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Chapter - I

CONDUCTION

1.1 INTRODUCTION

Heat transfer is defined as the transfer of heat from
one region to another by virtue of the temperature
difference between them. The devices for transfer of heat
are called heat exchangers. The concept of heat transfer
is necessary for designing heat exchangers like boilers,
evaporators, condensers, heaters and many other cooling
and heating systems.

1.2 MODES OF HEAT TRANSFER

There are three modes of Heat transfer as follows:

1. Conduction

2. Convection

3. Radiation.

1.3 CONDUCTION

Heat is always transferred by conduction from high
temperature region to low temperature region. The
conduction heat transfer is due to the property of matter

and molecular transport of heat between two regions due
to temperature difference.

When one end of a rod gets heated, the atoms in
that end get enlarged and vibrated due to heating. The
enlarged, vibrated atoms touch the adjacent atom and
heat is transferred. Similarly, all the atoms are heated,
thereby the heat is transferred to the other end. This
type of heat transfer is called as conduction heat transfer.

In solids, heat is conducted by

1. Atomic vibration – The faster moving, vibrating
atoms in the hot area transfer heat to the adjacent
atoms.

2. By transport of free electrons.

Heat is also conducted in liquid and gases by the
following mechanism.

1. The kinetic energy (K.E) of a molecule is a
function of temperature. When these molecules
temperature increases, the K.E. increases.

2. The molecule from the high temperature region
collides with a molecule from the low temperature region
and thus heat is transferred.

1.4 CONVECTION

The heat transfer between a surface and the
surrounding fluid which are at different temperatures, is
called convection heat transfer. Convection heat transfer
is defined as a process of heat transfer by the combined
action of heat conduction and mixing motion.

Q
Q

Heating
Fig. 1.1

Conduction 1.1 Heat and Mass Transfer1.2
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(i) First of all, heat is transferred from hot surface
to adjacent fluid purely by conduction.

(ii) Then, the hot fluid’s density decreases by increase
in temperature. This hot fluid particles move to
low temperature region and mix with cold fluid
and thus transfer heat by mixing motion.

If the mixing motion of fluid particles takes place
due to density difference caused by temperature
difference, then this convection heat transfer is called
free convection (or) natural convection.

If the motion of fluid particles is due to fan (or)
pump (or) blower (or) any external means, then this
convection heat transfer is called forced convection.

1.5 RADIATION

Conduction and convection needs a medium for heat
transfer, but radiation heat transfer takes place even in
vacuum.

Radiation heat transfer occurs when the hot body
and cold body are separated in space. The space may be
filled up by a medium (or) vacuum.

Energy, emitted in the form of electromagnetic
waves, by all bodies due to their temperatures is called
thermal radiation.

1.6 CONDUCTION

Most of the heat transfer problems involve a
combination of all the three modes of heat transfer. But
it will be useful, if we study each mode of heat transfer
one by one. Hence, in the forth coming section, we can

study conduction, convection and radiation separately and
in some cases we can study with combination.

1.7 FOURIER’S LAW OF HEAT CONDUCTION

Fourier’s law states that the Conduction heat
transfer through a solid is directly proportional to

1. The area of section A at right angle to the
direction of heat flow.

2. The change in temperature (dT) in between the
two faces of the slab and

3. Indirectly proportional to the thickness of the
slab dx.

Q   A 
dT
dx

where Q  heat conducted in (Watts) W.

A  surface area of heat flow in m2. (perpendicular
to the direction of heat flow)

Fig. 1.2

dT

Q

Q

T 1 T2

T2

P lane  wall o r S lab

dxx

Conduction 1.3 Heat and Mass Transfer1.4
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combination of all the three modes of heat transfer. But
it will be useful, if we study each mode of heat transfer
one by one. Hence, in the forth coming section, we can

study conduction, convection and radiation separately and
in some cases we can study with combination.

1.7 FOURIER’S LAW OF HEAT CONDUCTION

Fourier’s law states that the Conduction heat
transfer through a solid is directly proportional to

1. The area of section A at right angle to the
direction of heat flow.

2. The change in temperature (dT) in between the
two faces of the slab and

3. Indirectly proportional to the thickness of the
slab dx.

Q   A 
dT
dx

where Q  heat conducted in (Watts) W.

A  surface area of heat flow in m2. (perpendicular
to the direction of heat flow)

Fig. 1.2
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dT  temperature difference between the faces of

the slab in C or K

dx   thickness of the slab in m.

So, Q   kA 
dT
dx

Here dT is negative. Because dT  T2  T1. (Change

in temp.) Since T2 is less than T1, dT is negative.

So we get the equation

Q   kA 
T2  T1

dx
  kA 

T1  T2

dx

Here k  Constant of proportionality and is called
thermal conductivity of the material.

Q  kA 
T1  T2

dx

So, k  
Q  dx

A T1  T2
  

Q



 
A dT

dx
 




  
W




 
m2  C

m
 




  W/mC

So the unit of k is W/mC (or) W/mk

Assumptions

The Fourier’s law is based on the following
assumptions.

1. Conduction heat transfer takes place under steady
state condition.

2. The heat flow is one direction only.

3. The temperature gradient ‘dT’ is constant.

4. The temperature profile in linear.

5. No internal heat generation.

6. The thermal conductivity k is constant in all
directions.

1.8 GENERAL DIFFERENTIAL EQUATION OF HEAT

CONDUCTION - CARTESIAN COORDINATES 

Consider an infinitesimal rectangular element of
sides dx, dy and dz as shown in Fig. 1.3.

Qx  Rate of heat flow in x direction through 

        the face ABCD

Qx  dx  Rate of heat flow in x direction through 

            the face EFGH

B

C G

A (x ,y,z )

F

E

HD

Q
 

(y  + d y ) Q z

d y

d z

d x

Q
 

( z  +  d z ) 

Q
 

( x  +  d x ) Q x

Elem ental
volum e

Q y

Fig. 1.3 Elemental volum e for three-dimensional heat 
conduction analysis - Cartesian coordinates
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dT  temperature difference between the faces of

the slab in C or K

dx   thickness of the slab in m.

So, Q   kA 
dT
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Here dT is negative. Because dT  T2  T1. (Change

in temp.) Since T2 is less than T1, dT is negative.

So we get the equation

Q   kA 
T2  T1

dx
  kA 

T1  T2

dx

Here k  Constant of proportionality and is called
thermal conductivity of the material.

Q  kA 
T1  T2

dx

So, k  
Q  dx

A T1  T2
  

Q



 
A dT

dx
 




  
W




 
m2  C

m
 




  W/mC

So the unit of k is W/mC (or) W/mk

Assumptions

The Fourier’s law is based on the following
assumptions.

1. Conduction heat transfer takes place under steady
state condition.

2. The heat flow is one direction only.

3. The temperature gradient ‘dT’ is constant.

4. The temperature profile in linear.

5. No internal heat generation.

6. The thermal conductivity k is constant in all
directions.

1.8 GENERAL DIFFERENTIAL EQUATION OF HEAT

CONDUCTION - CARTESIAN COORDINATES 

Consider an infinitesimal rectangular element of
sides dx, dy and dz as shown in Fig. 1.3.

Qx  Rate of heat flow in x direction through 

        the face ABCD

Qx  dx  Rate of heat flow in x direction through 

            the face EFGH
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  qx  Heat flux 



 
Qx

A
 



 in x direction 

                   through face ABCD

qx  dx  Heat flux 



 
Qx  dx

A
 



 in x direction 

             through face EFGH

kx, ky, kz  Thermal conductivities along x, y and z axes

T
x

  Temperature gradient in x direction

The differential equation of conduction can be
derived based on the law of conservation of energy (or)
the first law of Thermodynamics. Let us apply the first
law of thermodynamics to the control volume of Fig. 1.3.

















 

Quantity of

heat conducted

to the
elementary

volume in

face ABCD

Qx

 

















  

















 

Heat

generated

from inner

heat source

with in the

element

Qg

 

















  

















 

Change in

enthalpy

of element

dh
dt

 

















  










 

Work done
by

element
W

 











...(1.1)

The work done by an element is small and can be
neglected in the above equation.

Hence, the above equation can be written as

Qx  Qg  
dh
dt

  Qx  dx
...(1.2)

Now let us see one by one.

Qx: Quantity of heat conducted to the elementary
volume

The rate of heat flow in to the element in x
direction through the face ABCD  is

Qx  qx dy dz   kx 
T
x

 dy dz
...(1.3)

The rate of heat flow out of the element in x
direction through the face EFGH  is

Qx  dx  Qx  

x

 Qx dx

   kx 
T
x

 dy dz  

x

 



  kx 

T
x

 dy dz 



 dx

Qx  dx   kx 
T
x

 dy dz  

x

 



 kx 

T
x

 



 dx dy dz

...(1.4)

Qx  Qx  dx gives

Qx  Qx  dx   kx 
T
x

 dy dz  



  kx 

T
x

 dy dz   
 
  

                         

x

 
 
 



 kx 

T
x

 



 dx dy dz 





   kx 
T
x

 dy dz  kx 
T
x

 dy dz  

                        

x

 



 kx 

T
x

 



 dx dy dz

 Qx  Qx  dx  

x

 



 kx 

T
x

 



 dx dy dz

...(1.5)

Similarly
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  qx  Heat flux 



 
Qx

A
 



 in x direction 

                   through face ABCD

qx  dx  Heat flux 



 
Qx  dx

A
 



 in x direction 

             through face EFGH

kx, ky, kz  Thermal conductivities along x, y and z axes

T
x

  Temperature gradient in x direction

The differential equation of conduction can be
derived based on the law of conservation of energy (or)
the first law of Thermodynamics. Let us apply the first
law of thermodynamics to the control volume of Fig. 1.3.

















 

Quantity of

heat conducted

to the
elementary

volume in

face ABCD

Qx

 

















  

















 

Heat

generated

from inner

heat source

with in the

element

Qg

 

















  

















 

Change in

enthalpy

of element

dh
dt

 

















  










 

Work done
by

element
W

 











...(1.1)

The work done by an element is small and can be
neglected in the above equation.

Hence, the above equation can be written as

Qx  Qg  
dh
dt

  Qx  dx
...(1.2)

Now let us see one by one.

