us to make two uses of an expression like

Fj_ j in only a small amount (polynomial in n) more space than is required for one

use. The trick is to express that there exist J and K such that if J = I
x
and K = I

or J = I and K = / 2 , then F
}_ ^J, K) must be true. The QBF for this is

Fj(I !, / 2 ) = 3I[3J[3K[(^(J = I
1
aK = I)

a-i (J = / aK = I 2))vFj
.

l
(J y K)]]]. (13.3)

We use expressions like J = I
t
to mean that for each pair of corresponding

variables in the sets J and l
x
(those representing the same position and symbol),

both are true or both are false. Equation (13.3) states that whenever the pair (J, K)

is either (/„ /) or (I l9 / 2 ), then F
} _ t

(J, K) must be true. This allows us to assert

that both Fj.^Ii, I) and Fj_
x
(l, l 2 ) are true using only one copy of Fj- t

.

Intuitively, F
} _ l

is used as a "subroutine" that is "called" twice.

The number of symbols in Fj9 counting any variable as one, is 0(p(n)) plus the

number of symbols in Fy_ v Since (13.3) introduces 0(p(n)) variables (in the sets /,

J, and K), the number of variables in F, is 0(jp(n)). Thus we can code a variable

with 0(logy" 4- log p(n)) bits. It follows by induction on j that Fj can be written in

time 0(jp(n) (log j + log p(n))). If we let ; = p(n) log c and observe that for any

polynomial p(n), log p(n) = 0(log n), we see that Qx can be written in 0(p
2
(n) log n)

time. Thus there is a polynomial time reduction of L(M) to Lq bf . Since M is an

arbitrary polynomial space-bounded TM, we have shown that Z^ bf is PSPACE-
complete.

Context-sensitive recognition

Another PSPACE-complete problem worth noting is: Given a CSG G and a

string w, is w in L(G)? This result is surprising, since the CSL's occupy the

"bottom" of PSPACE, being exactly NSPACE(n) and contained in DSPACE(n2
).
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However, the "padding" technique used in the translation lemma (Lemma 12.2)

makes a proof possible.

To begin, pick a straightforward binary code for grammars as we have done

for Turing machines. Let Lcs be the language consisting of all strings x#w, where x

is the code for a CSG Gx and w is a coded string from the input alphabet of Gx .

Assume that for a given grammar, all grammar symbols are coded by strings of the

same length. It is easy to design an LBA that, given input x#w, guesses a deriva-

tion in Gx such that no sentential form exceeds the length of the string coded by w.

The coded sentential form can be stored on a second track under the cells holding

w. Moves are determined by consulting the x portion of the input (to see how this

may be done it helps to assume the existence of a second tape). We see that Lcs is in

NSPACE(n) and thus in PSPACE.

Theorem 13.11 Lcs , the CSL recognition problem, is PSPACE-complete.

Proof We already know Lcs to be in PSPACE. Let L be an arbitrary member of

PSPACE; say L is accepted by M, a DTM of space complexity p(n). Define L to be

{y$
p(iy|)

|y is in L}, where $ is a new symbol. It is easy to check that L is in

DSPACE(n) and therefore is a CSL. Let G be a CSG for £, and let x be the binary

encoding of G. Then the polynomial-time mapping that takes y to x#w, where w is

the encoding of y$pi^\ is a reduction of L to Lcs ,
showing Lcs is PSPACE-

complete.

13.5 COMPLETE PROBLEMS FOR & AND NSPACE(LOG n)

It is obvious that DSPACE(log n) c & by Theorem 12.10. Could it be that

& = DSPACE(Iog n), or perhaps & c DSPACE(logk
n) for some k'l Similarly, it

is obvious that DSPACE(log n) c NSPACE(log n). Could these two classes be

equal? If so, then by a translation analogous to Lemma 12.2, it follows that

NSPACE(h) c DSPACE(h), that is, deterministic and nondeterministic CSL's are

the same.

We shall exhibit a language L
x
in & such that every language in \

Jf is log-space

reducible to Lv Should this language be in DSPACE(logk
n) for some /c, then &

is contained in DSPACE(log* n). Similarly we exhibit an L 2 in NSPACE(log n)

such that every language in NSPACE(log n) is log-space reducible to L2 . Should

L2 be in DSPACE(log n), then DSPACE(log n) would equal NSPACE(Iog n).

There is, of course, no known way to recognize L
x
in log* n space and no known

way to recognize L2 deterministically in log n space.

Languages complete for NSPACE(log n) or for & are not necessarily hard to

recognize, and in fact, the languages L
x
and L2 are relatively easy. The results of

this section serve merely to reinforce the idea that many complexity classes have

complete problems. They do not suggest intractability the way MP-completeness

or PSPACE-completeness results do.
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Context-free emptiness

Define L cfe to be the language of coded CFG's whose languages are empty. L cfe is

the language L i
alluded to above. We shall show that & is log-space reducible to

L cfe .

Theorem 13.12 Lcfe , the emptiness problem for CFG's, is complete for & with

respect to log-space reductions.

Proof We shall reduce an arbitrary language L in ^ to Ltfe using only log n

space. Specifically we shall design a log-space transducer M x . Given input x of

length n
y
M

t
writes a grammar Gx such that L(GX ) = 0 if and only if x is in L. Let

M be a p(n) time-bounded TM accepting the complement of L. Since <P is effec-

tively closed under complementation, we can find M. Intuitively, a derivation of

Gx corresponds to a valid computation ofM on x. The nonterminals of Gx are all

symbols of the form A xin where

1 ) X is a tape symbol of M, a pair [qY\ where q is a state and Y a tape symbol, or

the marker symbol # used to denote the ends of ID's;

2) 0<i <p(n)+ 1;

3) 0 < t < p(n).

The intention is that A Xit
^> w for some string w if and only ifX is the ith symbol of

the ID of A? at time t. The symbol S is also a nonterminal of Gx ; it is the start

symbol.

The productions of Gx are:

1) S -> A [qfY]it for all /, r, and 7, where qf is a final state.

2) Let f(X, 7, Z) be the symbol in position i of the tih ID whenever XYZ
occupies positions i — 1, /, and i 4- 1 of the (f — l)th ID. Since M is deter-

ministic,/^, V, Z) is a unique symbol and is independent oft and t. Thus for

each i and r, 1 < i, r < and for each triple AT, y, Z with jy y, Z),

we have the production

A Wit
~

* A Xj - i mt - i ^Y,i,t- 1 ^Z.i+ l.f- 1-

3) A* 0t
-> ^ and Uf -» £ for all r.

4) ^xio ^ for 1 < i < p(n) if and only if the ith symbol of the initial ID with

input x is X.

Any easy induction on t shows that for 1 < i < p(n), A Wit ^> e if and only if W
is the ith symbol of the ID at time f. Of course, no terminal string but e is ever

derived from any nonterminal.

Basis The basis, t = 0, is immediate from rule (4).

Induction If A wit ^> £, then by rule (2) it must be that for some X, Y, and Z, W is

f(X, y, Z) and each of Axi . l ^ i ,
A Yi4 - u and AZJ+Ut -i derive e. By the
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inductive hypothesis the symbols in the ID at time t - 1 in positions i — 1, i, and
i + 1 are X, 7, and Z, so W is the symbol at position i and time t by the definition

of/

Conversely, if W is the symbol at position i and time t > 1, then W =f(X, Y,

Z), where X, 7, and Z are the symbols at time t - 1 in positions i — 1, i, and i + 1.

By the inductive hypothesis, or by rule (3) if i = 0 or i = 4- 1,

Ax,i- l,t-l ^Y,i,t- 1 ^Z,i+ l.t- i ^ £ -

Thus by rule (2), 4^ ^> e.

Then by rule (1), S ^> £ if and only ifM accepts x.

Finally we need show that the productions of Gx can be produced by M
x
with

input x of length n. First of all, recall that log2 p(n) < c log2 n for some constant c,

since p(n) is a polynomial. Therefore M
x
can count from i = 0 to in log n

scratch storage. Similarly M
i
can count from t = 0 to in log h space. The

productions of Gx are easily generated by a double loop on i and

Now Gx is in Lcfe if and only ifM does not accept x and hence if and only if x

is in L. Thus Lcfe is complete for ^ with respect to log-space reductions.

The reachability problem

Now we shall give a problem that is complete for NSPACE(log n) with respect to

log-space reductions. The graph reachability problem is, given a directed graph

with vertices {1, 2, n} determine if there is a path from 1 to n.

Theorem 13.13 The graph reachability problem is log-space complete for

NSPACE(log n) with respect to log-space reductions.

Proof The formalization of this problem as a language is left to the reader. First

we show that the graph reachability problem is in NSPACE(log n). A nondeter-

ministic TM M can guess the path vertex by vertex. M does not store the path, but

instead verifies the path, storing only the vertex currently reached.

Now, given a language L in NSPACE(log n) we reduce it in log n space

deterministically to the language of encoded digraphs for which a path from the

first vertex to the last exists. Let M be a log n space-bounded nondeterministic

offline TM accepting L. An ID of M can be represented by the storage tape

contents, which takes log n space to represent, the storage tape head position and

state, which may be coded with the storage contents via a composite symbol [qX\

and the input head position, which requires log n bits.

We construct a log-space transducer M
x
that takes input x and produces a

digraph Gx with a path from the first to the last vertex if and only ifM accepts x.

The vertices of Gx are the ID's ofM with input x (but with the input head position,

rather than with x itself) plus a special vertex, the last one, which represents

acceptance. The first vertex is the initial ID with input x.M, uses its log n storage

to cycle through all the ID's of M. For each ID /, M x
positions its input head at
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the correct input position, so it can see the input symbol scanned by M. M
x then

generates arcs / J for all the finite number of J's such that / can become J by
one move of M. Since M

t
has / available on its storage tape, and J can be easily

constructed from /, this generation requires no more than log n space. If / is an

accepting ID, M
x
generates the arc / u, where v is the special vertex.

It is straightforward to check that there is a path in Gx from the initial ID to v

if and only if M accepts x. Thus each language in NSPACE(log n) is log-space

reducible to the reachability problem. We conclude that the reachability problem

is complete for NSPACE(log n) with respect to log-space reductions.

13.6 SOME PROVABLY INTRACTABLE PROBLEMS

Up to now we have strongly implied that certain problems require exponential

time by proving them NP-complete or PSPACE-complete. We shall now prove

that two problems actually require exponential time. In one case, we reduce to our

problem a language which, by the space hierarchy theorem, is known to require

exponential space and hence exponential time. In the second case, we show how to

reduce to our problem all languages in nondeterministic exponential time and

then argue by a nondeterministic time hierarchy theorem [Cook 1973a] that

among them there must be one that really requires, say, 2" space.

We shall now consider a problem about regular expressions that is somewhat

contrived so that (a) at least 2
c"/logrt space is required to solve it and (b) this

requirement can be readily proved. After that, we consider a problem in logic that

is not contrived in that it had been considered long before its complexity was

analyzed, and where proof of exponentiality is far from straightforward.

Regular expressions with exponentiation

Let us consider regular expressions over an alphabet assumed for convenience not

to contain the symbols |, 0, or 1. Let r f i stand for the regular expression rr • • r(i

times), where i is written in binary. The expression r may include the ] (exponen-

tiation) operator. For example, (a | 1 1 + b | 1 1) | 10 stands for

{aaaaaa, aaabbb, bbbaaa, bbbbbb}.

We assume ] has higher precedence than the other operators. The problem we

shall show requiring essentially exponential space, that is, 2 p(n) space for some

polynomial p(n), is whether a regular expression with exponentiation denotes all

strings over its alphabet (remember |, 0, and 1 are used as operators and are not

part of the alphabet). First we give an exponential-space algorithm for the

problem.

Theorem 13.14 The problem whether a regular expression with exponentiation

denotes all strings over its alphabet can be solved in exponential space.
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Proof Given a regular expression of length n, we shall expand the f's to obtain an

ordinary regular expression and show that it has length at most n2n
. Then we shall

convert this expression to an NFA of at most n2
n+2

states and test whether that

NFA accepts £*. (Note that this latter step must be done without conversion to a

DFA, since the DFA might have 2
n2n+2

states). To eliminate the fs we work from

inside out. We prove by induction on j that an expression with ]\ having length

m, with j O's and l's, has an equivalent ordinary regular expression of length at

most m2j
.

Basis j = 0. The result is immediate.

Induction Scan the expression r of length m from the left until the first | is

encountered. Then scan back until the left argument r
t
of that | is found. We

assume t has highest precedence, so its argument must be a single symbol or be

surrounded by parentheses; hence this extraction is easy. Let the expression be

r = r2 r
t ] ir3 . Replace r by r' = r2 r

1
r

x
• • • r

x
r3 , where r

x
is written i times. By the

inductive hypothesis, r' has an equivalent ordinary regular expression of length at

most (m + (i - l)\r
1 \)2

j
~ log2i

symbols. Since 2
y_,082 i = 2j/i, and since \r

l \

< m,

we see that

(m + (i -1)1^1 )2>- ,og2
' =

m + (*~ HhJ x 2j < m2K

If r is of length n, then surely m = n and j < n, so the equivalent ordinary

regular expression has length at most ri2
n

.

Now, using the algorithm of Theorem 2.3, we can produce an equivalent NFA
of at most 4n2n = n2n+2 states. Nondeterministically guess symbol by symbol an

input a t a 2 that the NFA does not accept. Using n2n+2 cells we can, after each

guess, compute the set of states entered after the NFA reads the sequence of

symbols guessed so far. The input need not be written down, since we can compute

the set of states entered from this set on any input symbol. If we ever guess an

input sequence on which no accepting state of the NFA is entered, we accept; the

original expression does not denote £*. By Savitch's theorem we may perform this

process deterministically using space n
24n . It is easy to devise an encoding of the

NFA that can be stored in 0(n
3
2
n
) cells, since about n bits suffice to code a state,

and the input alphabet is no larger than n. As n
24" > n

3
2", it follows that n

24" is an

upper bound on the required space.

We shall now provide a lower bound of 2
cn/log " for some constant c on the

space required for the above problem. Observe that proving a certain amount of

space is required also proves that the same amount of time is required (although

the opposite is not true).

Theorem 13.15 There is a constant c> 0 such that every TM accepting the

language 2^.ex of regular expressions with exponentiation that denote E* takes

more than 2
cn/logn space (and therefore 2

cn,logn
time) infinitely often.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


352 INTRACTABLE PROBLEMS

Proof Consider an arbitrary 2" space bounded single-tape deterministic TM M.
For each input x of length n, we construct a regular expression with exponentia-

tion Ex that denotes Z*, where Z is the alphabet of Ex , if and only ifM does not

accept x. We do so by making Ex denote all invalid computations ofM on x. Let Z
consist of all tape symbols of M, the composite symbols [qX\ where q is a state

and X a tape symbol, and the marker symbol #. Assume that |, 0, and 1 are none

of these symbols.

