Software engineering II MODULE

THE SOFTWARE PROCESS FRAME WORK

- The process of framework defines a small set of activities that are applicable to all types of projects.
- The software process framework is a collection of task sets.
- Task sets consist of a collection of small work tasks, project milestones, work productivity and software quality assurance points.

Fig.- A software process framework

A number of task sets –each a collection of software engineering work tasks, project milestones, work products and quality assurance points

- ► Typical umbrella activities are:
- 1. Software project tracking and control
- In this activity, the developing team accesses project plan and compares it with the predefined schedule.
- If these project plans do not match with the predefined schedule, then the required actions are taken to maintain the schedule.
- > 2. Risk management
- Risk is an event that may or may not occur.
- ▶ If the event occurs, then it causes some unwanted outcome. Hence, proper risk management is required.

► 3. Software Quality Assurance (SQA)

SQA is the planned and systematic pattern of activities which are required to give a guarantee of software quality.

For example, during the software development meetings are conducted at every stage of development to find out the defects and suggest improvements to produce good quality software.

- ▶ 4. Formal Technical Reviews (FTR)FTR is a meeting conducted by the technical staff.
- ▶ The motive of the meeting is to detect quality problems and suggest improvements.
- ► The technical person focuses on the quality

- 5. Measurement
- Measurement consists of the effort required to measure the software.
- ▶ The software cannot be measured directly. It is measured by direct and indirect measures.
- Direct measures like cost, lines of code, size of software etc.
- Indirect measures such as quality of software which is measured by some other factor. Hence, it is an indirect measure of software.
- 6. Software Configuration Management (SCM) It manages the effect of change throughout the software process.
- **7. Reusability management**It defines the criteria for reuse the product.
- ▶ 8. Work product preparation and production It consists of the activities that are needed to create the documents, forms, lists, logs and user manuals for developing a software.
- The quality of software is good when the components of the software are developed for certain application and are useful for developing other applications. Downloaded from Ktunotes.in

Capability Maturity Model

What is CMM?

- CMM: Capability Maturity Model
- Developed by the Software Engineering Institute of the Carnegie Mellon University
- Framework that describes the key elements of an effective software process.
- Describes an evolutionary improvement path for software organizations from an ad hoc, immature process to a mature, disciplined one.
- Provides guidance on how to gain control of processes for developing and maintaining software and how to evolve toward a culture of software engineering and management excellence

What are the CMM Levels? (The five levels of software process maturity)

Level 1: Initial

- Initial : The software process is characterized as ad hoc, and occasionally even chaotic. Few processes are defined, and success depends on individual effort.
 - At this level, frequently have difficulty making commitments that the staff can meet with an orderly process
 - Products developed are often over budget and schedule
 - > Wide variations in cost, schedule, functionality and quality targets
 - Capability is a characteristic of the individuals, not of the organization

Level 2: Repeatable

- Basic process management processes are established to track cost, schedule, and functionality. The necessary process discipline is in place to repeat earlier successes on projects with similar applications.
 - Realistic project commitments based on results observed on previous projects
 - Software project standards are defined and faithfully followed
 - Processes may differ between projects
 - Process is disciplined
 - > earlier successes can be repeated

Level 3: Defined

- The software process for both management and engineering activities is documented, standardized, and integrated into a standard software process for the organization.
- All projects use an approved, tailored version of the organization's standard software process for developing an maintaining software.

Level 4: Managed

- Detailed measures of the software process and product quality are collected. Both the software process and products are quantitatively understood and controlled.
 - Narrowing the variation in process performance to fall within acceptable quantitative bounds
 - > When known limits are exceeded, corrective action can be taken
 - > Quantifiable and predictable

▶ predict trends in process and product quality

Level 5: Optimizing

- > Continuous process improvement is enabled by quantitative feedback from the process and from piloting innovative ideas and technologies.
- Goal is to prevent the occurrence of defects
 Causal analysis
 - Causal analysis
- > Data on process effectiveness used for cost benefit analysis of new technologies and proposed process changes

ISO 9000

- The ISO 9000 family of <u>quality management systems</u> standards is designed to help organizations ensure that they meet the needs of customers.
- KTUNOTES.IN The seven quality management principles are:
 - •QMP 1 Customer focus
 - •QMP 2 Leadership
 - •QMP 3 Engagement of people
 - •QMP 4 Process approach
 - •QMP 5 Improvement
 - •QMP 6 Evidence-based decision making
 - •QMP 7 Relationship management

ISO 9000 principles of quality management

The ISO 9000:2015 and ISO 9001:2015 standards are based on seven quality management principles that senior management can apply for organizational improvement:

>Principle 1 – Customer focus

- Organizations depend on their customers and therefore should understand current and future customer needs, should meet customer requirements and strive to exceed customer expectations.
- > Understand the needs of existing and future customers
- > Align organizational objectives with customer needs and expectations
- > Meet customer requirements
- > Measure customer satisfaction
- Manage customer relationships
- Aim to exceed customer expectations

>Principle 2 – Leadership

- > Leaders establish unity of purpose and direction of the organization.
- They should create and maintain the internal environment in which people can become fully involved in achieving the organization's objectives.
- > Establish a vision and direction for the organization
- > Set challenging goals
- Model organizational values
- Establish trust
- Equip and empower employees
- > Recognize employee contributions

>Principle 3 – Engagement of people

- People at all levels are the essence of an organization and their full involvement enables their abilities to be used for the organization's benefit.
- > Ensure that people's abilities are used and valued
- > Make people accountable
- > Enable participation in continual improvement
- Evaluate individual performance
- Enable learning and knowledge sharing
- > Enable open discussion of problems and constraints

>Principle 4 – Process approach

- > A desired result is achieved more efficiently when activities and related resources are managed as a process.
- Manage activities as processes
- Identify linkages between activities
- Prioritize improvement opportunities
- Deploy resources effectively

>Principle 5 – Improvement

- > Improvement of the organization's overall performance should be a permanent objective of the organization.
- > Improve organizational performance and capabilities
- > Align improvement activities
- Empower people to make improvements
- > Measure improvement consistently
- Celebrate improvements

>Principle 6 – Evidence-based decision making

- > Effective decisions are based on the analysis of data and information.
- > Ensure the accessibility of accurate and reliable data
- > Use appropriate methods to analyze data
- Make decisions based on analysis
- Balance data analysis with practical experience

>Principle 7 – Relationship management

An organization and its external providers (suppliers, contractors, service providers) are <u>interdependent</u> and a mutually beneficial relationship enhances the ability of both to create value.

- > Identify and select suppliers to manage costs, optimize resources, and create value
- > Establish relationships considering both the short and long term
- Share expertise, resources, information, and plans with partners
- Collaborate on improvement and development activities
- Recognize supplier successes

Requirement Engineering

Requirements describe -What to build not How

- Developers do not know what to build
- Customers do not know what to expect
- This phase produces one large document written in natural language contains a description of what the system will do without describing how it will do it
- Crucial process

4 STEPS IN REQUIREMENT ENGG

1. Requirement elicitation

- Also called gathering of requirement
- Identified with the help f customer

2. Requirement analysis

Analyzed in order to identify inconsistencies, defects, omissions etc.

3. Requirement documentation

- ► This is the end product of requirement elicitation and analysis
- Primary output of requirement engineering is requirement specification
- ▶ If it describes only the software requirement, its is software requirement specification
- ▶ If it describes booth hardware and software requirements, it is called system requirement specification
- This document is called software requirement specification(SRS)

4. Requirement review

Review process is carried out to improve the quality of SRS

Types of requirements

- **Known requirement-** Something stakeholder believes to be implemented
- **Unknown requirement-** Forgotten by the customer
- Undreamt requirements- stakeholder may not be able to think of new requirements due to limited domain knowledge
- A known, unknown or undreamt requirement may be functional or non functional

Functional requirements

- Functional requirements describe what the software has to do.
- ► They are often called product features.
- Ex in case of mobile phone calling and messaging

Non functional requirements

- Non Functional requirements are mostly quality requirements.
- ► That stipulate how well the software does, what it has to do.
- ex: battery back up, security
- ► For users-Availability, Reliability, Usability ,Flexibility
- ► For developers Maintainability, Portability, Testability

Requirement elicitation

- Most difficult
- Most critical
- Most error prone
- Most communication intensive
- Selection of any method
- ▶ 1. It is the only method that we know
- > 2. It is our favorite method for all situations
- ▶ 3. We understand intuitively that the method is effective in
- ▶ the present circumstances.

1. Interviews

- After receiving a problem form the customer, first step is to arrange a meeting with customer
- Specialised developers called requirement engineer interact with customer
- Both parties have a common goal
- **• Objective : To understand customer expectation from software**
- ► Types of Interview
- open ended Success -no pre defined agenda
- **structured-** have pre defined agenda
- Selection of stakeholder
- ▶ 1. Entry level personnel
- ► 2. Middle level stakeholder
- ► 3. Managers
- 4. Users of the software (Most important)-

Types of questions normally asked

- Any problems with existing system
- Any Calculation errors
- Possible reasons for malfunctioning
- Possible benefits
- Satisfied with current policies
- Any requirement of data from other system
- Any specific problems
- Any additional functionality
- Most important goal of the proposed development

2. Brainstorming Sessions

- It is a group technique
- It promotes------ \rightarrow

- Provides platform to share ideas
- Participants are encouraged to share what comes to their mind whether relevant or not
- group consists of actual users, middle level managers, total stakeholder
- Written in simple English
- Every idea will be documented, such that everyone can see it
- After session, detailed report will be made and facilitator(ne who controls the session) will review it.