Qx: Quantity of heat conducted to the elementary
volume

The rate of heat flow in to the element in x
direction through the face ABCD  is

Qx  qx dy dz   kx 
T
x

 dy dz
...(1.3)

The rate of heat flow out of the element in x
direction through the face EFGH  is

Qx  dx  Qx  

x

 Qx dx

   kx 
T
x

 dy dz  

x

 



  kx 

T
x

 dy dz 



 dx

Qx  dx   kx 
T
x

 dy dz  

x

 



 kx 

T
x

 



 dx dy dz

...(1.4)

Qx  Qx  dx gives

Qx  Qx  dx   kx 
T
x

 dy dz  



  kx 

T
x

 dy dz   
 
  

                         

x

 
 
 



 kx 

T
x

 



 dx dy dz 





   kx 
T
x

 dy dz  kx 
T
x

 dy dz  

                        

x

 



 kx 

T
x

 



 dx dy dz

 Qx  Qx  dx  

x

 



 kx 

T
x

 



 dx dy dz

...(1.5)

Similarly
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Qy  Qy  dy  

y

 



 ky 

T
y

 



 dx dy dz

...(1.6)

Qz  Qz  dz  

z

 



 kz 

T
z

 



 dx dy dz

...(1.7)

Add 1.5  1.6  1.7

 
 
Total heat conducted

in all direction
 



   


x

 



 kx 

T
x

 



 dx dy dz  


y

 



 ky 

T
y

 



 dx dy dz  


z

 



 kz 

T
z

 



 dx dy dz

  



 

x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



 



 dx dy dz

Total heat conducted into the element from all directions

  



 

x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



 



 dx dy dz...(1

.8)

Change in enthalpy of the element 



 
dh
dt

 




We know that,










 

Change in
enthalpy
of the
element

 










  










 
Mass 
of the
element

 









  










 

Specific
heat
of the
element

 










  










 
Rise in
temperature
of element

 










  m  Cp  
T
t

    dx  dy dz  Cp  
T
t

[. . . Mass = Density    Volume]




 
Change in enthalpy of
the element  




   Cp 

T
t

 dx dy dz
...(1.9)

Heat generated from inner heat source with in the
element  Qg

Heat generated within the element is given by

Qg  qg dx dy dz ...(1.10)

Substituting equation (1.8), (1.9) and (1.10) in
equation (1.2)




 

x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



 



 dx dy dz

                 qg dx dy dz   Cp 
T
t

 dx dy dz


x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



  qg   Cp 

T
t

When the material is isotropic,

kx  ky  kz  k   constant

 k 



 
2T

x2   
2T

y2
  

2T

z2  



  qg   Cp 

T
t

Divided by k,

2T

x2   
2T

y2   
2T

z2   
qg

k
  

 Cp

k
 
T
t

2T

x2   
2T

y2   
2T

z2   
qg

k
  

1


 
T
t ...(1.11)
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Qy  Qy  dy  

y

 



 ky 

T
y

 



 dx dy dz

...(1.6)

Qz  Qz  dz  

z

 



 kz 

T
z

 



 dx dy dz

...(1.7)

Add 1.5  1.6  1.7

 
 
Total heat conducted

in all direction
 



   


x

 



 kx 

T
x

 



 dx dy dz  


y

 



 ky 

T
y

 



 dx dy dz  


z

 



 kz 

T
z

 



 dx dy dz

  



 

x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



 



 dx dy dz

Total heat conducted into the element from all directions

  



 

x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



 



 dx dy dz...(1

.8)

Change in enthalpy of the element 



 
dh
dt

 




We know that,










 

Change in
enthalpy
of the
element

 










  










 
Mass 
of the
element

 









  










 

Specific
heat
of the
element

 










  










 
Rise in
temperature
of element

 










  m  Cp  
T
t

    dx  dy dz  Cp  
T
t

[. . . Mass = Density    Volume]




 
Change in enthalpy of
the element  




   Cp 

T
t

 dx dy dz
...(1.9)

Heat generated from inner heat source with in the
element  Qg

Heat generated within the element is given by

Qg  qg dx dy dz ...(1.10)

Substituting equation (1.8), (1.9) and (1.10) in
equation (1.2)




 

x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



 



 dx dy dz

                 qg dx dy dz   Cp 
T
t

 dx dy dz


x

 



 kx 

T
x

 



  


y

 



 ky 

T
y

 



  


z

 



 kz 

T
z

 



  qg   Cp 

T
t

When the material is isotropic,

kx  ky  kz  k   constant

 k 



 
2T

x2   
2T

y2
  

2T

z2  



  qg   Cp 

T
t

Divided by k,

2T

x2   
2T

y2   
2T

z2   
qg

k
  

 Cp

k
 
T
t

2T

x2   
2T

y2   
2T

z2   
qg

k
  

1


 
T
t ...(1.11)
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2 T  
qg

k
  

1


 
T
t ...(1.11)

It is a general three dimensional heat conduction
equation in cartesian coordinates

where,    Thermal diffusivity   
k

 Cp

Qx

Case (i)

When no internal heat generation is present 

ie when qg  0, then the equation 1.11 becomes

2T

x2   
2T

y2   
2T

z2   
1


 
T
t

2 T  
1


 
T
t

  Fourier equation
...(1.12)

Case (ii)

In steady state conditions, the temperature does not
change with respect to time. Then the conduction takes

place in the steady state ie 
T
t

  0. Hence the equation

1.11 becomes

2 T  
qg

k
  0    Poisson’s equation

...(1.13)

Case (iii)

No heat generation; steady state conditions. Then
the equation 1.11 becomes,

2 T  0   Laplace equation ...(1.14)

Case (iv)

Steady state, one-dimensional heat transfer,

2T

x2   
qg

k
  0

...(1.15)

Case (v)

Steady state, one dimensional, without internal heat
generation

2T

x2   0
...(1.16)

1.9 GENERAL DIFFERENTIAL EQUATION OF HEAT

CONDUCTION - CYLINDRICAL COORDINATES

A
Hdz

DQ

Qr
dr

r

B

C

G

F

Q (z+dz)

Q ( +d ) 

Elem ental
volu m e

d

E Q z

Q ( r + dr)

rd

Fig 1.4
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qg
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1
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It is a general three dimensional heat conduction
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2T
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The heat conduction equation in cartesian
coordinates can be used for rectangular solids like slabs,
cubes, etc. But for cylindrical shapes like rods and pipes,
it is convenient to use cylindrical coordinates. Fig. 1.4
shows a cylindrical coordinate system for general
conduction equation.

   Qr  Heat conducted to the element in the ‘r’ 

              direction through left face ABCD

Qg  Heat generated with in the element

dh
dt

  Change in ethalpy per unit time

Qr  dr  Heat conducted out of the element in ‘r’ 

            direction through the right face EFGH

By applying I law of thermodynamics,

Qr  Qg  
dh
dt

  Qr  dr ...(1.17)

Qr  qr A   k A 
T
r

  k r  d  dz 
T
r ...(1.18)

Where  A  area of element  r  d  dz

Qg  qg dr  r d  dz ...(1.19)

dh
dt

  mass of the element  specific heat     change in

              temperature of the element in time dt

  [ dr  rd   dz]  cp  
T
t ...(1.20)

Qr  dr  qr A  



 

r

 qr A 



 dr   kA 

T
r

  

r

 



  kA 

T
r

 



 dr

...(1.21)

where

    k  thermal conductivity of the material in the

                                   r  direction

T/r  temperature gradient in the r  direction

qr  heat flux in the r  direction at r, 

                i.e. at left face, i.e. at ABCD  W/m2

qg  internal energy generated per unit time and

             per unit volume W/m3

  density of the material kg/m3

T/r dr  change in temperature through distance dr

Substituting Eqs. (1.18), (1.9), (1.20) and (1.21) in
Eq. (1.17) we get

  kA 
T
r

  qg Adr    cp Adr 
T
t

  



 kA 

T
r

  

r

 



 kA 

T
r

 



 dr 





k d  dr  dz 

r

 



 r 

T
r

 



  qg r  d  dz  dr 

                                cp r  dz  dr  d 
T
t

k 



 r 
2T

r2   
T
r

 



  qg r    cp r 

T
t
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The heat conduction equation in cartesian
coordinates can be used for rectangular solids like slabs,
cubes, etc. But for cylindrical shapes like rods and pipes,
it is convenient to use cylindrical coordinates. Fig. 1.4
shows a cylindrical coordinate system for general
conduction equation.

   Qr  Heat conducted to the element in the ‘r’ 

              direction through left face ABCD

Qg  Heat generated with in the element

dh
dt

  Change in ethalpy per unit time

Qr  dr  Heat conducted out of the element in ‘r’ 

            direction through the right face EFGH

By applying I law of thermodynamics,

Qr  Qg  
dh
dt

  Qr  dr ...(1.17)

Qr  qr A   k A 
T
r

  k r  d  dz 
T
r ...(1.18)

Where  A  area of element  r  d  dz

Qg  qg dr  r d  dz ...(1.19)

dh
dt

  mass of the element  specific heat     change in

              temperature of the element in time dt

  [ dr  rd   dz]  cp  
T
t ...(1.20)

Qr  dr  qr A  



 

r

 qr A 



 dr   kA 

T
r

  

r

 



  kA 

T
r

 



 dr

...(1.21)

where

    k  thermal conductivity of the material in the

                                   r  direction

T/r  temperature gradient in the r  direction

qr  heat flux in the r  direction at r, 

                i.e. at left face, i.e. at ABCD  W/m2

qg  internal energy generated per unit time and

             per unit volume W/m3

  density of the material kg/m3

T/r dr  change in temperature through distance dr

Substituting Eqs. (1.18), (1.9), (1.20) and (1.21) in
Eq. (1.17) we get

  kA 
T
r

  qg Adr    cp Adr 
T
t

  



 kA 

T
r

  

r

 



 kA 

T
r

 



 dr 





k d  dr  dz 

r

 



 r 

T
r

 



  qg r  d  dz  dr 

                                cp r  dz  dr  d 
T
t

k 



 r 
2T

r2   
T
r

 



  qg r    cp r 

T
t
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


 
2 T

r2   
1
r

 
T
r

 



  

qg

k
  

 cp

k
 
T
t

1
r

 

r

 



 r 

T
r

 



  

qg

k
  

 cp

k
 
T
t

 













          ...(1.22)

Equation (1.22) is the one-dimensional cylindrical
coordinate time-dependent equation for heat conduction
with internal heat generation.

This Equation (1.22) can be reduced to different
cases as follows:

Case 1: Steady state, one-dimensional heat transfer with
internal heat generation

1
r

 

r

 



 r 

T
r

 



  

qg

k
  0

...(1.23)

Case 2: Steady state, one-dimensional, without internal
heat generation

1
r

 

r

 



 r 

T
r

 



  0

...(1.24)

Case 3: Unsteady state, one-dimensional, without heat
generation

1
r

 

r

 



 r 
T
r

 



  

1


 
T
t ...(1.25)

The three dimensional general heat conduction
equation in cylindrical coordinates is given as




 
2T

r2   
1
r

 
T
r

  
1

r2 
2T

2   
2T

t2  



  

qg

k
  

1


  
T
t ...(1.26)

1.20 Heat Conduction Through Plane Walls

Figure 1.85 shows the simplest heat transfer
problem. It is one-dimensional, steady state conduction in
a plane wall of homogeneous material having constant
thermal conductivity and with each face held at a
constant uniform temperature and without heat
generation. The y and z directions heat transfers are
neglected. Here, the temperature is only a function of x.