A string y in Z* is not an accepting computation ofM on x if and only if one

or more of the following are true.

1) The initial ID is wrong.

2) There is no accepting state.

3) One ID does not follow from the previous by a move of M.

In what follows, we use sets of symbols to represent the regular expression

that is the sum of those symbols. Thus, if Z = {au a2 , . . • , an} y
then we use Z as a

shorthand for the regular expression a
t + a 2 + "' + an . Similarly we also use

Z — a to stand for the regular expression that is the sum of all the symbols in Z
except a.

A regular expression denoting all strings that do not begin with the initial ID

is given by

START = c + (Z - #)Z* 4- A
t + A 2 + •• 4- A„

+ Z T (n + 1)(Z + c) T (2" - n - 1)(Z - £)Z*

+ Z T (2"+ 1)(Z- #)Z*,

where

/J,=ET 1(E -
[9o a,])X*,

and for 2 < i <n,

A, = E t <(£ - a,)!*

The next-to-last term denotes Z" +

1

followed by up to 2" — n — 1 symbols followed

by anything but a blank, and denotes strings such that some position between

n + 1 and 2" of the first ID does not contain a blank. Since n and 2" — n — 1 are

written in binary, the length of this term is proportional to n. The last term

denotes strings in which the (2" 4- l)th symbol is not #. It is also of length

proportional to n. The remaining terms are proportional to log n in length, and

there are n + 3 such terms. Thus the length of the expression is proportional to

n log n. Curiously, the length of the expression denoting false initial IDs domin-

ates the length of the other terms in Ex .

A regular expression enforcing the condition that there is no accepting state is

given by

FINISH = (Z - {[qX] \q isa final state})*.

This expression is of constant length depending only on M.
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Finally, let f(X, Y, Z) denote the symbol Z such that if W, X, and Y are at

positions i — 1, j, and i + 1 of one ID, then Z will be at position i of the next ID.

Then let

MOVE = + Z* WXYZT (2
n - 1)(Z -f(W, X, Y)Z*.

That is, MOVE is the sum, over the finite number of triples (W, X, Y) of symbols

in Z, of those strings with W, X, and Y occupying consecutive positions in an ID
that has a wrong next symbol 2" positions to the right. As the length of each term

is linear in n, the length of MOVE is linear in n.

The desired expression is Ex = START + FINISH + MOVE. IfM accepts x,

then the accepting computation is not in Ex . If some string y is not in Ex , then it

must begin #[^0 fl i]fl2 a„£2"" n
#, each ID must follow the previous by one

move ofM, and acceptance must occur somewhere along the way. Thus M accepts

x. Therefore Ex = Z* if and only if M does not accept x.

Now, let M be a Turing machine accepting language L that can be accepted in

2" space but not in 2"/n space. The hierarchy theorem for space assures us that

such an M exists. Suppose there were an S(n) space-bounded TM accepting the set

L rex of regular expressions with exponentiation denoting Z*, suitably coded so

L rex has a finite alphabet. Then we could recognize L as follows.

1 ) From x of length «, construct Ex > whose length is proportional to n log n. We
can construct Ex in space proportional to n log n in an obvious way.

2) Code Ex into the alphabet of Lrex . As M has a finite number of symbols, the

length of the coded Ex is cn log n for some constant c.

3) In S(cn log n) space, determine whether Ex is in L rex . If so, reject x; if not,

accept x.

The total amount of space is the maximum of n log n and S(cn log n). As no

TM using less than 2
n
/n space and accepting L exists, it must be that

n log n + S(cn log n) > 2
n
/n i.o., (13.4)

else L could be accepted in 2
n
/n space by Lemma 12.3. There exists a constant

d > 0 such that if S(m) were less than 2
dm/,ogm

for all but a finite set of m, then (13.4)

would be false. It follows that S(m) > 2
dm/Iogm

for some constant d and an infinite

number of m's.

Corollary Z^ex is complete for exponential space with respect to polynomial-time

reduction.

Proof In Theorem 13.15, we gave a polynomial time reduction to L,cx that works

for every language L in DSPACE(2n
). We could easily have generalized it to

reduce any language in DSPACE(2 p(n)
), for polynomial p, to L^.

We should observe that the n log n bound on the length of Ex is critical for

Theorem 13.15, although for its corollary we could have allowed the length to be
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any polynomial in |x|. If, for example, we could only prove that \EX \
< |x|

2
,

then our lower bound on the space required by L,ex would have been 2
d%

""instead.

Complexity of first-order theories

Now we shall consider a problem that requires at least 2
cn

time, nondeter-

ministically, and is known to be solvable in exponential space and doubly expon-

ential time. As the problem can also be shown nondeterministic exponential time-

hard with respect to polynomial time reductions, proving a better lower bound
regarding the amount of nondeterministic time would improve on Theorem 12.10,

which is most unlikely.

A first-order language consists of a domain (for example, the nonnegative

integers), a set of operations (for example, -f, *) a set of predicates (for example, =,

< ), a set of constants chosen from the domain, and a set of axioms defining the

meaning of the operators and predicates. For each theory we can define the

language of true expressions over the constants, operators, predicates, variables,

the logical connectives, a , v , and —1, and the quantifiers 3 and V.

Example 13.5 (N, +,*,=,<, 0, 1), where N stands for the nonnegative integers,

is known as number theory. GodeFs famous incompleteness theorem states that

the language of true statements in number theory is undecidable. While Godel's

result predated Turing machines, it is not hard to show his result. If a TM M
accepts when started on blank tape, it does so by a computation in which no ID is

longer than some constant m. We may treat an integer i, in binary, as a computa-

tion of M with ID's of length m.

The statement that M accepts c, which is known to be undecidable, can be

expressed as 3/3m(£m (i)), where Em is a predicate that is true if and only if i is the

binary encoding of a computation leading to acceptance of c with no ID longer

than m. (Some of the details are provided in Exercise 13.37.) Thus, number theory

is an undecidable theory.

There are a number of decidable theories known. For example, (R, +, =, <,

0, 1), the theory of reals with addition, is decidable, and we shall show that it

inherently requires nondeterministic exponential time. If the reals are replaced by

the rationals, we get the same true statements, since without multiplication, it is

impossible to find a statement like 3x(x * x = 2) that is true for the reals but not

the rationals. The theory of integers with addition (Z, +, =, <, 0, 1), called

Presburger arithmetic, is decidable, and is known to require doubly exponential

nondeterministic time. That is, 2
2cn

is a lower bound on the nondeterministic time

complexity of Presburger arithmetic.

Example 13.6 Before proceeding, let us consider a number of examples in the

theory of reals with addition. Vx3y(y = x + 1) is true: it says that x + 1 is a real
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whenever x is.

VxVy[x = yv 3z(x < z a z < y) v 3z(y < z az < x)]

is also true: it states that between two different reals we can find a third real; that

is, the reals are dense. The statement

3yVx(x < y v x = y)

is false, since for every real number y there is a greater real. Note that we have not

told how to decide whether a statement is true; the decision depends on knowing

the properties of real numbers, with which we assume the reader is familiar.

A decision procedure for the reals with addition

We shall begin our study of the reals with addition by giving a decision procedure

that requires exponential space and doubly exponential time. To begin, let us put

our given statement in prenex normal form, where all quantifiers apply to the

whole expression. It is easy to obtain an expression in this form if we first rename

quantified variables so they are unique, and then apply the identities

-|(Vx(£)) = 3x(-i£) Vx(E l)vE2 = Vx^ v E2 )

and four similar rules obtained from these by interchanging V and 3 and/or

replacing v by a . This process does not more than double the length of the

expression; the only symbols that might be added to the expression are a pair

of parentheses per quantifier.! Now we have a formula

Ql*lQ 2 *2 Gm*m^(*l, *2> *m)> (13.5)

where the Q/s are quantifiers, and the formula F has no quantifiers. F is therefore

a Boolean expression whose operands are atoms, an atom being a Boolean con-

stant or an expression of the form E
1
op E2 , where op is = or < and E

y
and E 2

are sums of variables and the constants 0 and 1. We know F is of this form because

no other combination of operators make sense. That is, + can be applied only to

variables and constants, < and = relate only arithmetic expressions, and the

Boolean operators can be applied sensibly only to expressions that have true/false

as possible values.

To determine the truth or falsehood of (13.5) we repeatedly substitute for the

innermost quantifier a bounded quantification, which is the logical "or" (in place

of 3) or "and" (for V) of a large but finite number of terms. Suppose in (13.5) we fix

the values of x u x 2 ,
xm _i. Every atom involving xm can be put in the form

t Technically the renaming of variables may increase the length of the formula by a log n factor when

we encode in a fixed alphabet. However, the complexity depends on the original number of symbols

and not the length of the encoded string.
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xm op f, where op is <, =, or > and t is of the form

m- 1

Co + Z C
i
X

i>

i= 1

where the c,'s are rationals. Suppose all these atoms are xm op th 1 <i <k, where

f
i
< t2 < ' " < tk for the given values of x 1? . .

. , xm _ ,. For any value of xm in the

range t
t
< xm < ti+ u each atom has the same truth value. Thus the truth of (13.5)

is independent of the actual value of xm in this range. This leads us to the observa-

tion that the f
f
's partition the real line into a finite number of segments, and the

truth of (13.5) depends only on the segment in which xm lies, and not on the actual

value of xm . Thus we can test (13.5) by trying one value of xm from each of a finite

number of regions as suggested in Fig. 13.6.

Fig. 13.6 Representative values of x,

As the values of x
{

, . .
. , xm _ j will vary, we do not really know the order of the

r,'s. However, trying xm = t
t

for each /, xm = ^(f
f
+ t

} ) for each i ± and

xm = ± oo,t we know that no matter what the order of the f
f
's, we are sure to have

a representative xm in each interval of Fig. 13.6 and also at the r,'s themselves,

where atoms with the = operator may become true.

It follows that if Qm = 3, then 3xm F(x ly . .., xm )
may be replaced by

F(x
1
,...,xm _

1 )= V F(x lf ... f xJ, (13.6)

xm = t, or

xm = (l/2)(t, + tj)

or xm = ±oo

that is, by the logical "or" of k(k 4- l)/2 + 2 terms, each of which is F with a

substitution for xm . If Qm = V, a similar replacement, with a substituting for v,

may be made.

If F has k atoms, F has k[k(k + l)/2 + 2] atoms, which is at most k
3 atoms for

k > 3. Also, if the coefficients in the atoms of F are each the ratio of integers of at

most r bits each, then after grouping terms, solving for xm , and computing the

average of two f,'s, we find that the coefficients in the atoms of F will be ratios of

integers with no more than 4r + 1 bits. This follows since if a, b, c, and d are r-bit

integers,

a c ac

bd
=

b~d

t If .xm = +oo, then xm = t and .xm < t are false, and .xm > t is true independently of t. If xm = - 00

analogous simplifications occur.
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is the ratio of integers with at most 2r bits, and

a c ad ±bc

b
±

d
=

bd

is the ratio of a (2r 4- l)-bit integer and a 2r-bit integer. For r > 1, then, the

coefficients in F are no more than five times the length of the coefficients in F.

If we repeat the above process to eliminate all the quantifiers and variables,

we eventually produce a formula with only logical operators, =, <, and con-

stants. The constants are ratios of integers with at most 5
m
r bits. The number of

atoms is at most

(...((fc
3

j
3
)...)

3 = fc
3-.

m times

As each atom is a relation between constants of 5
m
r bits, and k, m, and r are less

than m, the length of the expression is at most 2
2Cn

for some constant c (note that

n
3 " < 2

22
"). We may evaluate an atom of the form a/b < c/d by computing ad — be

and comparing it with 0. Thus the entire final expression may be evaluated in the

square of its length. Hence our decision procedure takes 2
2dn

time for some

constant d.

The procedure as we have given it also takes doubly exponential space.

However, we can reduce the space to a single exponential by evaluating F
recursively. We have already seen that we need consider only a finite set of values

for each x
f

. The values for x, are given by a formula of the form a0 + Jj=\ ajXj,

where the a/s are rationals that are ratios of 5
m ~ j+ 1

r-bit integers, where r is the

number of bits in the largest constant of the original formula, F; note r < log n.

Thus values for x
Y
are rationals that are at most ratios of 5

m
r-bit integers, the

values for x 2 are ratios of at most 5
m+

1

r-bit integers, etc. Thus we need only cycle

through values for each x, that are at most 5
2m

r bits. We use a recursive procedure

EVAL(G) that determines whether G is true when the variables take on the values

±oo and any ratio of 5
2m

r-bit integers.

If G has no quantifiers, then it consists only of arithmetic and logical relations

among rationals, so its truth can be determined directly. If G = Vx(G'), EVAL(G)
calls EVAL(G") for all G" formed from G' by replacing x by ±oo or a ratio of

5
2m

r-bit integers. EVAL(G) is true if EVAL(G") returns true for all these expres-

sions G". If G = 3x(G'), we do the same, but EVAL(G) returns true whenever some

EVAL(G") is true.

It is easy to check that no more than m copies of EVAL are active simultan-

eously. The arguments for the active calls to EVAL can be put on a stack, and this

stack takes 0(m5 2mr) space. Thus, if F is an expression of length n, we may evaluate

F in space 2
cn and time 2

2dn
for some constants c and d.

A lower bound

We now show that the theory of reals with addition requires essentially non-

deterministic exponential time. A series of lemmas are needed showing that multi-
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plication and exponentiation by limited size integers can be expressed by short

formulas.

Lemma 13.10 There exists c> 0 such that for each n there is a formula Mn(x, y,

z) that is true if and only if x is a nonnegative integer strictly less than 2 2
", and

xy = z. Furthermore,
|

Mn (x, y, z)
\
< c(n -hi), and Mn(x, y, z) can be constructed

from n in time polynomial in n.

Proof For n = 0, 2
20 = 2. Thus M0 (x, y, z) can be expressed as (x = 0 a z = 0) v

(x = 1 a z = y).

Inductive step: (Construction of Mk+i from Mk ). Let x be an integer less than

2
2k+1

. There exist integers x 1? x 2 ,
* 3 ,

x4 < 2 2 " such that x = x
l
x 2 + x 3 + x4 . In

proof, let x
t
= x 2 = [y/x\. Now z = xy can be expressed by z = x

1
(x2 y)-f

x 3 }? + X4 y. Thus

Mk+ t
(x, y, z) = 3wj ••• 3u 5 3x {

•• 3x4[M fc
(x

1 ,
x 2 ,

ax = uj + x 3 + x4 aM&(x 2 , y, u 2)AMk(x u u2 ,
u 3 )
AMk(x 3 , y, u4 )

aMk(x4 , y, m 5)az = u3 + m4 + w 5] (13.7)

That is,

w
1
=x

1
x 2 , x = X! x 2 4-

x

3 + x4 ,

u 2 = x 2 y, w 3
= x

1
x2 y, w4 = x 3 y, w 5 = x4 y,

and

z = XjX 2 y + x3 y + x4 y.