Facilitated application development(FAST)

- Similar to brainstorming sessions.
- Team oriented approach
- forms a team of customers and developers

Guidelines for FAST

- ▶ 1. Arrange a meeting at a neutral site.
- ▶ 2. Establish rules for participation.
- ▶ 3. Informal agenda to encourage free flow of ideas.
- ▶ 4. Appoint a facilitator.
- ▶ 5. Prepare definition mechanism board, worksheets, wall stickier.
- ▶ 6. Participants should not criticize or debate.

FAST session Preparations

Each attendee is asked to make a list of objects that are:

- ▶ 1. Part of environment that surrounds the system.
- ▶ 2. Produced by the system.
- ▶ 3. Used by the system.

Activities of FAST session

- ► 1. Every participant presents his/her list
- ▶ 2. Combine list for each topic, Eliminate redundancies
- ▶ 3. Discussions on combined list
- 4. Consensus list are finalized by facilitator
- 5. Forms sub teams, each works to develop for mini specifications for one or more entries in the list
- ▶ 6. Presentations of mini-specifications to all FAST attendees.
- ▶ 7. Each attendee prepares a list of validation criteria for system
- ▶ 8. A sub team may asked to write complete draft specifications

Quality Function Deployment(QFD)

- Incorporates voice of the customer and the voice is then translated to technical requirements
- ▶ What is important for customer?
- Prime concern of QFD is customer satisfaction
- ► Three types of requirements are identified
- -- Normal requirements-If present customer get satisfied
- Expected requirements-these are requirements that are not explicitly stated by customer but if not present they will be dissatisfied
- -- Exciting requirements- if present they are highly satisfied

- Ex: In the case of a result analysis s/w
- Normal: entry of mark ,calculation of result, merit list report etc.
- **Expected requirements**: protection from unauthorized access.
- Exciting: if an unauthorized access is noticed shut down all systems and mail is sent to system admin about the access

Steps of QFD

- 1. Identify stakeholders(customers, users, developers)
- ▶ 2. List out requirements from user
- 3. Value indicating the degree of importance assigned to each requirement
 - ► 5 Points : V. Important
 - ► 4 Points : Important
 - ▶ 3 Points : Not Important but nice to have
 - ▶ 2 Points : Not important
 - ▶ 1 Points : Unrealistic, required further

- ► Finally Requirement Engineer may categorize like:
- ► (i) It is possible to achieve
- ► (ii) It should be deferred & Why
- ▶ (iii) It is impossible and should be dropped from consideration
- ► First Category requirements will be implemented as per priority assigned with every requirement.
- Requirements of importance to each requirement

Software prototyping

- Technique of constructing a partial implementation of system so that customers, users or developers can learn more about the problem.
- ► The process of prototyping involves the following steps
- Identify basic <u>requirements</u> Determine basic requirements including the input and output information desired. Details, such as security, can typically be ignored.
- Develop initial prototype
- Review The customers, including end-users, examine the prototype and provide feedback on potential additions or changes.
- Revise and enhance the prototype Using the feedback both the specifications and the prototype can be improved.

Benefits of s/w prototyping

- The software designer and implementer can get valuable feedback from the users early in the project.
- Missing user requirement can be detected
- Misunderstanding between user and developers may be identified
- A working model is available quickly
- The client and the contractor can compare if the software made matches the <u>software</u> <u>specification</u>, according to which the software program is built.
- ► It also allows the software engineer some insight into the accuracy of initial project estimates and whether the deadlines and <u>milestones</u> proposed can be successfully met

Throwaway prototyping

- Also called close-ended prototyping.
- Throwaway refers to the creation of a prototype model that will eventually be discarded rather than becoming part of the final delivered software.
- After preliminary requirements gathering is accomplished, a simple working model of the system is constructed to visually show the users what their requirements may look like when they are implemented into a finished system.
- ► This throwaway prototype will not be included in the final system

Evolutionary prototyping

- Evolutionary prototyping is quite different from <u>throwaway prototyping</u>.
- The main goal when using evolutionary prototyping is to build a very robust prototype in a structured manner and constantly refine it.
- Evolutionary prototype, when built, forms the heart of the new system, and the improvements and further requirements will then be built.
- It forms the part of the final system