Here, 

L  thickness of the plane wall m

A  crosssectional area perpendicular to the rate

                   of heat transfer m2

k  thermal conductivity of plane wall 

                material W/m  K

T1, T2  constant uniform temperature at x  0, x  L, 

                   respectively C or K

dT

Q

T 1

T 2

x=0 x=L
L

k

x1 x2

T x

dx

Q Q T1 T2 Q

LR  = th kA

(a) (b)

Fig. 1.5 Heat conduction through a plane w all:
(a) m echanical system , (b) equivalent therm al resistance
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


 
2 T

r2   
1
r

 
T
r

 



  

qg

k
  

 cp

k
 
T
t

1
r

 

r

 



 r 

T
r

 



  

qg

k
  

 cp

k
 
T
t

 













          ...(1.22)

Equation (1.22) is the one-dimensional cylindrical
coordinate time-dependent equation for heat conduction
with internal heat generation.

This Equation (1.22) can be reduced to different
cases as follows:

Case 1: Steady state, one-dimensional heat transfer with
internal heat generation

1
r

 

r

 



 r 

T
r

 



  

qg

k
  0

...(1.23)

Case 2: Steady state, one-dimensional, without internal
heat generation

1
r

 

r

 



 r 

T
r

 



  0

...(1.24)

Case 3: Unsteady state, one-dimensional, without heat
generation

1
r

 

r

 



 r 
T
r

 



  

1


 
T
t ...(1.25)

The three dimensional general heat conduction
equation in cylindrical coordinates is given as




 
2T

r2   
1
r

 
T
r

  
1

r2 
2T

2   
2T

t2  



  

qg

k
  

1


  
T
t ...(1.26)

1.20 Heat Conduction Through Plane Walls

Figure 1.85 shows the simplest heat transfer
problem. It is one-dimensional, steady state conduction in
a plane wall of homogeneous material having constant
thermal conductivity and with each face held at a
constant uniform temperature and without heat
generation. The y and z directions heat transfers are
neglected. Here, the temperature is only a function of x.

Here, 

L  thickness of the plane wall m

A  crosssectional area perpendicular to the rate

                   of heat transfer m2

k  thermal conductivity of plane wall 

                material W/m  K

T1, T2  constant uniform temperature at x  0, x  L, 

                   respectively C or K

dT

Q

T 1

T 2

x=0 x=L
L

k

x1 x2

T x

dx

Q Q T1 T2 Q

LR  = th kA

(a) (b)

Fig. 1.5 Heat conduction through a plane w all:
(a) m echanical system , (b) equivalent therm al resistance
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The following equation gives the general heat
conduction in Cartesian coordinates, i.e.

2T

x2   
2T

y2   
2T

z2   
qg

k
  

1


 
T
t ...(1.27)

Assumptions

Steady state,       
T
t

  0

One-dimensional,  
2T

y2   
2T

z2   0

No heat generation,  qg  0

Substituting the above assumptions in Eq. (1.27),

2T

x2   0 or 
d2T

dx2   0
...(1.28)

Integrating Eq. (1.27) twice, we get

dT
dx

  C1 and T  C1 x  C2 ...(1.29)

where, C1 and C2 are arbitrary constants.

The values of these constants can be obtained from
the boundary conditions.

At x  0, T  T1; At x  L, T  T2

Substituting these conditions in Eq. (1.29), we get

T1  0  C2;  C2  T1

T2  C1 L  C2  C1 L  T1

 C1  T2  T1/L

Substituting C1 and C2 in Eq. 1.29,

T  
T2  T1 x

L
  T1

(1.30)

Equation (1.30) is the temperature distribution
equation for one-dimensional, steady state, no heat
generation in Cartesian coordinates. This equation shows
that the temperature distribution is linear and is
independent of thermal conductivity.

Differentiating Eq. (1.30) with respect to x,

dT
dx

  
d
dx

 



 
T2  T1 x

L
  T1 




  

T2  T1

L ...(1.31)

Substituting Eq. (1.31) in Fourier equation, i.e.

Q   kA 
dT
dx

   kA 
T2  T1

L
  

kA T1  T2
L ...(1.32)

or Q  
T1  T2

L
kA

  
T1  T2

Rth

...(1.33)

 Rth  
L

kA
  thermal resistance to heat conduction

Alternative method

Fourier equation can be written as

Qdx   kA dT

Integrating the above equation between the
boundaries of the plane, i.e. 0  x  L, T1  T  T2,
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The following equation gives the general heat
conduction in Cartesian coordinates, i.e.

2T

x2   
2T

y2   
2T

z2   
qg

k
  

1


 
T
t ...(1.27)

Assumptions

Steady state,       
T
t

  0

One-dimensional,  
2T

y2   
2T

z2   0

No heat generation,  qg  0

Substituting the above assumptions in Eq. (1.27),

2T

x2   0 or 
d2T

dx2   0
...(1.28)

Integrating Eq. (1.27) twice, we get

dT
dx

  C1 and T  C1 x  C2 ...(1.29)

where, C1 and C2 are arbitrary constants.

The values of these constants can be obtained from
the boundary conditions.

At x  0, T  T1; At x  L, T  T2

Substituting these conditions in Eq. (1.29), we get

T1  0  C2;  C2  T1

T2  C1 L  C2  C1 L  T1

 C1  T2  T1/L

Substituting C1 and C2 in Eq. 1.29,

T  
T2  T1 x

L
  T1

(1.30)

Equation (1.30) is the temperature distribution
equation for one-dimensional, steady state, no heat
generation in Cartesian coordinates. This equation shows
that the temperature distribution is linear and is
independent of thermal conductivity.

Differentiating Eq. (1.30) with respect to x,

dT
dx

  
d
dx

 



 
T2  T1 x

L
  T1 




  

T2  T1

L ...(1.31)

Substituting Eq. (1.31) in Fourier equation, i.e.

Q   kA 
dT
dx

   kA 
T2  T1

L
  

kA T1  T2
L ...(1.32)

or Q  
T1  T2

L
kA

  
T1  T2

Rth

...(1.33)

 Rth  
L

kA
  thermal resistance to heat conduction

Alternative method

Fourier equation can be written as

Qdx   kA dT

Integrating the above equation between the
boundaries of the plane, i.e. 0  x  L, T1  T  T2,
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we have

Q       
0

L

  dx   kA       
T1

T2

 dT

QL   kA T2  T1

or Q   
kA T2  T1

L
  

kA T1  T2
L ...(1.34)

Equations (1.32) and (1.34) are same.

The temperature distribution T x can be obtained
by integrating Fourier equation between 0 an x and T1

and T.

    Q       
0



  dx   kA       
T1

T

 dT

Q x  0   kA T  T1

Qx   kA T  T1

Q   
kA
x

 T  T1 ...(1.35)

Comparing Eqs. (1.32) and (1.35), we have

T2  T1

L
  

T  T1

x

T x  T2  T1 
x
L

  T1 ...(1.36)

Equations (1.30) and (1.36) are same.

1.21 THERMAL CONDUCTIVITY

Thermal conductivity of a material is defined as the
heat conducted through a body of unit area and unit
thickness in unit time with unit temperature difference.

1.21.1 Thermal Resistance

The heat transfer process is analogous to the flow
of electricity.

According to Ohm’s law,

Current I  
Voltage difference dv

Electrical resistance R

According to Fourier law,

Heat flow Q  
Temperature difference T

Thermal resistance 



 

L
kA

 




Q  
kA T1  T2

L

It can be rewritten as

Q  
T1  T2

L/kA

where 
L

kA
 is called thermal resistance Rth.

So, Rth  
L

kA

The reciprocal of thermal resistance is thermal
conductance.
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x
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Equations (1.30) and (1.36) are same.

1.21 THERMAL CONDUCTIVITY

Thermal conductivity of a material is defined as the
heat conducted through a body of unit area and unit
thickness in unit time with unit temperature difference.

1.21.1 Thermal Resistance

The heat transfer process is analogous to the flow
of electricity.

According to Ohm’s law,

Current I  
Voltage difference dv

Electrical resistance R

According to Fourier law,

Heat flow Q  
Temperature difference T

Thermal resistance 



 

L
kA

 




Q  
kA T1  T2

L

It can be rewritten as

Q  
T1  T2

L/kA

where 
L
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 is called thermal resistance Rth.

So, Rth  
L

kA

The reciprocal of thermal resistance is thermal
conductance.
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So, Q  
T
R

R for different figures are given in page No: 44, 45,
46 and 47 of HMT data book by CPK.

According to Newton’s law of cooling,

Heat transfer through left face by convection is
given by

Q  ha A Ta  T1

where

ha  Convective heat transfer coefficient in W/m2 K 

                                in left side

A  Area exposed to heat transfer in m2 

                     surface area of heat transfer

Ta - Surrounding fluid temperature in left side in  K

T1 - Temperature of surface (extreme left surface)

Similarly, heat transfer through right face by
convection is given by,

Q  hb A T2  Tb

where hb  Convective heat transfer coefficient in rightside

T2  Temperature of surface extreme right surface

Tb  Surrounding fluid temp in right face

1.22 Heat conduction through composite walls with
fluid on both sides (with inside and outside
convection)

A composite walk is composed of several different
layers, each having a different thermal conductivity.

QQT1 T2

R = th   

L

KAFig. 1.6

T1 T 2

ha

Ta
A A

hb

Tb

Q Convection Q Convection

Fig. 1.7

T 1

T 2

T 3 T 4

T a

T b

k 1 k 2 k 3

L 1 L2 L 3

Q
Q

ha

hb

(a)

Q

Ta T 1 T 2 T 3
T 4 T b

R bR 3R 2R 1R a

(b)
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Consider a composite wall made up of three parallel
layers as shown in Figure 1.8.

Since the rate of heat transfer through each layer
(slab) is same, we have

Q  
k1 A T1  T2

L1
  

k2 A T2  T3
L2

  
k3 A T3  T4

L3
 ...(1.37)

In most of the science and engineering applications,
fluid flows on both sides of the composite walls.