The condition that each x, is an integer less than 2
2k

is enforced by each X; being

the first argument of some Mk .

Formula (13.7) has five copies ofM k , so it appears that Mk + x
must be at least

five times as long as Mk . This would make the length ofMn exponential in n, not

linear as we asserted. However, we can use the "trick" ofTheorem 13. 10 to replace

several copies of one predicate by a single copy. That is, we may write

y, z) = 3i 3w 5 3xj 3x4

[x = W
x + X3 + X4 A Z = W3 + W4 + U 5

a Vr Vs Vf[—ir = x
l
As = x 2 At = u

l )

a —i(r = x 2 a 5 = y a t = u 2 )

a —i(r = x
x
AS = u 2 At = u 3 )

a —\(r = x3 a 5 = y A t = w4 )

a —i(r = X4 A 5 = y A t = u 5 )

vMk(r, s, t)]],

which has a constant number of symbols more than Mk does.
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One minor point is that if we introduce new variable names for each Mk , we
shall eventually introduce a log n factor into the length of Mn , since variable

names must be coded in a fixed alphabet in the language of true formulas.

However, the scope rules for quantified formulas allow us to reuse variables

subject to the restriction that the twelve new variables introduced in Mk don't

conflict with the free variables x, y, and z. Thus Mn requires only 15 different

variables, and its coded length is proportional to the number of symbols.

Observe that Mn(x, 0, 0) states that x is an integer less than 2 2
". Thus we can

make statements about small integers in the theory of reals with addition by using

very short formulas.

Lemma 13.11 There exists a constant c> 0 such that for every n there is a

formula Pn(x, y, z) that is true if and only if x and z are integers in the range 0 < x,

z < 2
2 " and y

x = z. Furthermore \Pn \

< c(n + 1) and Pn can be constructed from

n in time polynomial in n.

Proof We construct by induction on/ca sequence of formulas £k (x, y, z, u, v, w)

such that Ek has both exponentiation and multiplication built into it. The reason

for doing this is that we wish to express Ek in terms of several copies of £k _ y
and

then use universal quantification to express Ek in terms of one copy of Ek _ j. We
could not do this with Pk , since a formula for Pk involves both Pk _ l

and M k _ v
The formula £k(x, y, z, u, v, w) will be true if and only if x, z, and u are integers,

0 < x, z < 22
\ z = y*, 0 < u < 2

2
\ and uv = w.

Basis For k = 0,

E0 = (x = 0az= 1) v (x = 1 a>> = 0 az = 0)

v (x = 1 a y = 1 a z = 1)a M 0 (w, v, w).

Induction To construct £fc+1 (x, y, z, w, v, w) we can use the fact that

£k (0, 0, 0, w, w) = M„(u, v, w)

to express the conditions on w, u, and was in Lemma 13.10. Using several copies of

£
fc

, we may assert that there exist integers x u x 2 ,
x 3 ,

x4 in the range 0 < x, < 2
2k

such that

x = x
1
x 2 + x 3 + x4 and y

x = (y
xl

)

X2
y
x*yx*.

Finally, we use the "trick" of Theorem 13.10 to express Ek+1 in terms of one copy

of Ek and a constant number of additional symbols. Last, we may write

Fn(x, y, z) = £„(x, y, z, 0, 0, 0).

This asserts that z = y
x

, and x and z are integers in the range 0 < x, z < 2 2 ".

To improve readability of what follows, we use the abbreviations 2 for 1 + 1,

2x for x + x, x < y for x < y v x = y, and x < y < z for (x = y v x < y) a y < z.
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Expanding an abbreviated formula results in at most multiplying the length by a

constant factor. In addition to the above abbreviations, we shall use constants like

2" and multiplications like ab in formulas. Technically these must be replaced by

introducing an existentially quantified variable, say x, and asserting x = 2" or

x = ab by Pn(n, 2, x) orMn (a, b, x). This can also increase the length of the formula

by a constant factor.

We intend to encode Turing machine computations as integers. LetM be a 2"

time-bounded NTM. If the total number of tape symbols, composite symbols, and

the marker # is b, then a computation of M is an integer x in the range

0 < x < b(2 " + 1)2+
*. Asserting that an integer is a computation is facilitated by a

predicate that interrogates the ith digit in the fr-ary representation of x.

Lemma 13.12 For each n and b there exists a constant c, depending only on b,

such that there is a formula Dn b(x, ij) that is true if and only if x and i are integers,

0 < x < b
{2n+ l)2+

\ 0 < i < 2", and xh the (i + l)th digit of x counting from the

low-order end of the fr-ary representation of x, is Furthermore \Dnb \

<
c(n + 1), and Dn b can be constructed from n and b in time polynomial in n

and b.

Proof For each b there exists a constant s such that b
i2n+ 1)2+ 1 < 2

2sn
for all n.

Thus that x is an integer in the correct range can be expressed by 3m[Psn((2" + l)
2

,

b, m) a0 < x < m\ (Recall our previous remarks concerning constants like 2" and

their expansions.) That i is an integer in the range 0 < i < 2" can be expressed by

Mn(U 0, 0) a (0 < i < 2"). Now x in base b has zeros in positions 1, 2, i + 1

if and only if it is divisible by b
i+l

. Thus x
f
=j if and only if there exist integers q

and r such that x = qbi+ 1 + r and y7>'* < r < (j + \)b\ This fact is easily expressed

using Psn and M sn .

Theorem 13.16 Any nondeterministic algorithm to decide whether a formula in

the first-order theory of reals with addition is true must, for some constant c> 0,

take 2
cn

steps for an infinite number of n's.

Proof The proof is quite similar in spirit to that of Theorem 13.1. Let M be an

arbitrary 2
n
-time bounded NTM. Here ID's in a computation of M consist of 2"

symbols rather than p(n) as in Theorem 13.1. Let the total number of tape sym-

bols, composite symbols, and #'s be b. Then a computation of M on input of

length n consists of [(2
n + l)

2 + 1] fr-ary digits. We may consider this computation

to be an integer i in the range 0 < / < 2
2,n

for some constant s. For convenience,

we take the low-order digits of i to be at the left end of the computation.

Let x be an input of length n to M. We construct a formula Fx that is true if

and only if M accepts x. Fx is of the form 3i(. . .), where the formula within the

parentheses asserts i is an accepting computation of x. This formula is analogous

to that in Theorem 13.1. The first n + 1 symbols of the computation are

#[g0 , a l9 m]a 2 '~an ,

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


13.6 | SOME PROVABLY INTRACTABLE PROBLEMS 361

assuming that x = a l a2 "-an , q0 is the initial state, and m is any choice of

first move. To say that the first n + 1 symbols of the computation are correct, we
say that there exist u and j such that the value of u represents #[q0 , a x , m]a 2

' * • an

for some w, and i = b
n+ l

j + u for some integer j.

We must write this formula in 0(n)-space in time that is polynomial in n. By
induction on k = 2, 3, . .

.
, n + 1 we can write a formula Ck(v) with free variable v,

which asserts that the value of v is the numerical value of the first k symbols of the

computation. For the basis, k = 2, we simply write a formula

C2(v) = (v = p x
vv = p2 v-vv = p„),

where the p/s are the integers represented by #[g0 >
m] f°r tne finite set of

values of m. For the induction,

Ck(v) = 3w(Ck _ i
(w) a v = 6w + ak _ x ),

where
t

is taken to be the numerical value of tape symbol ak _ ^ To avoid using

n variables to express Cn+1 , which would make its length 0(n log ri), we alternate

between two variables, such as v and w, as we construct C 2 ,
C 3 ,

Cn+1 .

The desired formula asserts Cn+ t
(u) and i = b

n+ l

j + w for integer The latter

assertion is similar to what was done in Lemma 13.12, and the technique will not

be repeated here.

To express that the initial ID was correct in Theorem 13.1 required asserting

that "approximately" p(n) cells contained the blank symbol. This was accom-

plished by the logical v of p(n) items. We must now assert that about 2" cells

contain the blank symbol, and thus we cannot use a logical v of 2" formulas;

this would be too long a formula. Instead we use the quantifier V/ and assert that

either j is not an integer in the range n + 2 < j < 2" + 1 or the ;th symbol is the

blank, which we denote by 0. Thus we write

Vj[nMs„(;, 0, 0) v + 2 <j < 2" + 1) v Dn>b (i, j, 0)].

The formulas that force the last ID to contain a final state and force each ID to

follow from the previous ID because of the choice of move embedded in the

previous ID are similarly translated from the techniques ofTheorem 13.1. Having

done this, we have a formula Ex , whose length is proportional to n, that is true if

and only if M accepts x.

Suppose M accepts a language L in time 2" not accepted by any 2"12 time-

bounded NTM. (The existence of such a language follows from the NTIME
hierarchy of Cook [1973a], which we have not proved.) We can recognize L as

follows. Given x of length n, produce the formula Ex that is true if and only ifx is

in L. Now, if T(n) nondeterministic time suffices to accept the set of true formulas

in the first-order theory of reals with addition, we may determine whether x is in L
in time p(n) + T(cn). Then p(n) + T(cn) > 2"12 for an infinity of h's, else by Lemma
12.3 we could recognize L in time at most 2

n/2
, for all n. It follows that T(n) > 2

dn

i.o. for some d > 0.
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Corollary The theory of reals with addition is nondeterministic exponential

time-hard with respect to polynomial time reductions.

Proof The proof is an easy generalization of the foregoing reduction of a 2"

nondeterministic time TM.

13.7 THE & =
. i W> QUESTION FOR TURING MACHINES WITH ORACLES:

LIMITS ON OUR ABILITY TO TELL WHETHER 0> =
.
10>

The reader should recall from Section 8.9 our discussion of Turing machines with

oracles. These TM's had associated languages, called oracles, and had special

states in which the membership of the string written to the left of their head could

be tested in one step for membership in the oracle. Any oracle TM can have any

oracle "plugged in," although its behavior will naturally vary depending on the

oracle chosen. If A is an oracle, we useMA
for M with oracle A. The time taken by

an oracle TM is one step for each query to the oracle and one step for each

ordinary move of the TM.
We define &A

to be the set of languages accepted in polynomial time by

DTM's with oracle A. Also define Jf&A
to be the set of languages accepted by

NTM's with oracle A in polynomial time. We shall prove that there are oracles A
and B for which 0>A = ./f&A and 0>B JT0>B. This result has implications regard-

ing our ability to solve the ?f = Jf0> question for TM's without oracles. Intui-

tively all known methods to resolve the question one way or the other will work

when arbitrary oracles are attached. But the existence of A and B tells us that no

such method can work for arbitrary oracles. Thus existing methods are probably

insufficient to settle whether = Jf&. We shall provide details along these lines

after we see the constructions of A and B.

An oracle for which 0* = . \ 0>

Theorem 13.17 &A = jV'&a , where A = Lqbf , the set of all true quantified Bool-

ean formulas (or any other PSPACE-complete problem).

Proof Let M A
be nondeterministic polynomial time bounded, and let

L = L(MA
). Then M A

queries its oracle a polynomial number of times on strings

whose lengths are bounded by a polynomial of the length of the input to MA
.

Thus we may simulate the oracle computation in polynomial space. It follows

that J 9>A c PSPACE. However, any language L in PSPACE is accepted by

some DTM MA
that reduces L to A in polynomial time and then queries its oracle.

Thus PSPACE c &>A
. But clearly &>A c

mypA
, so 0>A = . V'PA .

An oracle for which & f . I W
We now show how to construct an oracle B c (0 -f 1)* for which SP

B ± ~\r@B
> &

will have at most one word of any length; exactly which words will be discussed
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later. We shall be interested in the language

L = {0'*
|
B has a word of length i}.

We may easily construct an NTM with oracle B that, given input 0', guesses a

string of length i in (0 + 1)* and queries its oracle about the guessed string,

accepting if the oracle says "yes." Thus L is in Jf&B
. However, we can construct B

so that the string of each length, if any, is so cleverly hidden that a DTM with

oracle B cannot find it in polynomial time.

Theorem 13.18 There is an oracle B for which 0>B + Jr0>3
.

Proof We shall give a procedure to enumerate the set B. Set B will have at most

one word of any length. As we generate S, we keep a list of forbidden words; these

words are ruled out of consideration for possible membership in B. Assume an

enumeration of DTM's with oracle and input alphabet {0, 1}, in which each TM
appears infinitely often. We consider each M

i9
i — 1, 2, in turn. When M, is

considered we shall have generated some forbidden words and a set B
{
of words so

far in B. There will be at most one word in B
t
of length 0, 1, . .

.
, i — 1, and no

longer words. Furthermore, no other words of length less than i will subsequently

be put in B. We simulate Mf' on input 0\ IfM, queries a word of length less than i,

we consult Bh which is all words in B so far, to see if the oracle responds "yes" or

"no." If M, queries a word y of length i or more, we assume that y is not in B (i.e.,

answer "no") and to make sure y is not later placed in B, add y to the list of

forbidden words.

The simulation of Mf •' on 0' continues for i
log 1

steps. Afterwards, whether or

not M
t
has halted, we make a decision about a word to put in B. If within /

,ogI

steps, Mf { halts and rejects 0\ then we put a word of length i that is not on the

forbidden list in 5, provided there is such a word. The word may be picked

arbitrarily, say the lexicographically first word that is not forbidden. If Mf ' does

not reject 0' within z

,og
' steps, then no word of length i is placed in B.

There is also no word of length i in B if all words of length i are forbidden by

the time we finish simulating Mf\ However, the number of steps simulated forM Bj

is j
logj

, so the total number of words of all lengths forbidden by M„ M 2 , . .., M, is

at most

£ f°*J < |(/
,0«'") < +

As there are 2' words of length i, we know that not all words of length i are

forbidden if 2' > i

1 +logi
, that is, if i > (1 + log i) log i. But the latter relation holds

for i > 32, so it is only for a finite number of small fs that all words of length i

could be forbidden.

Having finished the simulation of Mf « on 0' for /
,og

' steps, we generate the

selected word, if there is one, obtaining us a new set Bi+ 1
of generated words. We

are now ready to repeat the process for MfVi 1 on 0,+ 1
.
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Next we define a language L that is in Jf@B — 0>B
. Let

L = {0'
|
B has a word of length i}.

We may easily construct a linear time NTM with oracle B that, given input 0',

nondeterministically guesses string w of length i in (0 + 1)* and queries its oracle

about w, accepting if the oracle says "yes." Thus L is in jV&b
.

Suppose L is in 0>B
. Let Ml accept L, where MB

is a deterministic polynomial

p(n) time-bounded TM with oracle B. As each TM has arbitrarily long codes, we
may pick k such that k > 32 and k

]ogk > p(k). IfMB
accepts 0\ then 0* is in L, so £

has a word of length k. That means k rejects 0*. But Mf and Mfk must behave

identically on input 0\ since B and £
fc
agree on words shorter than k, and B has no

word of length k or more that is queried by M Bk on 0*. Thus Mf rejects 0*, a

contradiction.

IfM B
rejects 0\ so 0* is not in L, then MBk cannot reject 0* within k

logk
steps.

This follows since k > 32, and had Mf fc rejected 0* within /c
Iog * steps, there would

still be a word of length k not on the forbidden list, and that word would be in B.

Thus 0* would be in L. Hence MB does not reject 0k
within k

]ogk
steps. But as

k
]ogk > p(/c), MB does not reject 0

k
at all, another contradiction. We conclude that

L is in J - eP
B

.

Significance of oracle results

Let us consider the ways used in this book to show two language classes to be the

same or different, and see why Theorems 13.17 and 13.18 suggest that these

methods will fail to resolve the ,

Jf = .YiP question. We showed certain classes to

be the same by simulation. For example, Chapter 7 contains many simulations of

one type ofTM by another. Chapter 5 contained simulations of PDA's by CFG's

and conversely.

Suppose we could simulate arbitrary polynomial time-bounded NTM's by

polynomial time-bounded DTIvTs. (Note that giving a polynomial-time algorithm

for any one NP-complete problem is in effect a polynomial-time simulation of all

NTM's.) It is likely that the simulation would still be valid if we attached the same

oracle to each TM. For example, all the simulations of Chapter 7 are still valid if

we use oracle TM's. But then we would have tf
B = J d?

B
, which was just shown to

be false.

Other classes of languages were shown unequal by diagonalization. The hier-

archy theorems, Theorems 12.8 and 12.9, and the proof that 1^ is an r.e. set but not

a recursive set are prime examples. Diagonalizations also tend to work when

oracles are attached, at least in the three examples cited above. If we could

c|jagonalize over & to show a language to be in Jf& — &>, then the same proof

might well work to show Jr#A — &A ± 0. This would violate Theorem 13.17.

We also used translation lemmas to refine time and space hierarchies in

Chapter 12. Could these help show & + oY&l Probably not, because the transla-

tion lemmas also hold when oracles are attached.
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Lastly, we can use closure properties to show a difference between two lan-

guage classes. For example, the DCFL's are contained in the CFL's, but the

DCFL's are closed under complementation and the CFL's are not. This proves that

there is a CFL that is not a DCFL. Could we find a closure property of& that is not

shared by Jf&l This at first appears the most promising approach. While proofs

that 0> is closed under an operation are likely to show also that &A
is closed under

that operation, a nonclosure result for Jf@> might not carry over to Jf&A
. On the

other hand, showing Jf0> not closed under an operation involves showing a

particular language not to be in JT0>. This proof might be accomplished by

diagonalization, but then it would likely carry over to Jf£PA . It might be done by

developing a pumping lemma for JfgP, but this seems well beyond present capabi-

lity. Finally, we might develop some ad hoc argument, but again, no such argu-

ments have been found, and they appear very difficult.

EXERCISES

13.1 Suppose there is a 2" time-bounded reduction of Li to L 2 , and L2 is in DTIME(2n
).

What can we conclude about L x
?

13.2 Which of the following Boolean formulas are satisfiable.

a) X! ax 3 a(x 2 vx 3 )

*h) A (xi.vXjjVxjA A vxl2 vxi3 )

i|.l2.«J i|.«2.»J

where (i'i, i 2 , 13) ranges over all triples of three distinct integers between 1 and 5.

13.3 A clique in a graph G is a subgraph of G that is complete; i.e., each pair of vertices is

connected by an edge. The clique problem is to determine if a given graph G contains a

clique of given size k.

a) Formulate the clique problem as a language recognition problem.

b) Prove that the clique problem is AfP-complete by reducing the vertex cover problem to

the clique problem.

[Hint: Consider a graph G and its complement graph G, where G has an edge if and only if

G does not have that edge.]

13.4 Given a graph G and integer k, the clique cover problem is to determine if there exist

k cliques in G such that each vertex of G is in at least one of the k cliques. Prove that the

clique cover problem is /VP-complete by reducing the vertex cover problem to the vertex

cover problem for graphs without triangles, thence to the clique cover problem. [Him:

Consider graphs G = (V, E) and

G' = (£, {(e u e 2 )\e x , e 2 are incident upon the same vertex in G})].

13.5 Does the graph of Fig. 13.7

a) have a Hamilton circuit?

b) a vertex cover of size 10?

c) a vertex coloring with 2 colors such that no two adjacent vertices are the same color?

13.6 Prove that the chromatic number problem is /VP-complete by reducing the 3-CNF
satisfiability problem to the chromatic number problem. [Hint: The graph in Fig. 13.8 can
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Fig. 13.7 An undirected graph.

(:0 (b)

V = \v
r
xr v

;

I
!</<//

/•- = {(>',. I / ^/} U {( Vf .
v

;
) | 1 < /< //} u <r

;
.
v

;
),

(r
r

v
y

) I / +r

Fig. 13.8 Graph used to show chromatic number problem /VP-complete, (a) Complete

graph on n vertices; (b) x, and x, are connected to all v
}
for which i ^ j.

be used as a subgraph in your construction. Note that each v, must be colored with a

distinct color, say color /. The entire graph can be colored with n + 1 colors if and only if

for each /, 1 < i < n, one of x
£
and ic, is colored with color /' and the other is colored with

color n + 1.]

13.7 Show that the following problems are MP-complete.

a) Given a graph G, with integer distances on the edges, and two integers/and d, is there a

way to select / vertices of G on which to locate "firehouses," so that no vertex is at

distance more than d from a firehouse?
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**b) The one-register code generation problem. Suppose we have a computer with one reg-

ister and instructions

LOAD m bring the value in memory location m to the register

STORE m store the value of the register in memory location m
OP m apply OP, which may be any binary operator, with the register as left

argument and location m as right argument; leave the result in the

register.

Given an arithmetic expression, each of whose operands denotes a memory location

and given a constant /c, is there a program that evaluates the expression in k or fewer

instructions?

**c) The unit execution time scheduling problem. Given a set of tasks Tu ...,Tky a number of

processors p, a time limit r, and a set of constraints of the form 7] < 7}, meaning that task

Ti must be processed before 7}, does there exist a schedule, that is, an assignment of at

most one task to any processor at any time unit, so that if 7] < 7} is a constraint, then 7j

is assigned an earlier time unit than 7}, and within t time units each task has been

assigned a processor for one time unit?

**d) The exact cover problem. Given a set S and a set of subsets S U S 2 , .
. , Sk of 5, is there a

subset T ^ {Si, S 2 , Sk} so that each x in S is in exactly one 5,- in 7?

13.8 The spanning tree problem. Determine whether a tree T is isomorphic to some

spanning tree of G.

a) Give a log-space reduction of the Hamilton circuit problem to the spanning tree

problem.

*b) Give a direct log-space reduction of 3-CNF satisfiability to the spanning tree problem.

13.9

a) An n-dimensional grid is a graph G = (V, E) where

^ = {(«i. «2, •••,'„)! 1 <ij<mj, 1 <j <n}

and E = {(v u v 2 ) \

v
x
and v 2 differ in only one coordinate, and the difference in v Y

and v 2

in that coordinate is one}. For what values ofm
}
and n does G have a Hamilton circuit?

*b) Let G be a graph whose vertices are the squares of an 8 x 8 chess board and whose

edges are the legal moves of the knight. Find a Hamilton circuit in G.

*1 3.10 Prove that the Hamilton circuit problem is /VP-complete even when restricted to

planar graphs. [Hint: First show that the Hamilton circuit problem is /VP-complete for

planar graphs with "constraints," by reducing L3i,a , to it. In particular, consider the class of

planar graphs with constraint arrows connecting certain pairs of edges. Constraint arrows

are allowed to cross each other but cannot cross edges of the graph. Show that the existence

of Hamilton circuits that use exactly one edge from each pair of constrained edges is

/VP-complete. Then replace the constraint arrows one by one by graph edges by the

substitution of Fig. 13.9(a). In the process, a constraint arrow may cross a graph edge but

only if the graph edge must be present in any Hamilton circuit. These crossings can be

removed by the substitution of Fig. 13.9(b). The graph of Fig. 13.10 may be helpful in the

first step of the hint to represent a clause x + y + z]

*13.1 1 A graph is 4-connected if removal of any three vertices and the incident edges leaves

the graph connected. Prove that the Hamilton circuit problem is NP-complete even for

4-connected graphs. [Hint: Construct a subgraph with four distinguished vertices that can

replace a vertex in an arbitrary graph G so that even if additional edges are added from the
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Fig. 13.10 Graph used in the construction of Exercise 13.10.

four distinguished vertices to other vertices of G, the resulting graph will have a Hamilton

circuit if and only if G did.]

13.12 Prove that the problem of determining whether a set of linear equations Ax = b has

a solution with k components of x equal to zero is /VP-complete. [Hint: If the x
f
are

constrained to 0 or 1, then an inequality of the form x, + x 2 + x 3 > 1 can be replaced by

an equation of the form y + x, + x 2 + x 3 = 4, provided y is constrained to be 1, 2, or 3.

The system of equations y + z
Y + z 2 = 3, y = z 3 + z4 , and z

t
+ z,= 1, 1 < i < 4, has no

solution with more than four variables zero and has a solution with exactly four variables

zero if and only if y = 1, 2, or 3.]

*13.13 A kernel of a directed graph is a set of vertices such that

1) there is no arc from a vertex in the kernel to another vertex in the kernel, and

2) every vertex is either in the kernel or has an arc into it from the kernel.

Prove that determining whether a directed graph has a kernel is /VP-complete. [Hint:

Observe that a cycle of length two or three may have only one vertex in a kernel.]

13.14 Prove that the traveling salesman problem is /VP-complete.

**13.15 Consider approximations to the traveling salesman problem. Show that the exist-

ence of a polynomial-time algorithm that produces a tour within twice the cost of the

optimal tour would imply & = .A y/.

*S13.16 Consider the traveling salesman problem where the distances satisfy the triangle

inequality, that is

d(v u i;3 ) < d(v u v 2 ) + d(v 2 ,
v^).

Give a polynomial-time algorithm to find a tour that is within twice the cost of the optimal

tour.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/


EXERCISES 369

*13.17 Suppose there exists a polynomial-time algorithm for finding a clique in a graph

that is of size at least one-half the size of the maximal clique.

a) Prove that there would exist a polynomial-time algorithm for finding a clique which is

of size at least l/y/2 times the size of the maximal clique. [Hint: Consider replacing

each vertex of a graph by a copy of the graph.]

b) Prove that for any k < 1 there would exist a polynomial-time algorithm for finding a

clique which is of size at least k times the size of the maximal clique.

13.18 Prove that it is NP-complete to determine whether the chromatic number of a

graph is less than or equal to 3. [Hint: The graph of Fig. 13.1 1 can be used as a weak form of

an OR gate when only three colors are available, in the sense that the output can be colored

"true" if and only if at least one input is colored "true."]

*13.19 For n > 6, let G„ = (K„, £„) be the graph where

K = {('\ h k)
1 1, j, k are distinct elements of {1, 2, . . ., n}},

En
= {(«, v)\u and v are disjoint triples}.

a) Let Xm(G) be the minimum number of colors needed to assign m distinct colors to each

vertex of G so that no two adjacent vertices have a color in common. Prove for n > 6

that X 3 (Gn ) = n and XA(Gn ) = 2/7-4.

b) Suppose there were a polynomial-time algorithm to color a graph G with at most twice

the minimum number of colors needed. Then prove that & = . \ [Hint: Combine

part (a) with Exercise 13.18.]

*13.20 Construct an algorithm for finding a Hamilton circuit in a graph that under the

assumption that // = . \ will find a Hamilton circuit in polynomial time whenever such a

circuit exists. If no Hamilton circuit exists, the algorithm need not run in polynomial time.

Note it is not sufficient to design a nondeterministic algorithm and then use the hypothesis

— . I to claim that there is a deterministic polynomial-time algorithm. You must

actually exhibit the potentially deterministic polynomial-time algorithm.

*13.21 If =/= . I prove it is undecidable for L in . S j> whether L is in //.

*13.22 Prove that the existence of an /VP-complete subset of 0* implies & = . t

'

*13.23 An integer n is composite if and only if there exists an a, 1 < a < n, such that either

1) cT~
1

=/= 1 mod «, or

2) there exist integers b and i where n — 1 = 2'b and a
b and n have a common divisor.

If n is composite, at least one-half of the integers between 1 and n satisfy (1) or (2). Give a

randomized algorithm that with high probability will determine whether a number is prime

in polynomial time.

Fig. 13.11 Graph used in Exercise 13.18.
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*13.24 Suppose there exists a function / mapping integers of length k onto integers of

length k such that

1) / is computable in polynomial time;

2) f~
l

is not computable in polynomial time.

Prove that this would imply

A = {(x, y>| /"'(*) < y} is in n Co-.V ^) - #

13.25 Show that the following problems are PSPACE-complete.

a) Does a given regular expression (with only the usual operators \ + , and *) define all

strings over its alphabet? [Hint: The proof parallels Theorem 13.14.]

Sb) The Shannon switching game. Given a graph G with two distinguished vertices s and r,

suppose there are two players SHORT and CUT. Alternately, with SHORT first, the

players select vertices of G other than s and t. SHORT wins by selecting vertices that,

with 5 and r, form a path from s to t. CUT wins if SHORT cannot make such a path.

Can SHORT force a win on G no matter what CUT does?

*13.26 Show that if PSPACE + >.
Jf, then there exists a proof by diagonalization. That is,

there is an enumeration L u L 2 , ... of ^, and a computable function /from integers to

strings and a set L in PSPACE such that for each i,/(i) is in L if and only if/(i) is not in Lh

13.27 Give a polynomial-time algorithm for converting a quantified Boolean formula to

prenex normal form Q, X { Q 2 X 2
•• Q k X k(E), where £ is a Boolean expression in 3-CNF.

*13.28 Can any QBF be converted in polynomial time to an equivalent formula with at

most ten distinct variables?

13.29 Show that the following problems are complete for .
Jf with respect to log-space

reductions.

a) Is x in L(G) for string x and CFG G?
**b) The circuit value problem. Encode a circuit as a sequence C,, C 2y . •

. , C„, where each C,

is a variable x l7 x 2 , . . . or a
(_/,

k) or with j and k less than i. Given an encoding of

a circuit and an assignment of true and false to the variables, is the output of the circuit

true?

*13.30 Show that the following problems are complete for NSPACE(log n) with respect to

log-space reductions.

a) Is a Boolean expression in 2-CNF not satisfiable?

b) Is a directed graph strongly connected?

c) Is L(G) infinite for CFG G without (-productions or useless nonterminals?