Hence, we should consider convection on both sides.
Then,

Q  ha A Ta  T1  
k1 A T1  T2

L1
  

k2 A T2  T3
L2

  
k3 A T3  T4

L3
  Ahb T4  Tb

Equation (1.38) can be written as ...(1.38)

Ta  T1  
Q

ha A
  QRa

...(1.39)

T1  T2  
QL1

k1 A
  QR1

...(1.40)

T2  T3  
QL2

k2 A
  QR2

...(1.40)

T3  T4  
QL3

k3 A
  QR3

...(1.41)

T4  Tb  
Q

hb A
  QRb

...(1.42)

where, Ra and Rb are the thermal resistance of

convection. Adding Eqs. from 1.38 to 1.42, we get

Ta  Tb  Q Ra  R1  R2  R3  Rb

or Q  
Ta  Tb

Ra  R1  R2  R3  Rb ...(1.43)

For n number of slabs,

Q  heat flow  
Ta  Tb

Ra  Rb   
i  1

n

Ri

  
overall temperature difference

thermal resistance
  

 T0

 R ...(1.44)

[Refer HMT Data book Page 45 for formula]

 Q  
A Ta  Tb




 

1
ha

  
L1

k1
  

L2

k2
  

L3

k3
  

1
hb

 




  
A Ta  Tb










 

1
ha

  
1
hb

   
i  1

n
Li

ki
 







  UA Ta  Tb ...(1.45)

where U  overall heat transfer coefficient

i.e. U  
1




 

1
ha

  
1
hb

  
L1

k1
  

L2

k2
  

L3

k3
 




  
1










 

1
ha

  
1
hb

   
i  1

n
Li

ki
 





...(1.46)

An electrical analogy is used to solve complex
problems involving both series and parallel thermal
resistance. Figure 1.9 shows a complex problem.
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Since the rate of heat transfer through each layer
(slab) is same, we have

Q  
k1 A T1  T2

L1
  

k2 A T2  T3
L2

  
k3 A T3  T4

L3
 ...(1.37)

In most of the science and engineering applications,
fluid flows on both sides of the composite walls.

Hence, we should consider convection on both sides.
Then,

Q  ha A Ta  T1  
k1 A T1  T2

L1
  

k2 A T2  T3
L2

  
k3 A T3  T4

L3
  Ahb T4  Tb

Equation (1.38) can be written as ...(1.38)

Ta  T1  
Q

ha A
  QRa

...(1.39)
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Q
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where, Ra and Rb are the thermal resistance of

convection. Adding Eqs. from 1.38 to 1.42, we get

Ta  Tb  Q Ra  R1  R2  R3  Rb

or Q  
Ta  Tb

Ra  R1  R2  R3  Rb ...(1.43)

For n number of slabs,

Q  heat flow  
Ta  Tb

Ra  Rb   
i  1

n

Ri

  
overall temperature difference

thermal resistance
  

 T0

 R ...(1.44)

[Refer HMT Data book Page 45 for formula]

 Q  
A Ta  Tb




 

1
ha

  
L1

k1
  

L2

k2
  

L3

k3
  

1
hb

 




  
A Ta  Tb










 

1
ha

  
1
hb

   
i  1

n
Li

ki
 







  UA Ta  Tb ...(1.45)

where U  overall heat transfer coefficient

i.e. U  
1




 

1
ha

  
1
hb

  
L1

k1
  

L2

k2
  

L3

k3
 




  
1










 

1
ha

  
1
hb

   
i  1

n
Li

ki
 





...(1.46)

An electrical analogy is used to solve complex
problems involving both series and parallel thermal
resistance. Figure 1.9 shows a complex problem.
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 R  Ra  
1

1
R1

  
1

R2

  
1

1
R3

  
1

R4
  

1
R5

  Rb  
1

UA

...(1.47)

Q  
Ta  Tb

 R ...(1.48)

1.23 SOLVED PROBLEMS

Problem 1.1: Find  the rate of heat transfer per unit area
through a copper plate 50 mm thick, whose one face is

maintained at 400C and otherface at 75C. Take thermal

conductivity of copper as 370 W/mC.

Solution

Given:  L  0.05 m ; A  1 m2 

k  370 W/mC

T1  400 C 

T2  75 C 

Q
A

  q  
T
R

Refer Pg. 44 for formula.

R  
L

kA

 
0.05

370  1

R  1.351   10 4  K/W

q  
T
R

  
T1  T2

R
  

400  75

1.351   10 4

q  2405.63  kW/m2.

Problem 1.2: A furnace wall is made up of three layers,
one is fire brick, one is insulating layer and one is red brick.
The inner and outer surfaces temperature are at

870C and 40C respectively. The respective conductive heat

transfer coefficients of the layers are 1.163, 0.14 and 0.872

W/mC and the thicknesses are 22 cm, 7.5 cm and 11 cm.

Find the rate of heat loss per sq. meter and the interface
temperatures.

T1 T 2

0.05m

400 C
o

75 C
o

k 1

k2

k 3

L1 L 2 L 3

T a

ha

T b

hb

k 4 k6

k 5

T 1
T 2

T 3
(a)

T 4

R b

R 3

R 2

R 1

T b

R 4

R 5

R 6
T a R a

Q

(Refer page 47 of H M T data book)
(b)

Fig. 1.9 . (a) A  m ix of series and  parallel com posite  w alls 
and (b) the equivalent therm al resistance circuit
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 R  Ra  
1

1
R1

  
1

R2

  
1

1
R3
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R5

  Rb  
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Problem 1.2: A furnace wall is made up of three layers,
one is fire brick, one is insulating layer and one is red brick.
The inner and outer surfaces temperature are at

870C and 40C respectively. The respective conductive heat

transfer coefficients of the layers are 1.163, 0.14 and 0.872

W/mC and the thicknesses are 22 cm, 7.5 cm and 11 cm.

Find the rate of heat loss per sq. meter and the interface
temperatures.
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Solution 

From Pg. 45-CPK-Data book

Q  
T
R

Thermal Resistance R 

R for composite wall   
1
A

 



 

1
ha

  
L1

k1
  

L2

k2
  

L3

k3
  

1
hb

 




Since we are not considering convective heat

transfer, we can ignore 
1
ha

 and 
1
hb

 (i.e., 
1
ha

  0 and 
1
hb

  0)

Also A  1 m2

So R  
1
A

 



 
L1

k1
  

L2

k2
  

L3

k3
 




 
1
1

 



 

0.22
1.163

  
0.075
0.14

  
0.11

0.872
 




     0.8510 K/W

Q  
T1  T4

R
  

870  40
0.8510

  
830

0.8510
  975.3  W

q  
Q
A

  
Q
1

  975.3  W/m2

For Interface Temperature

From Pg. 45, Use T1  Q  R1  975.3  R1

T1  T2  975.3   R1

R1  
L1

k1A1
  

0.22
1.163  1

 0.1892

870  T2  975.3   0.1892  184.5

T2  870  184.5

 685.5  C

T2  685.5  C 

Similarly, 

T2  T2  T3

 Q  R2 

   R2  
L2

k2A2
  

0.075
0.14  1

  0.5357

T2  T3  Q  R2

685.51   T3  975.3   0.5357

T3  685.51  975.3   0.5357 

T3  163.03  C.

F urna ce
side

Q Q
T  =  870  C1

o
T 2 T 3

T =  40 C4
o

Surroundin gs

L 1 L 2 L 3

0 .22m 0.11m

k =1.1 631 k =0.1 42 k =0.8 723

T1

0.22m

T 2=?

k1=1 .163

L1

T1= 870
o
C

T2 T =?3

L =
0.075m

1 
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Solution 

From Pg. 45-CPK-Data book

Q  
T
R

Thermal Resistance R 

R for composite wall   
1
A

 



 

1
ha

  
L1

k1
  

L2

k2
  

L3

k3
  

1
hb

 




Since we are not considering convective heat

transfer, we can ignore 
1
ha

 and 
1
hb

 (i.e., 
1
ha

  0 and 
1
hb

  0)

Also A  1 m2

So R  
1
A

 



 
L1

k1
  

L2

k2
  

L3

k3
 




 
1
1

 



 

0.22
1.163

  
0.075
0.14

  
0.11

0.872
 




     0.8510 K/W

Q  
T1  T4

R
  

870  40
0.8510

  
830

0.8510
  975.3  W

q  
Q
A

  
Q
1

  975.3  W/m2

For Interface Temperature

From Pg. 45, Use T1  Q  R1  975.3  R1

T1  T2  975.3   R1

R1  
L1

k1A1
  

0.22
1.163  1

 0.1892

870  T2  975.3   0.1892  184.5

T2  870  184.5

 685.5  C

T2  685.5  C 

Similarly, 

T2  T2  T3

 Q  R2 

   R2  
L2

k2A2
  

0.075
0.14  1

  0.5357

T2  T3  Q  R2

685.51   T3  975.3   0.5357

T3  685.51  975.3   0.5357 

T3  163.03  C.

F urna ce
side

Q Q
T  =  870  C1

o
T 2 T 3

T =  40 C4
o

Surroundin gs

L 1 L 2 L 3

0 .22m 0.11m

k =1.1 631 k =0.1 42 k =0.8 723

T1

0.22m

T 2=?

k1=1 .163

L1

T1= 870
o
C

T2 T =?3

L =
0.075m

1 
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Problem 1.3: A composite wall is made of 15 mm thick of
steel plate lined inside with Silica brick-200 mm thick and
on the outside magnesite brick-250 mm thick. The inner and

outer surface temperature are 750C and 100C respectively.

The k for silica, steelplate and magnesite brick are

8 
W

mC
, 68 

W
mC

 and 20 
W

mC
 respectively. Determine heat flux,

interface temperatures.

Solution

Heat flux  
Q
A

  q

From Pg 45 of CPK

R  
1
A

 



 
L1

k1
  

L2

k2
  

L3

k3
 



    


 . . .   

1
ha

  0 and 
1
hb

  0 




   
1
1

 



 
0.2
8

  
0.015

68
  

0.25
20

 




 0.03772  K/W

Q  
Toverall

R

 
T1  T4

R
  

750  100
0.03772

  17232  W

Q  17232  W

To Find Interface Temperatures

To find T2

T1  Q  R1 

T1  T2  17232   R1

R1  
1
A

 



 
L1

k1
 


 [. . . A  1 m2]

 
1
1

 



 
0.2
8

 




 0.025   K/W

T1  T2  750  T2  Q  R1

 17232   0.025

T2  750  17232  0.025   319.2C

T2  319.2 C.

To find T3

T2  T3  Q  R2

R2  
L2

Ak2
  

0.015
1  68

  2.205  10 4 K/W

(1) (2) (3)

T =750 C1
o

T2 T3 T =100 C4
o

S ilica  Brick Steel
pla te

M agnesite
Brick

k = 81 k = 682
k = 203

0.2m 0.015m 0.25
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Problem 1.3: A composite wall is made of 15 mm thick of
steel plate lined inside with Silica brick-200 mm thick and
on the outside magnesite brick-250 mm thick. The inner and

outer surface temperature are 750C and 100C respectively.