*13.31 Given CFG's G
x
and G 2 and integer k, show that the problem of determining

whether there are words w, in L(G
t ) and w 2 in L(G 2 ) that agree on the first k symbols, is

complete for nondeterministic exponential time with respect to polynomial-time

reductions.

*13.32 Show that the problem of determining whether a regular expression with the inter-

section operator permitted denotes all strings in its alphabet requires time 2
C% " i.o., for some

c > 0 and can be solved in time 2
dn

.

13.33

a) Write a formula in the theory of integers under addition expressing that every integer

greater than 5 is the sum of three distinct positive integers.
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b) Write a formula in number theory expressing that d is the greatest common divisor of a

and b.

**c) Write a formula in number theory expressing that z = xy
.

13.34 Apply the decision procedure of Section 13.6 for the theory of reals to decide

whether the formula

3y 3x[(x + y = 14) a (3x + y = 5)] is true.

*13.35

a) Show that the theory of Presburger arithmetic (the integers with +, =, and <)
requires nondeterministic time 2

2c
"

i.o., for some c > 0. [Hint: Develop the following

formulas of size proportional to n:

1) Rn(x, y, z): 0 < y < 2 2
", and z is the residue of x mod y.

2) P„(x): 0 < x < 2
2
", and x is a prime.

3) G„(x): x is the smallest integer divisible by all primes less than 2
2".

4) M„(x, y, z): x, y, and z are integers in the range 0 to 2
22" — 1, and xy = z.]

b) Show that Presburger arithmetic can be decided in 2
2" space and 2

22
time.

c) Use the algorithm of part (b) to decide

3y 3x[(x+y = 14) a (3x + y = 5)].

*13.36 Extend Presburger arithmetic to allow quantification over arrays of integers. Thus

we could write formulas such as

Vi4 Vn 3B Vi[—1( 1 < i < n) v [3/( 1 < j < n) a /4(f) = £(;)]].

Prove that the theory of Presburger arithmetic with arrays is undecidable.

*13.37 To show that number theory is undecidable, it is convenient to encode a sequence

of length n + 1, x0 ,
x l5 xn , into an integer x such that each x, can be obtained from

x by a formula.

a) Let m = max {«, x0 ,
x l5 . .

. , x„J. Prove that the set of u
(
= 1 + (i + l)w !, 0 < i < n, are

pairwise relatively prime and that u, > x,. This implies that there exists an integer

b < u0 u x
• • u„ such that b = x, mod u iy

0 < i < n.

b) Express Godel's P function

P(b, c, 0 = b mod [1 + (i + l)c]

as a predicate.

c) Prove that number theory is undecidable.

*13.38 Show that there are oracles C, D, and £, for which

a) S/
c

, . i '^S and co- \ are all different.

b) //
D + . 1 y/

D but .4 = Co-. I

c) ^£ = . I is independent of the axioms of number theory.

*13.39 Show that & = Jf't? if and only if & is an AFL.

Solutions to Selected Exercises

13.16 Construct a minimum cost spanning tree by sorting the edges by increasing cost,

selecting edges starting with the lowest cost edge, and discarding any edge that forms a

cycle. Let Topt be the minimum cost of a Hamilton circuit and let 7^ be the cost of the
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minimum cost spanning tree. Clearly 7^ < Topt , since a spanning tree can be obtained from

a Hamilton circuit by deleting an edge. Construct a path through all vertices of the graph

by traversing the spanning tree. The path is not a Hamilton circuit, since each edge of the

spanning tree is traversed twice. The cost of this path is at most 2TS <2Topt . Traverse

the path until encountering some edge e x leading to a vertex for the second time. Let e 2 be

the edge immediately following e t
on the path. Replace the portion of the path consisting of

ex and e 2 by a single direct edge. By the triangle inequality this cannot increase the cost.

Repeat the process of replacing pairs of edges by a single edge until a Hamilton circuit is

obtained.

13.25b First we show that the Shannon switching game is in PSPACE. Consider a game

tree. The root indicates the initial game position. Assume SHORT moves first. The sons of

the root correspond to each possible game position after a move of SHORT. In general, a

vertex in the tree corresponds to the moves so far (which determine a game position) and

the sons of the vertex correspond to the board position after each possible additional move.

A position is a winning position if SHORT has a forced win from the position. Thus a

leaf is a winning position only if SHORT has a path from s to t. We can recursively define

winning positions as follows. If vertex v is not a leaf and corresponds to a position in which

it is SHORT's move, then v is a winning position if there exists a son that is a winning

position. If it is CUTs move, then v is a winning position only if every son is a winning

position. Since the tree has depth at most n, the number of vertices of G, a recursive

algorithm to determine if the root is a winning position requires space at most n. Thus the

problem is in PSPACE.

To show that the Shannon switching game is PSPACE-complete, we reduce the

quantified Boolean formula problem to it. Consider a quantified Boolean formula and

without loss of generality assume that the quantifiers alternate (otherwise add dummy
quantifiers and variables)

3xi Vx 2 3x 3
••• Vx„_i 3xn F(xi • x„).

Consider the graph, called a ladder, shown in Fig. 13.12, where n = 3. There will be

additional edges (see dashed lines) but they are unimportant for the first observation.

SHORT plays first. He must at some time select either x,(l) or x,(l). This corresponds to

SHORT selecting a value for the existentially quantified variable x,. The next four moves

are forced, ending up with SHORT having selected x,(l), x,(2), and 3xj and CUT having

selected x,(l)and x 2 (2), or SHORT having selected x,(l), .^(2), and 3x x and CUT having

selected x,(l) and x 2 (2). If SHORT does not select one of x,(l), x^l), x 1 (2),x 1 (2), or 3x u

then CUT wins. If SHORT selects 3x,, then CUT is given the advantage in selecting Xi(l)

or xj(l). The purpose of the vertex 3x t is to consume an additional move of SHORT,
thereby allowing CUT the first selection from the set {x 2 (l), x 2 (l), x 2 (2), x 2 (2)}. This means

that CUT selects the value for the universally quantified variable x 2 , and so on.

Once the values for x l5 x 2 , . . ., x„ have been selected, the dashed portion of the graph,

which corresponds to the quantifier-free portion of the formulas, comes into play. Without

loss of generality we can assume that F(x u x„) is in conjunctive normal form. Let

F = F,aF 2 a
,,, a Fn , where each F, is a clause. Construct the tree of Fig. 13.13. Identify

the root 1 with vertex 3x„ in Fig. 13.12. From vertex F, add an edge to vertex xj( 1 ) or x,( 1 ) if

Xj or Xj, respectively, appears in F,. Now observe that SHORT selects vertex 1. CUT can

select either F
Y
or 2, and SHORT selects the other. Clearly SHORT can build a path to at
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least one Fn and CUT can force SHORT to reach only one F, and can determine which F
f
.

Now SHORT has a path from s to f if F, is connected to some or x,(l) which "has

value one"; that is, SHORT has selected Xj(l) or x,(l).

Observe that if the quantified formula is true, then SHORT can specify the existentially

quantified variables, so that regardless of CUTs choices for the universally quantified

variables, F is true. Thus regardless of which F, is forced on SHORT, that F, is true and

hence connected to a selected x
}
or xj. Hence SHORT can win.

On the other hand, if the quantified Boolean formula is false, CUT can select the

universally quantified variables so that for the assignment to the x's, F is false. Then CUT
forces SHORT to reach only one F„ and in particular an F, that is false for the assignment.

Thus SHORT does not complete a path, and CUT wins. Thus SHORT is guaranteed a win

if and only if the quantified Boolean formula is true, and hence the Shannon switching

game on vertices is complete for PSPACE.

BIBLIOGRAPHIC NOTES

Cobham [1964] was the first to devote attention to the class The first NP-complete

problems, including the versions of the satisfiability problems in Theorems 13.1, 13.2, and

13.3, were introduced by Cook [1971b]. Karp [1972] gave a wide variety of NP-complete

problems, and clearly demonstrated the importance of the idea. Some of these problems

include the vertex cover problem (Theorem 13.4), the clique cover problem (Exercise 13.4),

the exact cover problem (Exercise 13.7d), the chromatic number problem (Exercise 13.6),

the Hamilton circuit (Theorem 13.6), and the traveling salesman and partition problems

mentioned in Section 13.2. The clique problem (Exercise 13.3) is from Cook [1971].

Theorem 13.7, the /VP-completeness of integer linear programming, is independently due to

Gathen and Sieveking [1976] and Borosh and Treybig [1976]. The proof given is from

Kannan and Monma [1978].

An enormous number of problems have since been shown /VP-complete, and those

problems come from a wide variety of areas. Garey and Johnson [1978] attempt to catalog

such problems, and we shall here mention only a sample of the work that has been done

and the areas that have been covered. Sethi [1975], and Bruno and Sethi [1976] cover code

generation problems (Exercise 13.7b appears in the latter). Scheduling problems are con-

sidered in Coffman [1976] and Ullman [1975]; the solution to Exercise 13.7(c) can be found

in both. Garey, Johnson, and Stockmeyer [1976], and Garey, Graham, and Johnson [1976]

provide a variety of powerful results, principally for graph problems. Papadimitriou [1976]

and Papadimitriou and Steiglitz [1977] study path problems in graphs. Exercise 13.18 is

taken from Stockmeyer [1973], Exercise 13.10 from Garey, Johnson, and Tarjan [1976], and

Exercise 13.12 is by J. E. Hopcroft.

A number of results showing large classes of NP-complete problems appear in Hunt

and Szymanski [1976], Hunt and Rosenkrantz [1977], Kirkpatrick and Hell [1978], Lewis

[1978], Schaefer [1978], and Yannakakis [1978].

Among the promising approaches to dealing with NP-complete problems is the idea of

considering approximate algorithms to the optimization versions of problems. These algo-

rithms run in polynomial time but are guaranteed to come only within some specified range

of the optimum. Johnson [1974] considered approximation algorithms for some of the
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NP-complete problems appearing in Karp [1972]. Sahni and Gonzalez [1976] were the first

to prove the approximation to an NP-complete problem to be NP-complete itself (Exercise

13.15), while Garey and Johnson [1976] showed that coming within less than a factor of two

of the chromatic number of a graph (number of "colors" needed to ensure that each vertex

be colored differently from adjacent vertices) is /VP-complete (Exercise 13.19). Exercise

13.17 on improving an approximation to a maximal clique is also from Garey and Johnson

[1976]. Rosenkrantz, Stearns, and Lewis [1977] studied approximations to the traveling

salesman problem (Exercise 13.16). Christofides [1976] has improved on their results.

A number of papers have attempted to explore the structure of. \"iJf on the hypothesis

that & , Ladner [1975a] shows, for example, that if& ± A y/, then there are prob-

lems that are neither in & nor TVP-complete. Adleman and Manders [1977] show that

certain problems have the property that they are in & if and only if. V& = co- t Book

[1974, 1976] shows inequality among certain complexity classes, such as DTIMEf/i*) or

DSPACEflog* n\ Exercise 13.39, relating sJ> = . \ J> to AFL theory, is from Book [1970].

Berman and Hartmanis [1977] look at density-preserving reductions of one problem to

another. Exercise 13.22 is from Berman [1978], and Exercise 13.20 is from Levin [1973].

Particular attention has been given to the complexity of recognizing primes. It is easy

to show that the nonprimes (written in binary) are in .Y'f?
t
but it was not known that the

primes are in . V'd? until Pratt [1975]. Thus, if the recognition of primes is NP-complete,

then by Theorem 13.8, co-. \

'// = . \ //. Miller [1976] gives strong evidence that the recog-

nition of primes written in binary is in //>. Exercise 13.23, which shows an efficient test

determining primality with high probability, is from Rabin [1977]. A similar result is found

in Solovay and Strassen [1977]. Exercise 13.24 is from Brassard, Fortune, and Hopcroft

[1978].

The first PSPACE-complete problems were introduced by Karp [1972], including CSL
recognition (Theorem 13.11) and

kk = I*" for regular expressions (Exercise 13.25a).

PSPACE-completeness of quantified Boolean formulas was shown by Stockmeyer [1974].

Exercise 13.25(b), PSPACE completeness of the Shannon switching game, is by Even and

Tarjan [1976], Stockmeyer [1978] gives a hierarchy of problems between . \ \Jf and

PSPACE, on the assumption that . \ /J> + PSPACE.
Problems complete for .

J/ with respect to logarithmic space reductions have been con-

sidered by Cook [1973b], Cook and Sethi [1976], Jones [1975], Jones and Laaser [1976]

(including Theorem 13.12) and Ladner [1975b] (Exercise 13.29b). Problems complete for

NSPACE(log n) with respect to log space reductions are considered in Savitch [1970],

including Theorem 13.13 (on reachability), Sudborough [1975a,b], Springsteel [1976], and

Jones, Lien, and Laaser [1976]. Exercise 13.30 is from Jones, Lien, and Laaser [1976].

The first problem proved to require exponential time (in fact, exponential space) was

presented by Meyer and Stockmeyer [1973]. The problem is similar in spirit to that of

Theorem 13.15. The lower bounds on the complexity of the theory of reals with addition

(Theorem 13.16) and of Presburger arithmetic (Exercise 13.35) are from Fischer and Rabin

[1974]. The upper bounds for these problems are from Cooper [1972], Ferrante, and Rack-

off [1975], and Oppen [1973]. Berman [1977]; and Bruss and Meyer [1978] put what are, in

a sense, more precise bounds (outside the usual time-space hierarchies) on these problems.

The undecidability of Presburger arithmetic with arrays is from Suzuki and Jefferson

[1977].

The literature contains a number of papers that deal with the complexity of a variety of

problems and their special cases, dividing problems into groups, principally: polynomial,
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/VP-complete, PSPACE-complete, and provably exponential. A sample of the areas

covered include Diophantine equations in Adleman and Manders [1976], asynchronous

computation in Cardoza, Lipton, and Meyer [1976], problems about regular expressions in

Hunt [1975] (including Exercise 13.32), Hunt, Rosenkrantz, and Szymanski [1976], and

Stockmeyer and Meyer [1973], problems about context-free grammars in Hunt and

Rosenkrantz [1974, 1977], Hunt and Szymanski [1975, 1976], and Hunt, Szymanski,

and Ullman [1975] (including Exercise 13.31), and game theory in Schaefer [1976].

The results of Section 13.7 and Exercise 13.38, on the & = jV0> question in the

presence of oracles, are from Baker, Gill, and Solovay [1975]. However, Kozen [1978]

presents another viewpoint on the issue. Exercise 13.26 is from there. Ladner, Lynch, and

Selman [1974] studied the different kinds of bounded reducibility, such as many-one,

Turing, and truth tables. Another attack on the & = JfgP question has been the develop-

ment of models whose deterministic and nondeterministic time-bounded versions are

equivalent. The vector machines (Pratt and Stockmeyer [1976]) are the first, and other

models have been proposed by Chandra and Stockmeyer [1976] and Kozen [1976]. The

reader should also note the equivalence for space-bounded versions of the "auxiliary

PDA's" discussed in Section 14.1.
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CHAPTER

14
HIGHLIGHTS OF

OTHER IMPORTANT
LANGUAGE CLASSES

Numerous models and classes oflanguages have been introduced in the literature.