The k for silica, steelplate and magnesite brick are

8 
W

mC
, 68 

W
mC

 and 20 
W

mC
 respectively. Determine heat flux,

interface temperatures.

Solution

Heat flux  
Q
A

  q

From Pg 45 of CPK

R  
1
A

 



 
L1

k1
  

L2

k2
  

L3

k3
 



    


 . . .   

1
ha

  0 and 
1
hb

  0 



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1
1

 



 
0.2
8

  
0.015

68
  

0.25
20

 


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 0.03772  K/W

Q  
Toverall

R

 
T1  T4

R
  

750  100
0.03772

  17232  W

Q  17232  W

To Find Interface Temperatures

To find T2

T1  Q  R1 

T1  T2  17232   R1

R1  
1
A

 



 
L1

k1
 


 [. . . A  1 m2]

 
1
1

 



 
0.2
8

 




 0.025   K/W

T1  T2  750  T2  Q  R1

 17232   0.025

T2  750  17232  0.025   319.2C

T2  319.2 C.

To find T3

T2  T3  Q  R2

R2  
L2

Ak2
  

0.015
1  68

  2.205  10 4 K/W

(1) (2) (3)

T =750 C1
o

T2 T3 T =100 C4
o

S ilica  Brick Steel
pla te

M agnesite
Brick

k = 81 k = 682
k = 203

0.2m 0.015m 0.25
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319.2   T3  17232   2.205   10 4

T3  319.2  17232   2.205  10 4    315.4  C

T3  315.4 C

Alternate Method : To find T3

Q  
T1  T3

R1  R2

17232   
750  T3

0.025  2.205   10 4

17232  0.025   2.205   10 4  750  T3

T3  750  [ 17232 0.025   2.205   10 4 ]

 315.4 C.

To find T2




 R3  

0.25
1  20

  0.0125  




Q  
T2  T4

R2  R3

17232   
T2  100

2.205   10 4  0.0125

17232 2.205   10 4  0.0125   T2  100

T2  17232 2.205   10 4  0.0125  100

   319.19 C.

Problem 1.4: The temperature distribution through a
furnace wall consisting of fire brick, block insulation and
steel plate is given below. Determine heat flux, thermal
conductivity of block insulation and steel plate, heat transfer
coefficient for gas side and air side.

Solution

Note

From hot gas side to fire brick, heat is transferred
by convection. So

Qconvection  haA Ta  T1

where ha  convective heat transfer coefficient for gas

side.

Similarly, from steel plate to air side, heat is
transferred by convection.

So, Qconvection  hbA T3  Tb

where hb  convective heat transfer coefficient for air side.

From HMT Table, Pg No. 45,

(1) (2) (3)

T =7581
o
C T =727 C 2

o T =68.53
o
C T =68.484

o
C

Fire B rick S teel
pla te

63.5m m 127 mm

Block Insulato r

airs id e 

T =760 Ca
o

Hot
gas
side

T =26.5 Cb
o

K =1.131 K 2

K 3
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319.2   T3  17232   2.205   10 4

T3  319.2  17232   2.205  10 4    315.4  C

T3  315.4 C

Alternate Method : To find T3

Q  
T1  T3

R1  R2

17232   
750  T3

0.025  2.205   10 4

17232  0.025   2.205   10 4  750  T3

T3  750  [ 17232 0.025   2.205   10 4 ]

 315.4 C.

To find T2


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
 R3  

0.25
1  20

  0.0125  
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T2  T4
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2.205   10 4  0.0125
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T2  17232 2.205   10 4  0.0125  100

   319.19 C.

Problem 1.4: The temperature distribution through a
furnace wall consisting of fire brick, block insulation and
steel plate is given below. Determine heat flux, thermal
conductivity of block insulation and steel plate, heat transfer
coefficient for gas side and air side.

Solution

Note

From hot gas side to fire brick, heat is transferred
by convection. So

Qconvection  haA Ta  T1

where ha  convective heat transfer coefficient for gas

side.

Similarly, from steel plate to air side, heat is
transferred by convection.

So, Qconvection  hbA T3  Tb

where hb  convective heat transfer coefficient for air side.

From HMT Table, Pg No. 45,

(1) (2) (3)
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o T =68.53
o
C T =68.484

o
C

Fire B rick S teel
pla te
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o
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Q  
Toverall

R

where R for composite wall  
1
A

 



 

1
ha

  
L1

k1
  

L2

k2
  

L3

k3
  

1
hb

 




A  1 m2 not given

To find Q

Q  
T1  T2

R1

R1  
L1

k1A1
  

0.0635
1.13  1

  0.0562  K/W

Q  
T1  T2

R1
  

758  727
0.0562

 551.6535 W/m2

Q  551.65  W/m2

To find k2

Q  
T2  T3

R2

551.65   
727  68.5

R2

R2  1.1937 K/W

R2  
L2

k2A2

k2  
L2

R2A2
  

0.127
1.1937   1

 0.1064  W/m K

To find k3

   Q  
T3  T4

R3

551.65   
68.5  68.48

R3

R3  3.625  10 4

R3  
L3

k3A3

k3  
L3

R3A3

 
0.00635

3.625   10 4  1
  175.15  W/m K

(1) (2) (3)

T =7581 T =7272 T =68.53 T =68.484

Fire Brick Steel
pla te

0.0635 0.127m

Block Insulator

airside 

T a

Hot
gas
side

T b

R a R 1 R 2 R 3 R b
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Q  
Toverall

R

where R for composite wall  
1
A

 



 

1
ha

  
L1

k1
  

L2

k2
  

L3

k3
  

1
hb

 




A  1 m2 not given

To find Q

Q  
T1  T2

R1

R1  
L1

k1A1
  

0.0635
1.13  1

  0.0562  K/W

Q  
T1  T2

R1
  

758  727
0.0562

 551.6535 W/m2

Q  551.65  W/m2

To find k2

Q  
T2  T3

R2

551.65   
727  68.5

R2

R2  1.1937 K/W

R2  
L2

k2A2

k2  
L2

R2A2
  

0.127
1.1937   1

 0.1064  W/m K

To find k3

   Q  
T3  T4

R3

551.65   
68.5  68.48

R3

R3  3.625  10 4

R3  
L3

k3A3

k3  
L3

R3A3

 
0.00635

3.625   10 4  1
  175.15  W/m K

(1) (2) (3)

T =7581 T =7272 T =68.53 T =68.484

Fire Brick Steel
pla te

0.0635 0.127m

Block Insulator

airside 

T a

Hot
gas
side

T b

R a R 1 R 2 R 3 R b
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So k3  k for steel  175.15  W/m K.

To find ha

Qconduction  Qconvection from gas side to fire brick

 551.65  W

Qconvection  haA Ta  T1

551.65   ha  1  760  758

ha  
551.65

760  758

ha  275.83  W/m2C.

To find hb

Qconvection from steel plate to air  hb  A  T4  Tb

551.65   hb  1  68.48   26.5

hb  13.141 W/m2C.

Problem 1.5: A composite wall is for med of a 2.5 cm

copper plate k  355 W/mK) a 3.2 mm layer of asbestors

k  110 W/mK) and a 5 cm layer of fiber plate

(k  0.049 W/mK).  The wall is subjected to an overall

temperature difference of 560C on the Cu plate side and

0C on the fiber plate side. Estimate the heat flux through

this composite wall and interface temperature between
asbestos and fiber plate.       (Apr/May - 2008 - AU)

Given: 

Thickness of Cu plate L1  2.5 cm  0.025  m

Thickness of asbestos L2  3.2 mm  0.0032  m

Thickness of fiber plate
L3  5 cm  0.05 m

Thermal conductivity
of Cu plate 
k1  355 W/mK

Thermal conductivity
of asbestos 
k2  0.110  W/mK

Thermal conductivity of fiber plate k3  0.49 W/mK

Overall temperature difference,  T  560C

From HMT DB page 44.

Heat flux 
Q
A

  
 T

L1

k1
  

L2

k2
  

L3

k3

  
560

0.025
355

  
0.0032
0.110

  
0.05

0.049

  533.55  W/m2

Q
A

  
T1  T2

L1

k1

  
T2  T3

L2

k2

  
T3  T4

L3

k3

533.55   
T3  0




 

0.05
0.049

 




Interface temperature between asbestos and fiber
plate T3  544.43C

T 1=560 C
o

T2

T3

Cu
asbestos

fiber

T4 = 0 C
o

2.5cm 3.2
m m

5cm

Conduction 1.35 Heat and Mass Transfer1.36

Downloaded from Ktunotes.in

http://ktunotes.in/


So k3  k for steel  175.15  W/m K.

To find ha

Qconduction  Qconvection from gas side to fire brick

 551.65  W

Qconvection  haA Ta  T1

551.65   ha  1  760  758

ha  
551.65

760  758

ha  275.83  W/m2C.
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Qconvection from steel plate to air  hb  A  T4  Tb

551.65   hb  1  68.48   26.5

hb  13.141 W/m2C.

Problem 1.5: A composite wall is for med of a 2.5 cm

copper plate k  355 W/mK) a 3.2 mm layer of asbestors

k  110 W/mK) and a 5 cm layer of fiber plate

(k  0.049 W/mK).  The wall is subjected to an overall

temperature difference of 560C on the Cu plate side and

0C on the fiber plate side. Estimate the heat flux through

this composite wall and interface temperature between
asbestos and fiber plate.       (Apr/May - 2008 - AU)

Given: 

Thickness of Cu plate L1  2.5 cm  0.025  m

Thickness of asbestos L2  3.2 mm  0.0032  m

Thickness of fiber plate
L3  5 cm  0.05 m

Thermal conductivity
of Cu plate 
k1  355 W/mK

Thermal conductivity
of asbestos 
k2  0.110  W/mK

Thermal conductivity of fiber plate k3  0.49 W/mK

Overall temperature difference,  T  560C

From HMT DB page 44.