This chapter presents a few of those that appear to be of greatest interest.

Section 14.1 discusses auxiliary pushdown automata, which are PDA's with

two-way input and additional general purpose storage in the form of a space-

bounded Turing tape. The interesting property of auxiliary PDA's is that for a

fixed amount of extra storage, the deterministic and nondeterministic versions are

equivalent in language-recognizing power, and the class of languages accepted by

auxiliary PDA's with a given space bound is equivalent to the class of languages

accepted by Turing machines of time complexity exponential in that space bound.

Section 14.2 is concerned with stack automata, which are PDA's with the

privilege of scanning the stack below the top symbol, but only in a read-only

mode. Languages accepted by variants of the two-way stack automaton turn out

to be time- or space-complexity classes.

Section 14.3 is devoted to indexed languages, since they arise in a number of

contexts and appear to be a natural generalization of the CFL's. Finally, Section

14.4 introduces developmental systems, which attempt to model certain biological

patterns of growth.

14.1 AUXILIARY PUSHDOWN AUTOMATA

An S(n) auxiliary pushdown automaton (APDA) is pictured in Fig. 14.1. It consists

of

1) a read-only input tape, surrounded by the endmarkers, $ and $,

2) a finite state control,

377
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Read -only

input tape

Finite

control

1 1

Stack

Fig. 14.1 Auxiliary PDA.

3) a read-write storage tape of length S(n\ where n is the length of the input

string w, and

4) a stack.

A move of the APDA is determined by the state of the finite control, along

with the symbols scanned by the input, storage, and stack heads. In one move, the

APDA may do any or all of the following:

1) change state,

2) move its input head one position left or right, but not off the input,

3) print a symbol on the cell scanned by the storage head and move that head

one position left or right,

4) push a symbol onto the stack or pop the top symbol off the stack.

If the device is nondeterministic, it has a finite number of choices of the above

type. Initially the tape heads are at the left end of the input and storage tapes, with

the finite control in a designated initial state and the stack consisting of a

designated start symbol. Acceptance is by empty stack.

Equivalence of deterministic and nondeterministic APDA's

The interest in APDA's originates from the discovery that deterministic and non-

deterministic APDA's with the same space bound are equivalent, and that S(n)

space on an APDA is equivalent to cS{n) time on a Turing machine. That is, the

following three statements are equivalent.

1) L is accepted by a deterministic S(n)-APDA.

2) L is accepted by a nondeterministic S(n)-APDA.

3) L is in DTIME(rS( " )

) for some constant c.

These facts are established in the following series of lemmas.
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Lemma 14.1 If L is accepted by a nondeterministic 5(«)-APDA A with S(n) >
log n, then L is in DTIME(cS(n)

) for some constant c.

Proof Let A have 5 states, t storage symbols, and p stack symbols. Given an input

of length n, there are n + 2 possible input head positions, 5 possible states, S(n)

possible storage head positions, and t
S(n)

possible storage tape contents, for a total

of

s(n) = (n + 2)sS(n)t
S{n)

possible configurations^ As S(n) > log n, there is a constant d such that

s(n) < dSin) for all n > 1.

Construct a TM M that performs the following operations on input w of

length n.

1) M constructs a PDA Pw that on £-input simulates all moves of A on input w.

2) M converts Pw to a CFG Gw by the algorithm of Theorem 5.4.

For fixed A, Pw is a different PDA for each w, with the state and contents of

input and storage tapes of A encoded in the state of Pw .
N(PW ) is {e} or 4> depend-

ing on whether or not A accepts w.

Pw has at most s(n) < dS(n)
states and p stack symbols. Therefore Gw has

at most pd 2S(n) + 1 variables. As A can push only one symbol, no right side of a

production of Gw has more than two variables, so there are at most rd
S{n) produc-

tions for any nonterminal of Gw , where r is the maximum number of choices that

A has in any situation. Thus the test of Theorem 6.6, to tell whether L(GW ) is

empty, takes time proportional to rp
2d5S{n

\ at most. Since r, p, and d are constants,

there is a constant c such that M can determine in time at most rS(n) whether L(GW )

is nonempty, i.e., whether w is accepted by A.

Lemma 14.2 If L is in DTIME(T(rc)), then L is accepted in time T*(n) by a

one-tape TM M that traverses its tape, making a complete scan in one direction,

reaching the first cell it has never before scanned, reversing direction and repeat-

ing the process, as shown in Fig. 14.2.

Fig. 14.2 Traversal pattern of TM M.

t Note that a "configuration" in the sense used here does not include the stack contents.
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Proof By Theorems 12.3 and 12.5, L is accepted by a \T2
(n) time-bounded

one-tape TM M
X
.M simulatesM l9 marking on a second track M^s head position

and the cells which M
l
has already scanned. As long as the head ofM

x
travels in

the same direction as M's head, M can simulate a move ofM
t
with each of its own

moves. When M
x
moves in the opposite direction, M leaves the head marker,

completes its scan and simulates that move on the return pass. Thus M simulates

at least one move ofM
x
per pass, taking at most £}L/

o
)r2(" ) n + i < ^(n) moves to

complete the simulation ofM v

Lemma 14.3 If L is in DTIME(cS(n)
) for any constant c, then L is accepted by a

deterministic S(«)-APDA.

Proof By Lemma 14.2, L is accepted by a c
4S(n) time-bounded one-tape TM M

with the traversal pattern of Fig. 14.2. Define d — c
4

so that M is dS{n) time

bounded. Let the triple (q, Z, t) stand for the statement that at time r,i M is in state

q scanning symbol Z, where t < dS(n\ Note that since the head motion ofM is

independent of the data, the cell scanned at time t is easily calculated from t.

The heart of the construction of a deterministic S(n)-APDA A that accepts L
is the recursive procedure TEST of Fig. 14.3, which assigns value true to the triple

(q, Z, t) if and only if

1) t = 0, q is the start state, and Z is the symbol in the first tape cell of M, or

2) M scans some cell for the first time at time r, Z is the original symbol in that

tape cell, and there is a triple (p, Xy t — 1) that is true and implies that M
enters state q after one move, or

3) M previously scanned the cell visited at time t and there are true triples (p l9

X l9 t - 1) and (p2 ,
X 2 , ?) such that the first triple implies that state q is

entered after one move, and the second implies that Z was left on the tape cell

the last time the tape cell was scanned. Recall that the head motion ofM is

uniform, and thus the time t' at which the cell was last visited is easily

calculated from t.

As TEST only calls itself with smaller third arguments, it eventually termin-

ates. The S(n)-APDA A evaluates TEST by keeping the arguments on the storage

tape. When TEST calls itself, A pushes the old arguments onto the stack, and

when TEST returns, A pops them off the stack and puts them on the storage tape.

The complete algorithm that A executes is

for each triple (q, Z, f) such that q is an accepting state

and 0 < t < dS(n) do

if TEST(g, Z, t) then accept

Theorem 14.1 The following are equivalent for s(n) > log n.

1) L is accepted by a deterministic S(m)-APDA.

t "At time f means "after t moves have elapsed," so initially, / = 0.
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procedure TEST(g, Z, r);

begin

if t = 0, q is the initial state of M and Z is the first input symbol then return true;

if 1 < t < n and Z is the fth input symbol, or r = in + i(i — l)/2 for some integer i > 1

and Z = B then

for each state p and symbol X do

if M enters state q when scanning X in state p, and TEST(p, X, t — 1) then return

true;

/* the times in + i(i — l)/2 are exactly the times when M scans a new cell */

if t > n and t j= in + i(i — l)/2 for any integer i > 1 then

begin

let t' be the previous time M scanned the same cell as at time f;

for all states p x
and p 2 and symbols Xi and X 2 do

if M enters state q when scanning X
x
in state p, and M writes Z when scanning

X 2 in state p 2 and TEST(p!, X u t — 1) and TEST(p 2 , X 2 ,
t') then return true

end;

return false

end

Fig. 14.3 The procedure TEST.

2) L is accepted by a nondeterministic 5(n)-APDA.

3) L is in DTIME(clS( " )

) for some constant c.

Proof That (1) implies (2) is obvious. Lemma 14.1 established that (2) implies (3)

and Lemma 14.3 established that (3) implies (1).

Corollary L is in & if and only if L is accepted by a log n-APDA.

14.2 STACK AUTOMATA

The stack automaton (SA) is a PDA with the following two additional features.

1) The input is two-way, read-only with endmarkers.

2) The stack head, in addition to push and pop moves at the top of the stack can

enter the stack in read-only mode, traveling up and down the stack without

rewriting any symbol.

A stack automaton is shown in Fig. 14.4, in read-only mode.

A move of an SA is determined by the state, the input, and stack symbols

scanned, and whether or not the top of the stack is being scanned by the stack

head. In either case, in one move the state may change and the input head may

move one position left or right. If the stack head is not at the top of the stack, a

move may also include a stack head motion, one position up or down the stack. If

the stack head is at the top, the permissible stack actions are:

1) push a symbol onto the stack,
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\v

Ai

Finite

control

Top of stack

Fig. 14.4 A stack automaton.

2) pop the top symbol off the stack, or

3) move one position down the stack without pushing or popping.

In actions (1) and (2) the stack head stays at the top; in action (3) it leaves the top

of stack and enters the read-only mode, which it may leave only by returning to

the top of the stack.

Initially, the input head is at the left end, the finite control is in a designated

initial state, and the stack consists of a single designated start symbol. Acceptance

is by final state.

If there is never more than one move in any situation, the device is deter-

ministic (a DSA); if there is a finite number of choices of moves in any situation,

the automaton is nondeterministic (an NSA). If the device never pops a symbol it

is nonerasing (an NEDSA or NENSA). If the input head never moves left, the

stack automaton is one-way (a 1DSA, 1 NENSA, and so on). In the absence of any

statement to the contrary, we shall assume an SA is two-way, deterministic, and

permits erasing.

Example 14.1 Let L = {0"\
n
2"\n > 1}. We design an SA to accept L as follows.

The input head moves right at each move. While O's are encountered, they are

pushed onto the stack above the bottom marker (start symbol) Z0 . The stack head

remains at the top of stack in read-write mode. Fig. 14.5(a) shows the situation

after reading O's. On seeing the first 1, the stack head moves down, entering the

read-only mode. As successive l's are read, the stack head moves one position

down for each 1 (but if the first 2 is not seen at the same time the stack head

reaches the bottom marker, there is no next move, and the SA does not accept).

The situation in which the SA then finds itself is shown in Fig. 14.5(b). As 2's are

scanned on the input, the stack head moves up one position for each 2. A move to

an accepting state is permissible only when the stack head is at the top and $ is

scanned on the input, as in Fig. 14.5(c). Of course, the state from which this move

can be made is only entered after we have seen 2's, so we cannot accept inputs like

or $00$.

Note that the SA we have described is one-way, deterministic, and noneras-

ing.
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<if 000 1 1 1 2 2 2 $ ^0001 1 1222S ^000111222$

1 r ' r r

:
o 0 0 0 zo 0 0 0 z

o 0 0 0

(a) (b) (c)

Fig. 14.5 ID's of a stack automaton.

Transition tables

In the remainder of the section we give proof sketches for a number of the

fundamental results characterizing the languages accepted by the varieties of SA.

One of the central ideas is the simulation of stack automata by other devices by

means of a transition table, which is a succinct representation of a stack (actually

the stack except for the top symbol). Suppose a deterministic stack automaton is

in state q with the input head at position i and the stack head at the next-to-top

symbol. Then the SA is in read-only mode and the stack cannot change until the

stack head reaches the top. For a particular sequence of stack symbols, the stack

head may never reach the top, or it will first reach there in some state p with input

head in position j. For each q and i the transition table tells whether the stack head

ever moves to the top and if so gives the state p and input head position j when the

top is reached. Thus the transition table completely characterizes the effect of

the sequence of stack symbols below the top, provided acceptance does not occur

when the stack head is inside the stack.

The number of distinct transition tables for an SA with input of length n

(excluding endmarkers) and with s states is thus [s(n + 2) + l]
s(n+2

>. With input

positions encoded in binary, a transition table requires only cn log n bits for some

constant c that depends on the number of states of the given SA.

If the SA is nondeterministic, then for each q and i, the transition table must

give the set of (p, j) pairs such that started in state q, with input position /, and the

stack head at the next-to-top stack symbol, the top of stack can be reached in state

p and input position j. The number of possible transition tables for an s state NSA
with input of length n is [2

s(M+2)+

1

]

s(n+2) < 2C" 2

, so such a transition table can

be encoded in cn
2
bits, where c depends only on the number of states of the NSA.

Characterization of stack languages by time

and space complexity classes

We shall show that a deterministic SA can be simulated by an n log n-APDA and

conversely that an n log m-APDA can be simulated by a DSA establishing the

equivalence of DSA and n log rc-APDA. In a similar manner we establish the
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equivalence of NSA and «
2-APDA. For nonerasing SA we establish the equiv-

alence of NEDSA and DSPACE(n log n) and the equivalence of NENSA and

NSPACE(«2
). A series of lemmas is used.

Lemma 14.4 Each type of stack automaton is equivalent to one of the same type

that accepts only at the top of stack.

Proof We modify a given SA so that in any accepting state it moves its stack

head up the stack until the top is reached.

Lemma 14.5 If L is accepted by an NEDSA, then L is in DSPACE(« log n).

Proof Given an NEDSA A that accepts only at the top of the stack, we construct

a Turing machine M that simulates A by keeping track of ,4's state, input head

position, top stack symbol, and the transition table for the portion of the stack

below the top symbol. The initial transition table is the table associated with the

empty string ("undefined" for all q and i). We need only explain how to construct

the transition table T' associated with the stack string X
1
X 1

••• Xm given the

table 7 for X
X
X 2
• Xm . x

.

For each state q and input position U execute the algorithm of Fig. 14.6. The

algorithm keeps track of the sequence of state-input-position pairs (p, j) in which

Xm is scanned. Each time the stack head moves to Xm „ u T is consulted to

determine the next state-position pair in which Xm will be scanned if any. The

variable COUNT checks that the length of the sequence of (/?, y')'s does not exceed

the product of s, the number of states, and n + 2, the number of input positions. If

so, A is surely in a loop, so that value of T(q y i) is "undefined."

begin

COUNT:- 0;

(M -to*);
while COUNT < s(n + 2) do

begin

COUNT := COUNT 4- 1

suppose A in state p, scanning stack symbol Xm , at input position ; enters

state r, moves the input head to position k and the stack head in direc-

tion D;

if D — "up" then return (r, k);

if D — "stationary" then (p, j) : = (r, k);

if D = "down" then

if T(r, k) = "undefined" then return "undefined"

else (p, ./):= 7(r, k)

end

return "undefined"

end

Fig. 14.6 Algorithm to compute transition table for NEDSA.
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Note that for given (q, i) the algorithm of Fig. 14.6 requires only 0(log n)

space to hold the value of COUNT. Thus T'can be computed from Tand Xm in

the space it takes to store T and T\ which is n log n. The TM M has only to

simulate A directly when the stack head is at the top of the stack, consult the

current transition table when the stack head leaves the top, and compute a new
transition table (throwing away the old) when a stack symbol is pushed. As stack

symbols are never erased, we need not preserve the stack.

Lemma 14.6 If L is accepted by a NENSA, then L is in NSPACE(«2
).

Proof The proof is similar to that of the previous lemma, save that n
2 space is

needed to store the transition matrix, and the simulation must be nondeter-

ministic.

Lemma 14.7 If L is accepted by DSA, then L is accepted by a n log n-APDA.

Proof The proof is again similar to that ofLemma 14.5. The APDA uses its stack

(which it may not enter in read-only mode, of course) to hold the stack of the

DSA. Between each DSA stack symbol the APDA stores a transition table. The

transition table above a particular stack symbol corresponds to the entire stack,

up to and including that symbol. The topmost stack symbol and the table for

the stack below it are placed on the storage tape. When the DSA pushes a symbol,

the APDA pushes the table that is on its storage tape along with the old top stack

symbol onto its own stack, and computes the new table as in Lemma 14.5. When
the DSA pops a symbol, the APDA discards the top stack symbol and then moves

the top table to its storage tape.

Lemma 14.8 If L is accepted by an NSA, then L is accepted by an /7
2-APDA.

Proof The proof is a combination of the ideas introduced in Lemmas 14.6 and

14.7. Note that by Theorem 14.1 the APDA may be made deterministic.

We now turn to the simulation of space-bounded devices by stack automata.

The key idea here is that the SA can use its input of length n to count n symbols or

"blocks" of symbols down its stack. A sequence of ID's representing a computa-

tion of a space-bounded device is constructed on the stack by successively copying

the top ID onto the stack, making changes represented by one move of the

space-bounded device. The ability to count down n symbols or "blocks" of sym-

bols allows the SA to copy the current ID onto the top, symbol by symbol.

As a simple introduction consider the simulation of a deterministic linear

bounded automaton M by an NEDSA A. Given input w = a
x

•• an , A pushes

[q0 ai]a2 "' an^ onto i ts stack, where q0 is the start state and # is a special

symbol separating ID's. The state is combined with the symbol scanned, so an ID
is always exactly n symbols long. Suppose A has constructed a stack that is a

sequence of ID's, including the first i symbols of the next ID:

frX j
X 2 "^n"^"^ 1 ^ 2 ^ i

*
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(Actually one or two of the X's in the ID being constructed may differ from the

corresponding symbols in the ID below, due to the move made by M). Starting at

the left end of the input, A repeatedly moves one position right on the input and

one position down the stack, until the right endmarker is reached on the input. At

this point yfs stack head will be n + 1 symbols from the top of the stack, scanning

X i+ j of the last complete ID. A looks one symbol above and below Xi+ j to see if

Xi+ j
changes in the next ID because of the move made by M. A then moves to the

top of the stack and pushes either Xi+ x
or the symbol replacing X i+ x

in the next

ID due to the move of M. A accepts if and only if M enters an accepting state.

Actually a stack automaton can simulate devices with ID's of length greater

than n by more clever use of the input. In particular, a DSA can manipulate ID's

of length n log n, and an NSA can manipulate ID's of length n
2

. The nondeter-

ministic case is easier, so we present it first.

Lemma 14.9 If L is in NSPACE(n 2
), then L is accepted by a NENSA.

Proof Since n
2

is greater than n we may assume L is accepted by a one-tape TM
rather than an off-line TM. An ID of length n

2
is represented by listing the tape

symbols, combining the state with the symbol scanned by the tape head. A marker

* is inserted after every n symbols. The n symbols between *'s make up a block.

Successive ID's are placed on the stack as in the description of the LBA above.

Suppose j blocks and i symbols of the (j + l)rcth block have been copied. The

input tape is used to measure n *'s down the stack to the (j + l)nth block of the

previous ID. A position k y 1 < k < n, in the (j + l)nth block is guessed. Checking

one symbol above and below determines if the symbol is affected by a move of

the TM. If so, a move is guessed, provided a move for this ID has not been guessed

previously; otherwise the symbol is recorded in the state of the SA. The input tape

is then used to record k by alternately moving the input head one symbol left

(starting at the right end) and the stack head one symbol down until a * is

encountered. Next the stack head moves to the top of the stack and compares k

with i, the number of symbols of the jth block already copied. If A' j= i + 1, this

sequence of choices "dies." If k = i + 1, then the next symbol of the new ID is

placed on top of the stack. The input is then used to determine if i + 1 = n. If so a

* is printed, and then it is checked whether j + 1 = n. In the case j + 1 = n, a # is

placed on the stack marking the end of an ID. Acceptance occurs if the symbol

copied includes a final state. Otherwise the next symbol is copied.

A small but important point is that once a move is guessed in copying an ID,

the guess cannot be changed on copying a subsequent symbol in that ID. Other-

wise an invalid successor ID may be constructed.

Theorem 14.2 The family of languages accepted by nondeterministic, nonerasing

stack automata is exactly NSPACE(n2
).

Proof Immediate from Lemmas 14.6 and 14.9.
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Theorem 14.3 The family of languages accepted by nondeterministic stack auto-

mata is exactly (Jc>0 DTIME(c"
2

).

Proof By Theorem 14.1, L is in (Jc>0 DTIME(c"
2

) if and only if L is accepted by

an rc
2-APDA. By Lemma 14.8, if L is accepted by an NSA then L is accepted by a

deterministic rc
2-APDA. Thus it suffices to show that a deterministic n2-APDA A

can be simulated by an NSA S.

We assume that the input of A is kept on the storage tape ofA rather than on

a read-only input, since n
2
exceeds n. The stack of S will hold the stack ofA as well

as a sequence of ID's representing the storage tape of A. Suppose S has the current

contents of A's storage tape on top of its stack, and A pushes a symbol. S guesses

the tape contents of A when that symbol is popped and places its guess on top of

the stack. Then S pushes the symbol pushed by A and creates the new current tape

contents of A from the old, as in Lemma 14.9. The guessed ID intervening is

ignored while running up and down the stack; its symbols can be chosen from a

separate alphabet, so S can skip over it.

IfA pops a symbol, S checks that the guessed ID below that symbol is correct;

that is, the guessed ID is the storage tape of A after the pop move. The current ID
of A held on top of S's stack is popped one symbol at a time, and each symbol

popped is compared with the corresponding symbol of the guessed ID by a

method similar to that of Lemma 14.9. If the guess is correct, the guessed ID
becomes the current storage tape content of A, and the simulation of A proceeds;

if not, this sequence of choices by S "dies." S accepts if and only if A empties its

stack.

Corollary L is accepted by an NSA if and only if L is accepted by an h
2-APDA.

Proof The "only if" portion was established in Lemma 14.8. The "if" follows

immediately from Theorems 14.1 and 14.3.

In the deterministic case the function n
2

is replaced by n log n in the analogs

of Theorems 14.2 and 14.3. The reason for this is that in the construction of

Lemma 14.9 the NSA made an essential use of its nondeterminism in copying ID's

of length n
1

. A DSA is able only to copy ID's of length n log n.

Lemma 14.10 If L is in DSPACE(rc log n), then L is accepted by an NEDSA.

Proof Let L be accepted by some one-tape TM M that uses exactly n log n cells.

Let t be the number of symbols of the form X or [qX\ where X is a tape symbol

and q a state. These symbols are identified with the digits 1,2, . .
.

, fin base t + 1.

Strings of [\ogt+1 (n)\ such symbols ofM are encoded as blocks of between 0 and

(n — 1) 0's. There is an integer c, depending only on M, such that an ID ofM may

be represented by cn blocks of 0's, each block coding [\ogt+l (n)\ symbols,

provided n > t.

Design a stack automaton S to construct a sequence of ID's of M, each ID
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being a sequence of cn blocks of between 0 and (n — 1) O's separated by markers, *.

Blocks are copied to the top of the stack by using the input to count cn *'s down
the stack, measuring the length of the block to be copied on the input, moving to

the top of stack and pushing an equal number of O's onto the stack.

Before a new block is placed on the stack, it is necessary to determine which, if

any, symbols change. To do so, decode 0* by repeatedly dividing by t -h 1, the

successive remainders being the successive symbols of the ID. The division is

accomplished by measuring k on the input and then moving the input back to the

endmarker, placing an X on the stack for every t 4- 1 positions the input head

moves. The X's are not part of an ID. The finite control computes k mod (t H- 1),

and the resulting digit is placed above the X y

s. The block of X's is then measured

on the input and the process repeated until the block of X's has length zero. The

digits written on the stack between blocks of X's are the desired block of the ID.

S checks whether the head is scanning a symbol in the block and also notes if

the head moves into an adjacent block. The blocks are re-encoded into strings ofO

to (n — 1) O's, making the necessary changes to reflect the move of M. The process

of re-encoding is the reverse of that just described. Note that since S is nonerasing,

it never gets rid of the X y

s or digits on its stack; they are simply ignored in

subsequent computation. Also, before copying a block, S must decode the block

above, to see whether the head of M moves left into the present block.

S initializes its stack by coding its own input as an ID of M. The details of this

process are omitted. S accepts if it discovers that M enters an accepting state.

Theorem 14.4 L is accepted by a deterministic nonerasing stack automaton if

and only if L is in DSPACE(n log n).

Proof From Lemmas 14.5 and 14.10.

Theorem 14.5 L is accepted by a deterministic stack automaton if and only if Lis

m Uoo DTIME(hc
").

Proof Note that n
cn = 2

CM,og By Theorem 14.1, L is in |J C>0 DTIME(rcc
") if and

only if L is accepted by an n log h-APDA. By Lemma 14.7, if L is accepted by a

DSA, then L is accepted by a deterministic n log rc-APDA. Thus it suffices to show

that if L is accepted by a deterministic n log n-APDA A, then L is accepted by a

DSA 5. Again we assume that /Ts input tape is combined with its storage tape.

The proof parallels Theorem 14.3, using the techniques of Lemma 14.10 to repre-

sent storage tapes of A and simulate moves of A. However, when A pushes

a symbol X onto its stack, S, being deterministic, cannot guess the storage tape

contents of A when A eventually pops that X. Instead S cycles through all possible

ID's systematically. If it has made the wrong choice, it generates the next possible

ID and restarts the simulation of A from the time X was pushed by A. The fact

that A empties its stack to accept assures that if A accepts, 5 will eventually get

a chance to generate the correct choice.
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Corollary L is accepted by a DSA if and only if L is accepted by an n log n-

APDA.

Proof The "only if" portion was established in Lemma 14.7. The "if" follows

immediately from Theorems 14.1 and 14.5.

One-way stack automata are not powerful enough to simulate tape-bounded

devices. However, there is one important containment relation, which we state

without proof.

Theorem 14.6 If L is accepted by a 1NSA, then L is in DSPACE(rc).

14.3 INDEXED LANGUAGES

Of the many generalizations of context-free grammars that have been proposed, a

class called "indexed" appears the most natural, in that it arises in a wide variety

of contexts. We give a grammar definition here. Other definitions of the indexed

languages are cited in the bibliographic notes.

An indexed grammar is a 5-tuple (F, T, /, P, S), where V is the set of variables,

T the set of terminals, / the set of indices, Sin Vis the start symbol, and P is a finite

set of productions of the forms

1) A-xx, 2) A-^Bf or 3) Af-* a,

where A and B are in K,/is in /, and a is in (V u 7)*.

Derivations in an indexed grammar are similar to those in a CFG except that

variables may be followed by strings of indices. (Terminals may not be followed by

indices.) When a production such as A BC is applied, the string of indices for A
is attached to both B and C. This feature enables many parts of a sentential form

to be related to each other by sharing a common index string.

Formally, we define the relation => on sentential forms, which are strings in

(VI* u T)*, as follows. Let /? and y be in (VI* u 7)*, 5 be in /*, and X
i
in V u T.

1) If A -> X
x
X 2

••• Xk is a production of type (1) then

PASy^pX.S.X^'-' Xk Sk yy

where = 5 ifX
{
is in Kand 3^ = c ifX

{
is in 7. When a production of type (1)

is applied, the string of indices S distributes over all the variables on the right

side.

2) If A -> B/ is a production of type (2), then fiA5y=> fiBfSy. Here/becomes the

first index on the string following variable B, which replaces A.

3) If Af-+ X x
X 2

•" X k is a production of type (3), then

PAfSy^pX.S.X^---

X

k S k y,

where = 5 if X,- is in V and <>, = c if X, is in T. The first index on the list for

A is consumed, and the remaining indices distribute over variables as in (1).
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390 HIGHLIGHTS OF OTHER IMPORTANT LANGUAGE CLASSES

We let ^> be the reflexive and transitive closure of => as usual, and define L(G)

to be {w
|
S ^> w and w is in T*}.

Example 14.2 Let G = ({5, T, A, B, C}, {a, by c}, {/, P, S), where P consists of

S -* Tg, Af-+ aA, Ag -* a,

T-+Tfi Bf-+bB, Bg^b,

T -> ABC, Cf-+cC, Cg->c.

An example derivation in this indexed grammar is

S^Tg^Tfg^AfgBfgCfg

=> aAgBfgCfg => aaBfgCfg => aabBgCfg

=> aabbCfg => aabbcCg => aabbcc.

In general,

S !> Tf'g => AfgBfgCfg- a
i+

>b
i+l

c
i+ \

As the only freedom in derivations of G consists of trivial variations in order of

replacement and the choice of how many times to apply T -> Tf, it should be clear

that

L(G) = {a
nbnc"\n> 1}.

This language is not context free, of course.

We state without proof two major results about indexed languages.

Theorem 14.7 (a) If L is accepted by a one-way nondeterministic stack automa-

ton, then L is an indexed language, (b) If L is an indexed language, then L is a

context-sensitive language.

In fact, (a) can be strengthened by defining a generalization of an SA, called a

"nested stack automaton," whose one-way nondeterministic variety exactly char-

acterizes the indexed languages. The nested SA has the capability, when the stack

head is inside its stack in read-only mode, to create a new stack. However, this

stack must be destroyed before the stack head can move up in the original stack.

The process of creating new stacks is recursive and allows the creation of new

stacks to an arbitrary depth.