Heat flux 
Q
A

  
 T

L1

k1
  

L2

k2
  

L3

k3

  
560

0.025
355

  
0.0032
0.110

  
0.05

0.049

  533.55  W/m2

Q
A

  
T1  T2

L1

k1

  
T2  T3

L2

k2

  
T3  T4

L3

k3

533.55   
T3  0




 

0.05
0.049

 




Interface temperature between asbestos and fiber
plate T3  544.43C

T 1=560 C
o

T2

T3

Cu
asbestos

fiber

T4 = 0 C
o

2.5cm 3.2
m m

5cm
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Problem 1.6: A 200 mm common brick k2  0.66 W/mC
with 150 mm magnesite brick k1  3.8 W/mC lined inside

the common brick. The combustion gases are at 1335C and

surrounding air temperature is at 45C. Heat transfer

coefficient of gas side and air side are 34.1 W/m2C and

19.3 W/m2C respectively.  Determine

(a) Heat transfer /sq. meter (Heat flux)
(b) Max. temperature to which common brick is subjected to

Solution

convection from gas to MB  haA Ta  T1 

Qconvection from CB to air  hbA T3  Tb

To find q – heat flux

Q  
Toverall

R

R  
1
A

 



 

1
ha

  
L1

k1
  

L2

k2
  

1
hb

 




 
1
1

 



 

1
34.1

  
0.15
3.8

  
0.2

0.66
  

1
19.3

 




       0.4236  K/W

Q  
1335  45

0.4236
  3045.02

Q  3045.02  W/m2.

To find max temperature of common brick

Max. temperature of common brick is T2. To find

T2, first of all, we have to find T1.

To find T1

Qconduction  Qconvection

    Q  3045.02  haATa  T1

 34.1  11335  T1

1335  T1  
3045.02

34.1

T1  1335  



 
3045.02

34.1
 



  1245.69 C

T1  1245.69 C.

    Q  
T1  T2

R1

     R1  
L1

k1A1
  

0.15
3.8  1

  0.03947  K/W

Q  3045.02  
1245.69   T2

0.03947

1245.69   T2  3045.02   0.03947

 120.198

(1) (2)

T1 T2 T 3

Com m on
Brick

M agnesite
Brick

T =1335a
o
C

Hot gas
side

air
side

h  = 

34.1 /m
a

 

2 W C

T  = 45b
o
C

150mm 200mm h

=19.3 /m
b

2
W C

K =3.81 K =0.662
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Problem 1.6: A 200 mm common brick k2  0.66 W/mC
with 150 mm magnesite brick k1  3.8 W/mC lined inside

the common brick. The combustion gases are at 1335C and

surrounding air temperature is at 45C. Heat transfer

coefficient of gas side and air side are 34.1 W/m2C and

19.3 W/m2C respectively.  Determine

(a) Heat transfer /sq. meter (Heat flux)
(b) Max. temperature to which common brick is subjected to

Solution

convection from gas to MB  haA Ta  T1 

Qconvection from CB to air  hbA T3  Tb

To find q – heat flux

Q  
Toverall

R

R  
1
A

 



 

1
ha

  
L1

k1
  

L2

k2
  

1
hb

 




 
1
1

 



 

1
34.1

  
0.15
3.8

  
0.2

0.66
  

1
19.3

 




       0.4236  K/W

Q  
1335  45

0.4236
  3045.02

Q  3045.02  W/m2.

To find max temperature of common brick

Max. temperature of common brick is T2. To find

T2, first of all, we have to find T1.

To find T1

Qconduction  Qconvection

    Q  3045.02  haATa  T1

 34.1  11335  T1

1335  T1  
3045.02

34.1

T1  1335  



 
3045.02

34.1
 



  1245.69 C

T1  1245.69 C.

    Q  
T1  T2

R1

     R1  
L1

k1A1
  

0.15
3.8  1

  0.03947  K/W

Q  3045.02  
1245.69   T2

0.03947

1245.69   T2  3045.02   0.03947

 120.198

(1) (2)

T1 T2 T 3

Com m on
Brick

M agnesite
Brick

T =1335a
o
C

Hot gas
side

air
side

h  = 

34.1 /m
a

 

2 W C

T  = 45b
o
C

150mm 200mm h

=19.3 /m
b

2
W C

K =3.81 K =0.662
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T2  1245.69   120.198   1125.492   C

T2  1125.492 C

To find T3

Q  3045.02   hbA T3  Tb

3045.02   19.3  1T3  45

T3  45  
3045.02

19.3
 157.77

T3  157.77   45  202.77 C

T3  202.77 C

Problem 1.7.: Air at 20C flows over a plate of

50 cm  60 cm  2 cm maintained at 220C. The convection

heat transfer coefficient is 25 W/m2C. Calculate heat loss/hr

if the heat loss by radiation from the plate is 200 W in
addition to the above heat loss. Determine inside plate
temperature. The thermal conductivity of plate is

50 W/mC.              (Oct-2000, Madras University)

Solution

  Qconvection  hA Tp  Ta

 25  0.5  0.6 220  20

 1500 W  1500 J/sec

Qconvection/hr  1500  3600

 5.4  106 J/hr

Total heat transfer from the plate  Qconvection  Qradiation

 1500  200 

 1700 W  6.12  106 J/hr

1700 W of heat is conducted from the inner side of
plate to outer side of plate.

Qconducted  1700 Watts

 
Tinner  Tplate outer

R

    R  
L

kA

     
0.02

50  0.5  0.6
  1.333   10 3 K/W

1700  
Tinner  220

1.333   10 3

Tinner  1700  1.333   10 3  220

 222.26666 C

Tinner  222.27 C.

Problem 1.8: A furnace wall is made up of 7.5 cm thick
Fire clay brick and 0.65 cm mild steel plate. The inner

surface is exposed to hot gases at 650C. Outside air

T  = 220 CP
o

Q R ad ia tion

Q  C onvec tion

T  = 20 Cair
o

T inne r 60cm

0.02mQ conduc tion

50cm

h = 25
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T2  1245.69   120.198   1125.492   C

T2  1125.492 C

To find T3

Q  3045.02   hbA T3  Tb

3045.02   19.3  1T3  45

T3  45  
3045.02

19.3
 157.77

T3  157.77   45  202.77 C

T3  202.77 C

Problem 1.7.: Air at 20C flows over a plate of

50 cm  60 cm  2 cm maintained at 220C. The convection

heat transfer coefficient is 25 W/m2C. Calculate heat loss/hr

if the heat loss by radiation from the plate is 200 W in
addition to the above heat loss. Determine inside plate
temperature. The thermal conductivity of plate is

50 W/mC.              (Oct-2000, Madras University)

Solution

  Qconvection  hA Tp  Ta

 25  0.5  0.6 220  20

 1500 W  1500 J/sec

Qconvection/hr  1500  3600

 5.4  106 J/hr

Total heat transfer from the plate  Qconvection  Qradiation

 1500  200 

 1700 W  6.12  106 J/hr

1700 W of heat is conducted from the inner side of
plate to outer side of plate.

Qconducted  1700 Watts

 
Tinner  Tplate outer

R

    R  
L

kA

     
0.02

50  0.5  0.6
  1.333   10 3 K/W

1700  
Tinner  220

1.333   10 3

Tinner  1700  1.333   10 3  220

 222.26666 C

Tinner  222.27 C.

Problem 1.8: A furnace wall is made up of 7.5 cm thick
Fire clay brick and 0.65 cm mild steel plate. The inner

surface is exposed to hot gases at 650C. Outside air

T  = 220 CP
o

Q R ad ia tion

Q  C onvec tion

T  = 20 Cair
o

T inne r 60cm

0.02mQ conduc tion

50cm

h = 25
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temperature is 27C. The convection and radiation heat

transfer coefficient for the gas side is 60 W/m2C. The

convection heat transfer coefficient for the air side is

8 W/m2C. Determine heat loss/ m2-hr surface temperature

of steel plate.             (Apr-2000, Madras University)

Solution

h   convective and radiation heat transfer
coefficient.

From Pg 1 HMT Data book - CPK

Steel (Carbon steel) for 0.5 C

k  53.6 W/mC, So k2  53.6

From Pg 11 HMT Data book - For Fire clay Brick

k  1.5 W/mC, So k1  1.5 W/mC

To find Q

     Q  
Toverall

R

R  
1
A

 



 
1
hi

  
L1

k1
  

L2

k2
  

1
h0

 




 
1
1

 



 

1
60

  
0.075

1.5
  

0.65  10 2

53.6
  

1
8

 




 0.192 K/W

 Q  
T1  T0

R

 
650  27

0.192
  3245 W/m2

Q  3245 W/m2

Q  Heat transfer  3245 
J

sec.m2

Heat transfer Q/hr  3245  3600 
J

hr  m2

          11.68   106 J /hr m2

To find surface temperature of mild steel T3

     Qconvected  h0A T3  T0

Qconducted  Qconvected  3245  8  1  T3  27

T3  27  
3245

8
  405.62

T3  432.63 C

Problem 1.9.: A composite wall is made up of three layers
15 cm, 10 cm and 12 cm of thickness. The first layer is

made up of material with k  1.458 W/mC for 60% of area
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temperature is 27C. The convection and radiation heat

transfer coefficient for the gas side is 60 W/m2C. The

convection heat transfer coefficient for the air side is

8 W/m2C. Determine heat loss/ m2-hr surface temperature

of steel plate.             (Apr-2000, Madras University)

Solution

h   convective and radiation heat transfer
coefficient.

From Pg 1 HMT Data book - CPK

Steel (Carbon steel) for 0.5 C

k  53.6 W/mC, So k2  53.6

From Pg 11 HMT Data book - For Fire clay Brick

k  1.5 W/mC, So k1  1.5 W/mC

To find Q

     Q  
Toverall

R

R  
1
A

 



 
1
hi

  
L1

k1
  

L2

k2
  

1
h0

 




 
1
1

 



 

1
60

  
0.075

1.5
  

0.65  10 2

53.6
  

1
8

 




 0.192 K/W

 Q  
T1  T0

R

 
650  27

0.192
  3245 W/m2

Q  3245 W/m2

Q  Heat transfer  3245 
J

sec.m2

Heat transfer Q/hr  3245  3600 
J

hr  m2

          11.68   106 J /hr m2

To find surface temperature of mild steel T3

     Qconvected  h0A T3  T0

Qconducted  Qconvected  3245  8  1  T3  27

T3  27  
3245

8
  405.62

T3  432.63 C

Problem 1.9.: A composite wall is made up of three layers
15 cm, 10 cm and 12 cm of thickness. The first layer is

made up of material with k  1.458 W/mC for 60% of area
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and rest of the material with k  2.5 
W

mC
. The second layer

is made with material of k  12.5 W/mC for 50% of the area

and the rest of the material with k  18.5 W/mC. The third

layer is of single material with k  0.76 W/mC. The

composite slab is exposed to warm air at 26C and cold air

of  20C on the other side. The inner and outer heat transfer

coefficients are 15 W/m2C and 20 W/m2C. Determine heat

flux rate and interface temperatures. (Oct-96, Madras
University)

Solution

Req  Equivalent R

1
Req

  
1

Ra
  

1
Rb

1
Req

  
Ra  Rb

RaRb
 or Req  

RaRb

Ra  Rb

Assume A  1 m2 (Since surface area is not given).

Refer Pg 47 of  CPK - Data book

To find R1

Ra  
La

kaAa
  

0.15
1.45  0.6

  0.17241  K/W

Rb  
Lb

kbAb
  

0.15
2.5  0.4

  0.15 K/W.

R1  
RaRb

Ra  Rb
  

0.17241   0.15
0.17241   0.15

  0.080213  K/W

R1  0.080213  K/W.

To find R2

Rc  
Lc

kcAc
  

0.1
12.5  0.5

  0.016  K/W

Rd  
Ld

kdAd
  

0.1
18.5  0.5

  0.01081  K/W

R2  
RcRd

Rc  Rd
  

0.016  0.01081
0.016   0.01081

 6.4513   10 3

To find R3

R3  
Le

keAe
  

0.12
0.76  1

  0.15789  K/W

Conduction 1.43 Heat and Mass Transfer1.44

Downloaded from Ktunotes.in

http://ktunotes.in/


and rest of the material with k  2.5 
W

mC
. The second layer

is made with material of k  12.5 W/mC for 50% of the area

and the rest of the material with k  18.5 W/mC. The third

layer is of single material with k  0.76 W/mC. The

composite slab is exposed to warm air at 26C and cold air

of  20C on the other side. The inner and outer heat transfer

coefficients are 15 W/m2C and 20 W/m2C. Determine heat

flux rate and interface temperatures. (Oct-96, Madras
University)

Solution

Req  Equivalent R

1
Req

  
1

Ra
  

1
Rb

1
Req

  
Ra  Rb

RaRb
 or Req  

RaRb

Ra  Rb

Assume A  1 m2 (Since surface area is not given).

Refer Pg 47 of  CPK - Data book

To find R1

Ra  
La

kaAa
  

0.15
1.45  0.6

  0.17241  K/W

Rb  
Lb

kbAb
  

0.15
2.5  0.4

  0.15 K/W.

R1  
RaRb

Ra  Rb
  

0.17241   0.15
0.17241   0.15

  0.080213  K/W

R1  0.080213  K/W.

To find R2

Rc  
Lc

kcAc
  

0.1
12.5  0.5

  0.016  K/W

Rd  
Ld

kdAd
  

0.1
18.5  0.5

  0.01081  K/W

R2  
RcRd

Rc  Rd
  

0.016  0.01081
0.016   0.01081

 6.4513   10 3

To find R3

R3  
Le

keAe
  

0.12
0.76  1

  0.15789  K/W
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Rfor convection inner  Rci  
1

hiAi

 
1

15  1
  0.06667  K/W

Rfor convection outer  Rco  
1

h0A0

 
1

20  1
  0.05 K/W

To find Q

R  Rci  R1  R2  R3  Rco

 0.06667  0.080213   6.4513  10 3  0.15789   0.05

 0.36122 K/W.

Q
A

  q  
Toverall

R
  

Ti  T0

R

 
26   20

0.36122
  

46
0.36122

  127.345

q  127.345  W/m2.

To find Interface Temperatures

To find T1

Qconducted  Qconvected under steady state condition.

So, Qconvection  127.345   hiA Ti  T1

127.345   15  1  26  T1

26  T1  
127.345

15
  8.4896

T1  26  8.4896   17.51 C

T1  17.51 C.

To find T2

Q  
T1  T2

R1

T1  T2  QR1

T2  T1  QR1

T2  17.51   127.345   0.080213   7.295 C

T2  7.295 C.

To find T3

Q  
T2  T3

R2

T2  T3  QR2

T3  T2  QR2

T3  7.295   127.345   6.4513   10 3  6.4737 C

T3  6.4737 C.

To find T4

Qconvected  127.345  h0A T4  T0

127.345   20  1  T4   20
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Rfor convection inner  Rci  
1

hiAi

 
1

15  1
  0.06667  K/W

Rfor convection outer  Rco  
1

h0A0

 
1

20  1
  0.05 K/W

To find Q

R  Rci  R1  R2  R3  Rco

 0.06667  0.080213   6.4513  10 3  0.15789   0.05

 0.36122 K/W.

Q
A

  q  
Toverall

R
  

Ti  T0

R

 
26   20

0.36122
  

46
0.36122

  127.345

q  127.345  W/m2.

To find Interface Temperatures

To find T1

Qconducted  Qconvected under steady state condition.

So, Qconvection  127.345   hiA Ti  T1

127.345   15  1  26  T1

26  T1  
127.345

15
  8.4896

T1  26  8.4896   17.51 C

T1  17.51 C.

To find T2

Q  
T1  T2

R1

T1  T2  QR1

T2  T1  QR1

T2  17.51   127.345   0.080213   7.295 C

T2  7.295 C.

To find T3

Q  
T2  T3

R2

T2  T3  QR2

T3  T2  QR2

T3  7.295   127.345   6.4513   10 3  6.4737 C

T3  6.4737 C.

To find T4

Qconvected  127.345  h0A T4  T0

127.345   20  1  T4   20
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T4  20  
127.345

20
  6.36725

T4   13.6327 C.

Problem 1.10: An interior wall of a house is made up of

10 cm common brick k  0.7 W/mC followed by 4 cm layer

of gypsum plaster k  0.48 W/mC. What thickness of loosely

packed rock wool insulation k  0.065 W/mC should be

added to reduce the heat loss (or gain) through the wall by
80%. (Oct-99,  Madras University)

Solution

QA through interior wall without insulation.

R  
1
A

 



 
L1

k1
  

L2

k2
 




        
1
1

 



 
0.1
0.7

  
0.04
0.48

 




 0.2262 K/W

QA  
T
RA

QB  through interior wall with insulation

RB  
1
A

 



 
0.1
0.7

  
0.04
0.48

  
L3

0.065
 




 0.2262   
L3

0.065

QB  
T
RB

Insulation prevents heat
loss by 80%

So initially, without
insulation QA  100%

 
T

0.2262
     1

After insulation,

QB  20%  
 T

0.2262  
L3

0.065

     2

Divide (1) by (2)

100
20

  
 T

0.2262
       

 T

0.2262   
L3

0.065

5  
1

0.2262
  




 0.2262   

L3

0.065
 




  



 1  

L3

0.065   0.2262
 




5  1  
L3

0.014703

4  
L3

0.014703

L3  0.0588  m  (or) L3  5.88 cm

i.e., 5.88 cm thick insulation will reduce heat loss
by 80%.

10 cm 4 cm
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1.24 Heat conduction through a hollow cylinder

Figure 1.10 shows a long hollow cylinder made of
a material having constant thermal conductivity and
insulated at both ends. The inner and outer radii are
r1 and r2, respectively. The length of the cylinder is L.

Fig. 1.10 (a) conduction through a hollow cylinder

without fluid flowing inside and outside the cylinder 

(b) equivalent thermal resistance circuit 

The general heat conduction equation in cylindrical
coordinates is given by

2T

r2   
1
r

 
T
r

  
1

r2 
2T

2   
2T

z2   
qg

k
  

T
t

          ...(1.49)

Assumptions:

Steady state: T/t  0

No heat generation: qg  0

One dimension: 
1

r2 
2T

2   
2T

x2   0

Substitute these assumptions in Eq. (1.49), we have

2T

r2   
1
r

 
T
r

  0; 
1
r

 
d
dr

 



 r 

dT
dr

 



  0

 
d
dr

 



 r 

dT
dr

 



  0, since 

1
r

  0
...(1.50)

Integrating Eq. (1.50) twice we get

r 
dT
dr

  C1 or 
dT
dr

  
C1

r

T  In r C1  C2 ...(1.51)

where C1 and C2 are arbitrary constants

Boundary conditions

At r  r1, T  T1

At r  r2, T  T2

Substituting these boundary conditions in Eq. (1.51)

T1  ln r1 C1  C2

T2  ln r2 C2  C2

Solving the above two equations, we have

C1  
T1  T2

ln 
r1

r2

  
T2  T1

ln 
r2

r1

T 2

r2

r 1

T 1

(a)
T1 T2

Q
R 1

Q

(b)
Fig 1.10

L
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C2  T1  C1 ln r1  T1  
T2  T1 In r1

ln 
r2

r1

Substituting C1 and C2 in Eq. (1.51), we get

   T  ln r 










 
T2  T1

ln 
r2

r1

 










  T1  T2  T1 










 
ln r1

ln 
r2

r1

 










T  
T2  T1

ln 
r2

r1

 ln r  ln r1  T1

T  T1

T2  T1
  

ln 
r
r1

ln 
r2

r1 ...(1.52)

Equation (1.52) gives the temperature distribution
in a hollow cylinder. The heat flow rate through the
cylinder over the surface area A is given by Fourier’s
conduction equation.

Q   kA 



 
dT
dr

 



 when r  r1 

Substituting dT/dr from Eq. (1.51) into the above
equation (when r  r1)

Q   kA 
T2  T1

ln 
r2

r1

  
1
r1

  
k2  r1 L T1  T2

ln 
r2

r1

  
1
r1

      
2 k L T1  T2

ln 
r2

r1

  ...(1.53)  [A  2 r L]

or Q  
T1  T2









 
ln 

r2

r1

2 k L
 











  
T1  T2

Rth
    ...(1.54)

 Rth   thermal resistance for conduction heat

transfer

1.25 HEAT CONDUCTION THROUGH COMPOSITE

(COAXIAL) CYLINDERS WITH CONVECTION

Consider the rate of heat transfer through a
composite cylinder as shown in Figure 1.11 (a) and its
equivalent thermal resistance in Figure 1.11 (b)

Let

T1, T2, T3  temperature at inlet surface, between first and 

        second cylinders and outer surface, respectively

L  length of the cylinder

 ha, hb  convective heat transfer coefficients at inside and 

        outside the composite cylinder respectively

Ta, Tb  temperature of the fluid flowing inside and 

        outside the composite cylinder

k1, k2  thermal conductivity of the first and 

         second material, respectively

The rate of heat transfer is given by Eq. (1.53)
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
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






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




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or Q  
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







 
ln 

r2

r1

2 k L
 








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  
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Rth
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        second cylinders and outer surface, respectively
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Q  ha 2 r1 L Ta  T1  
k1 2 L T1  T2

ln 
r2

r1

  
k2 2 L T2  T3

ln 
r3

r2

  hb 2 r3 L T3  Tb        ...(1.55)

Arranging Eq. (1.55), we get

Ta  T1  
Q

ha 2 r1 L
  Q  Ra

...(1.56)

T1  T2  
Q

k1 2 L

ln r2/r1

  Q  R1

...(1.57)

T2  T3  
Q

k2 2 L

ln r3/r2

  Q  R2

...(1.58)

T3  Tb  
Q

hb 2 r3 L
  Q  Rb

...(1.59)

Adding Eqs. from 1.56 to 1.59, we get

Ta  Tb  Q Ra  R1  R2  Rb ...(1.60)

Ta  Tb  Q 









 
1

ha 2 L r1
  

ln 
r2

r1

k1 2 L
  

ln 
r3

r2

L k2 2
  

1
hb 2 L r3

 











                                       ...(1.61)

or Q  
Ta  Tb 2 L

1
ho f1

  
ln r2/r1

k1
  

ln r3/r2

k2
  

1
hb r3 ...(1.62)

1.25.1 Summary - Composite Cylinder

Refer from Pg 46 of HMT Data book - CPK.