14.4 DEVELOPMENTAL SYSTEMS

The application of grammars to the study of growth in cellular organisms in-

troduced new grammar families called /^systems. These grammar families differ

from the Chomsky grammars in that

1) no distinction between terminals and nonterminals is made, and
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14.4 | DEVELOPMENTAL SYSTEMS 391

2) at each step in a derivation, a production is applied to each symbol of a

sentential form, rather than to just one symbol or a short substring.

The modeling of organisms by {^systems allows the testing of hypotheses concern-

ing the mechanisms behind certain observable biological phenomena. Here we
content ourselves with defining only the most basic family of these grammars,

called OZy-systems. (The 0 stands for zero symbols of context; the L acknowledges

Arvid Lindenmeyer, who first used these grammars to study growth in organisms.)

A OZ^grammar is a triple G = (£, P, a), where E is a finite alphabet called the

vocabulary, a is a string in Z +
called the start string, and P is a set of productions

of the form a -> /?, where a is in £ and ($ is in I*. The relation => is defined by

a
l
a2

"' an =>0t l
<X 2 an

if a
{
-» a, is in P for 1 < i < n. Note that a

{
-> a

t
might be a production, permitting

us to avoid substituting for a
{

. Otherwise, a substitution must be made for each

symbol. The substitution for different occurrences of the same symbol need not be

the same. The relation is the reflexive, transitive closure of =>, and L(G) is

defined to be {P\ol^>P}.

Example 14.3 Let G = ({a, b}, P, a), where P consists of a -+ b and b -> ab. In this

case, there is only one production for each symbol, so there is really only one

(infinite length) derivation, and every word in the language appears in that deriva-

tion. The derivation is

«=>/?=>«/?=> bab => abbab => bababbab =>.

Note that the length of words in L(G) are exactly the Fibonacci numbers defined

by/, = f2 = 1 and/ =
, +/_ 2 for i > 3. One can prove by induction on / > 3

that the /th word in the derivation has , ^s and 2 as, a total of)\ symbols.

Example 14.4 The language {a, aa) is not a OL-language. Suppose L(G) = {a, aa},

where G = ({a}, F, a). Then a must be a or aa. Now all productions are of the form

a -> a* for some i > 0. Suppose a = a. Surely there cannot be a production a -> a\

for i > 3. Then there must be a production a -> aa, else aa could never be gen-

erated. But then a=>aa=> aaaa, a contradiction. Suppose next that a = aa. There

must be a production a-> c, else all strings in L(G) are of length two or more. But

then aa => c, so L(G)
=f=

{a, aa} again.

A basic result about (^languages is the following.

Theorem 14.8 If L is a OZ^language, then L is an indexed language.

Proof Let G
x
= (Z, Pu cc) be a C\L-grammar. Define indexed grammar G 2

= (K
Z, {/ ^}, P2 , 5), where

K = {5, T} u {/l
fl
|fl is in £},
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392 HIGHLIGHTS OF OTHER IMPORTANT LANGUAGE CLASSES

and P2 contains

S^Tg,

T-+Tf,

T-+Aai Aa2 ~-Aak
if ct = a

1
a2 '-aky

AJ-+ Abl Ab2
• - - Abj for each production a-+b

1
b2 b

}
in Pu

Aa g -> a for each a in £.

Informally the string of/'s counts the number of steps in a derivation of G l9

and index g marks the end of an index string, allowing a variable to be replaced by

the terminal it represents. An easy induction on the length of a derivation shows

that

S ^> Tfg ^> Abl f
l
-
jgAb2 f^g • • Abk f^g

in G 2 if and only if a ^> b
x
b2

' '

' bk by a derivation of / steps in G
x

. Thus

S^>/l
bl^ 2 ^ A

bk
g*>b

l
b2

•••
fck

if and only if Gt^>b
{
b 2

••• bk .

14.5 SUMMARY

Figure 14.7 shows the various equivalences and containments proved or stated in

this chapter, plus some others that are immediate from definitions. Containments

are indicated by upward edges.

EXERCISES

14.1

a) Design a one-way DSA to recognize the language {OT 2
\n > 1}.

b) Design a one-way NSA to recognize the language {ww|w is in (0 + 1)*}.

*14.2 Design a two-way DSA to accept the set of binary strings whose value, treated as an

integer, is a power of 3.

**14.3 Since every CFL can be recognized in polynomial time by the CYK algorithm, the

corollary to Theorem 14.1 implies that every CFL is recognized by some deterministic

log h-APDA. Give a direct construction of such an APDA from a CFG.

14.4 Show that the family of 1NSA languages and the family of 1NENSA languages

form full AFL's.

14.5 Show that the families of 1DSA languages and 1NEDSA languages are closed

under:

a) intersection with a regular set, b) inverse GSM mappings,

**c) complementation, **d) quotient with a regular set.

14.6 Give indexed grammars generating the following languages.

Sa) {0"
|
n is a perfect square} b) {0"

|
n is a power of 2}

c) {0"|n is not a prime} d) {ww|w is in (0 + 1)*}
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Fig. 14.7 Containments among classes of languages.

14.7 Give OL-grammars generating the following languages.

a) {a
n

|
n is a power of 2} b) {wcwR

\
w is in (0 4- 1)*}

*S14.8 Give a OJ^grammar with the property that every string generated is of length a

perfect square and furthermore for every perfect square there is at least one string of that

length generated.

*14.9 Of the eight subsets of {c, a> aa}> how many are OZ^languages?

**14.10 Show that the family of OJ^languages is not closed under any of the AFL
operations.

**14.1 1 Show that it is decidable whether the language generated by an indexed grammar is

empty.

*14.12 Show that Greibach's theorem (Theorem 8.14) applies to the 1NEDSA languages,

and that "= £*" is undecidable for this class.

**14.13 Show that it is undecidable whether two OL-languages are equivalent.

Solutions to Selected Exercises

14.6 a) We make use of the fact that the nth perfect square is the sum of the first n odd

integers. The indexed grammar with productions

S-Ag

A-+ Af

A-+B
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394 HIGHLIGHTS OF OTHER IMPORTANT LANGUAGE CLASSES

B-+CD

Df-+ B

Dg-*e

C/-+OOC

Cg-*0

generates {0
n

|
n is a perfect square}. The derivations are trivial variations of the following

derivation.

S=>Ag±>Afn - lg=>Bfn- l

g

=> Cf- l

gDf»-
l

g => Cf
n ~ l

gBf
n - 2

g

^Cf"- l

gCf
n - 2

gDf»-
2
g

^Cfn - xgCfn - 2
gBf

n-"g=>->

~Cfn - lgCfn - 2g-CfgCgDg

=>Cf
n - l

gCf
n - lg-CfgCg

*>V»- lCf- xg-Cf9
C9
*>-

|> Q2„-l0
2„-3 ... Q3Q1 = Qn2

14.8 We again make use of the fact that the nth perfect square is the sum of the first n odd

integers. Consider the OL-grammar ({a, by c}, {a -* abbc\ b -> be, c -* c}, a). A simple induc-

tion shows that the nth string generated has one a, 2(n — I) b
y

s y and (n — I)
2

c's. Thus the

length of the >ith string is 1 4- 2(n - 1) + (n - l)
2
or n

2
.

BIBLIOGRAPHIC NOTES

The auxiliary pushdown automaton and Theorem 14.1 are from Cook [1971a]. Earlier,

Mager [1969] had considered "writing pushdown acceptors," which are n-APDA's. Stack

automata were first considered by Ginsburg, Greibach, and Harrison [1967a, b]. Theorems

14.2 and 14.4, relating nonerasing stack automata to space complexity classes, are from

Hopcroft and Ullman [1967a], although the fact that the CSL's are contained in the

NEDSA languages was known from Ginsburg, Greibach, and Harrison [1967a]. Theorems

14.3 and 14.5, relating stack languages to APDA's and time complexity classes, are by Cook

[1971a].

The basic closure and decision properties of one-way stack languages were treated in

Ginsburg, Greibach, and Harrison [1967b]. Exercise 14.5(d), the closure of 1DSA languages

under quotient with a regular set, is by Hopcroft and Ullman [1968b]. Theorem 14.6,

containment of the 1NSA languages in DSPACE(n) is by Hopcroft and Ullman [1968c].

Ogden [1969] gives a "pumping lemma" for one-way stack languages. Beeri [1975] shows

that two-way SA's are equivalent to two-way nested stack automata.

Indexed grammars were first studied by Aho [1968]. Theorem 14.7(b), the containment

within the CSL's, is from there, as in Exercise 14.1 1, decidability of emptiness. A variety of

other characterizations of the indexed languages are known. Aho [1969] discusses one-way

nested stack automata, an automaton characterization. Fischer [1968] discusses macro
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grammars, Greibach [1970] provides another automaton characterization—a device with a

stack of stacks, and Maibaum [1974] presents an algebraic characterization. These alterna-

tive formulations lend credence to the idea that the indexed languages are a "natural" class.

Hayashi [1975] gives a "pumping lemma" for indexed languages.

/-systems originated with Lindenmayer [1968], and the Ol^systems, on which we have

concentrated, were considered by Lindenmayer [1971]. Exercise 14.10, on nonclosure

properties of these languages, is from Herman [1974]. Exercise 14.13, the undecidability of

equivalence of 01/-languages, is implied by a stronger result of Blattner [1973], that it is

undecidable whether the sets of sentential forms generated by two CFG's are the same.

Much has been written on the subject, and the interested reader is referred to Salomaa

[1973] and Herman and Rozenberg [1975].

We have but touched on some of the multitude of species of automata and grammars

that have been studied. Rosenkrantz [1969] is representative of another early step in this

direction, and Salomaa [1973] covers a variety of classes not touched upon here.
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Rice's theorem, 185-192

Right-linear grammar (See Regular

grammar)

Right-matching, 39

Rightmost derivation, 87

Right sentential form, 249

Ritchie, R. W., 319
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Rose, G. F., 76, 124, 145, 216, 284

Rosenberg, A. L., 124, 176

Rosenkrantz, D. J., 106, 216, 269, 374-

376, 395

Ross, D. T., 46, 54

Rozenberg, G., 395

Ruby, S., 319

Ruzzo, W. L., 145

SA (See Stack automaton)

Sahni, S., 375

Salomaa, A., 106, 395

Satisfiability problem, 325-331, 370

Savitch, W. J., 216, 319, 375

Savitch's theorem, 301-302

Scattered-context grammar/language,

282-283

Schaefer, T. J., 374, 376

Scheduling problem, 367

Scheinberg, S., 145

Schutzenberger, M. P., 106, 123, 216,

267

Scott, D., 54

Seiferas, J. L. 76, 176, 319

Self-embedding grammar, 229

Selman, A., 376

Semilinear set, 72

Semi-Thue system {See Type 0

grammar)

Sentential form, 81, 143, 389, 395

Set, 5-6

Set former, 5

Sethi, R., 374-375

Shamir, E., 76, 145, 216

Shank, H., 145

Shannon, C. E., 54, 176

Shannon switching game, 370, 372-374

Shepherdson, J. C, 54

Shifting over symbols, 156-157

Shuffle, 142

Sieveking, M., 374

Simple grammar, 229

Simulation, 364

Singletary, W. E., 216

Singleton, 192

S mn theorem. 207

Solovay, R., 375-376

Son, 4

Space-bounded Turing machine, 285

Space complexity, 285-289, 295-298,

300-319, 343-353, 384-385, 387-388,

393

Space constructibility, 297

Space hierarchy, 297-298

Spanier. E. H., 76, 145

Spanning-tree problem, 367

Speed-up (See Blum's speed-up theorem,

Linear speed-up)

Springsteel, F. N., 375

Stack. 107, 378, 389

Stack alphabet, 1 10

Stack automaton, 381-389, 393

Stanley. R. J., 145

Start state, 148 (See also Initial state)

Start symbol, 1 10

State, 17, 110, 148, 272, 377

Stearns, R. E., 76, 106, 124, 176, 247,

267. 269. 319, 375

Steiglitz, K., 374

Stockmeyer, L. J., 375-376

Storage in finite control, 153-

154

Strassen, V., 375

String, 1

Strong connectivity problem, 370

SUB. 282

Subroutine, 157-158
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Substitution, 60-61, 131-132, 230-231,

277-278, 280-281, 283

Successor, 2

Sudborough, I. H., 375

Suffix, 1

Suzuki, N., 375

Switching circuit, 13, 47

Symbol, 1

Symmetry, 7

Syntactic category (See Variable)

Szymanski, T. G., 374, 376

Taniguchi, K.. 269

Tape, 17. 36. 148, 378

Tape alphabet, 173

Tape compression, 288-289

Tape head, 36

Tape reduction, 289. 292-295

Tape symbol. 148

Tarjan, R. E., 319, 374-375

Terminal, of a grammar, 77, 79, 389

Text editor, 46

Thompson, K., 46, 54

Three-satisfiability, 330-331

Time-bounded Turing machine, 286

Time complexity, 286-295, 299-300, 307,

313. 320-343, 378-381, 393

Time constructibility, 299

Time hierarchy, 295. 299, 303

Torii, K.. 145

Total recursive function, 151

Track, of a tape, 154

Trakhtenbrot. B. A., 319

Transition diagram, 16

Transition function, 17, 48

Transition table, 383

Transitive closure (See Reflexive and

transitive closure)

Transitivity, 7

Translation lemma, 302-305

Traveling salesman problem. 341, 368

Tree, 3-4

(See also Derivation tree)

Treybig, L. B., 374

Trio, 270-277, 280

Truth-table reduction, 214

Turing, A. M., 176, 216

Turing machine, 9, 146-176, 179, 181-

183, 193, 201-204, 221-223, 285-319

Turing reduction, 212-213

Two-stack machine, 171

Two-tape finite automaton, 74

Two-tape Turing machine, 292-295

Two-way finite automaton, 36-42

Two-way infinite tape, 159-161

Two-way nondeterministic finite

automaton, 51

Two-way pushdown automaton, 121, 124

Type 0 grammar, 220-223

Ullian, J. S., 106, 216

Ullman, J. D., 54. 75, 106, 124, 216, 227,

267-268, 284, 319, 376, 394

Uncountable set, 6

Undecidable problem, 178-216

Union, 5, 28, 59, 131, 180, 230, 246, 265,

278, 280

Union theorem, 310-312

Unit production, 91

Universal Turing machine, 181-185

Unrestricted grammar {See Type 0

grammar)

Useless symbol, 88-89

Valiant, L. G., 145, 247, 269, 319

Valid computation (See Computation)

Valid item, 249

Variable, of a grammar, 77, 79, 389

Vertex, 2

Vertex cover problem, 331-332

Viable prefix, 249-252

Wang, H., 176

Wegbreit, B., 232

Wise, D. S., 145

Word, 1

Wright, E. M., 57

Yamada, H., 54, 319

Yannakakis, M., 374

Yasuhara, A., 176

Young, P. R., 176

Younger, D. H., 145

(See also CYK algorithm)
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