R  
1

2L
 



 

1
har1

  
1
k1

 ln 



 
r2

r1
 



  

1
k2

 ln 



 
r3

r2
 



  

1
k3

 ln 



 
r4

r3
 



  

1
hbr4

 




Surrounding
Fluid

h b

T b

L

r1

r2

h
a

T
a

k 1

k 2

T 1

T 2

T 3

r3

T 1 T 2 T bT3
T a

Q Q
R a R 1 R 2 R b

(a)

(b)

Fig. 1.11 (a) conduction through a composite cylinder

with fluid flowing inside and outside the cylinder 

(b) equivalent thermal resistance circuit
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Q  ha 2 r1 L Ta  T1  
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ln 
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







 
1

ha 2 L r1
  

ln 
r2

r1

k1 2 L
  

ln 
r3

r2

L k2 2
  

1
hb 2 L r3

 











                                       ...(1.61)

or Q  
Ta  Tb 2 L

1
ho f1

  
ln r2/r1

k1
  

ln r3/r2
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1
hb r3 ...(1.62)
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Refer from Pg 46 of HMT Data book - CPK.
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Fig. 1.11 (a) conduction through a composite cylinder

with fluid flowing inside and outside the cylinder 

(b) equivalent thermal resistance circuit
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Q  
Toverall

R

Ti or Ta  inner temperature;T0 or Tb  outer temperature

Problem 1.11: A steel tube of 5.08 cm ID and 7.62 cm OD
is covered with 2.5 cm thick of asbestos.

ksteel  43.26 W/mK kasbestos  0.208 W/mC. The inside

surface receives heat from hot gases at 316C with heat

transfer coefficient of 284 W/m2C whereas outer surface is

exposed to air at 38C with heat transfer coefficient of

17 W/m2C. Determine (1) heat loss for 3 m length. 
                   (Oct-2001, Madras University)

Solution

R  
1

2L
 



 

1
hir1

  
1
k1

 ln 



 
r2

r1
 



  

1
k2

 ln 



 
r3

r2
 



  

1
hor3

 




 
1

2  3
 

 

1
284  0.0254

  
1

43.26
 ln 




 
0.0381
0.0254

 



 
 
       

             
1

0.208
 ln  




 
0.0631
0.0381

  




 
  

1
17  0.0631

 




  0.05305  [0.1386   9.37  10 3  2.426   0.9322 ]

 0.18599  K/W

Q  
Toverall

R
  

316  38
0.18599

  1494.665  W.

Q  1494.665  W

Problem 1.12: A steel tube of 50 mm ID and 80 mm OD
is covered by 30 mm thick of asbestos. The thermal
conductivity of steel, asbestos are 45 W/m K, 0.2 W/m K. The

tube receives heat from hot gases at 400C with heat transfer

coefficient of 300 W/m2C. The outer surface is exposed to air

at 30C with heat transfer coefficient of 15 W/m2 K.

T 1

T 2

T 3

T 4

T a
h ar1

r2r4
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k1

k 2
k3

h b T b

r =  rad ius  in  m
L=  leng th , m  

L
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Q  
Toverall

R

Ti or Ta  inner temperature;T0 or Tb  outer temperature

Problem 1.11: A steel tube of 5.08 cm ID and 7.62 cm OD
is covered with 2.5 cm thick of asbestos.

ksteel  43.26 W/mK kasbestos  0.208 W/mC. The inside

surface receives heat from hot gases at 316C with heat

transfer coefficient of 284 W/m2C whereas outer surface is

exposed to air at 38C with heat transfer coefficient of

17 W/m2C. Determine (1) heat loss for 3 m length. 
                   (Oct-2001, Madras University)

Solution

R  
1

2L
 



 

1
hir1

  
1
k1

 ln 



 
r2

r1
 



  

1
k2

 ln 



 
r3

r2
 



  

1
hor3

 




 
1

2  3
 

 

1
284  0.0254

  
1

43.26
 ln 




 
0.0381
0.0254

 



 
 
       

             
1

0.208
 ln  




 
0.0631
0.0381

  




 
  

1
17  0.0631

 




  0.05305  [0.1386   9.37  10 3  2.426   0.9322 ]

 0.18599  K/W

Q  
Toverall

R
  

316  38
0.18599

  1494.665  W.

Q  1494.665  W

Problem 1.12: A steel tube of 50 mm ID and 80 mm OD
is covered by 30 mm thick of asbestos. The thermal
conductivity of steel, asbestos are 45 W/m K, 0.2 W/m K. The

tube receives heat from hot gases at 400C with heat transfer

coefficient of 300 W/m2C. The outer surface is exposed to air

at 30C with heat transfer coefficient of 15 W/m2 K.

T 1
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T 4

T a
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Determine (1) heat loss /m length (2) Interface temperature
and surface temperature. (Apr-2000, Madras University)

Solution

 r1  0.025  m

r2  0.04 m

r3  0.07 m

Tair  Tb  30C

hb  15

ha  300

Ta  400C

To find Q

R  
1

2L
 



 

1
har1

  
1
k1

 ln 



 
r2

r1
 



  

1
k2

 ln  



 
r3

r2
 



  

1
hbr3

 




 
1

2  1
 



 

1
300  0.025

  
1

45
 ln 




 
40
25

 



  

1
0.2

 ln 



 
70
40

 



  

1
15  0.07

 




 
1

2
 [ 3.894  ]  0.6197 K/W

Q  
Toverall

R
  

Ta  Tb

R
  

400  30
0.6197

  597 W

Q  597  Watts .

To find Interface temperatures

To find T1

Q  haA Ta  T1

 300  2r1  L 400  T1

597  47.12 400  T1

T1  400  



 

597
47.12

 




 387.331 C

T1  387.33 C.

To find T2

          Q  
T1  T2

R1

R1  
1

2L
 



 

1
k1

 ln 



 
r2

r1
 



 




 
1

2  1
 



 

1
45

 ln 



 
40
25

 



 




 1.66229  10 3

Q  
387.33   T2

1.66229  10 3
  597

597  1.66229   10 3  387.33   T2

T2  387.33   597  1.66229   10 3

 386.34 C

T2  386.34 C.

To find T3

    Q  hbA T3  Tb

597  15  2r3L T3  30

T1

T2

T 3

25
Ta 

40

70

ha

h =15b

Conduction 1.57 Heat and Mass Transfer1.58

Downloaded from Ktunotes.in

http://ktunotes.in/


Determine (1) heat loss /m length (2) Interface temperature
and surface temperature. (Apr-2000, Madras University)

Solution

 r1  0.025  m

r2  0.04 m

r3  0.07 m

Tair  Tb  30C

hb  15

ha  300

Ta  400C

To find Q

R  
1

2L
 



 

1
har1

  
1
k1

 ln 



 
r2

r1
 



  

1
k2

 ln  



 
r3

r2
 



  

1
hbr3

 




 
1

2  1
 



 

1
300  0.025

  
1

45
 ln 




 
40
25

 



  

1
0.2

 ln 



 
70
40

 



  

1
15  0.07

 




 
1

2
 [ 3.894  ]  0.6197 K/W

Q  
Toverall

R
  

Ta  Tb

R
  

400  30
0.6197

  597 W

Q  597  Watts .

To find Interface temperatures

To find T1

Q  haA Ta  T1

 300  2r1  L 400  T1

597  47.12 400  T1

T1  400  



 

597
47.12

 




 387.331 C

T1  387.33 C.

To find T2

          Q  
T1  T2

R1

R1  
1

2L
 



 

1
k1

 ln 



 
r2

r1
 



 




 
1

2  1
 



 

1
45

 ln 



 
40
25

 



 




 1.66229  10 3

Q  
387.33   T2

1.66229  10 3
  597

597  1.66229   10 3  387.33   T2

T2  387.33   597  1.66229   10 3

 386.34 C

T2  386.34 C.

To find T3

    Q  hbA T3  Tb

597  15  2r3L T3  30

T1

T2

T 3

25
Ta 

40

70

ha

h =15b
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597  15  2  0.07  1 T3  30

T3  30  90.49

T3  90.49   30  120.491 C

T3  120.491 C.

Problem 1.13 A steel tube of 5 cm ID, 7.6 cm OD and

k  15 W/mK is covered with an insulation of thickness 2 cm

and thermal conductivity. 0.2 W/m.K. A hot gas at 330C

and h  400 W/m2K flows inside the tube. The outer surface

of the insulation is exposed to cold air at 30C with

h  50 W/m2.K. Assuming a tube lengbth of 10 m, find the

heat loss from the tube to the air. Also find, across which
layer the largest temperature drop occurs.
                 (May/June 2009 - Anna University)

Given

r1  2.5 cm 0.025 m, k1  15 W/mK

r2  3.8 cm 0.038  m, k2  0.2 W/mK

r3  0.038   0.02  0.058 m

Inside temperature, Ti  330C

hi  400 W/m2K

Outside temperature, T0  30C

h0  60 W/m2K

tube length, L  10 m

Heat loss from tube to air (HMT DB pg No. 46)

Q  
2  L [Ti  T0]

1
hi r1

  
ln r2/r1

k1
  

ln r3/r2
k2

  
1

h0 r3

  
2   10 300

1
400  0.025

  
ln 0.038 /0.025

15
  

ln 0.058/0.038 
0.2

  
1

60  0.058

  7451.77  W

To find largest temperature drop

Q  
2  L T1  T2

ln r2/r1
k1

  
2  L T2  T3

ln r3/r2
k2

7451.77   
2   10   T1

ln 



 
0.038
0.025

 


15

   T1  33C

7451.77   
2   10   T2

ln 0.058/0.038
0.2

   T2  250.75 C

Largest temperature drop occurs in outer layer.
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597  15  2  0.07  1 T3  30

T3  30  90.49

T3  90.49   30  120.491 C

T3  120.491 C.

Problem 1.13 A steel tube of 5 cm ID, 7.6 cm OD and

k  15 W/mK is covered with an insulation of thickness 2 cm

and thermal conductivity. 0.2 W/m.K. A hot gas at 330C

and h  400 W/m2K flows inside the tube. The outer surface

of the insulation is exposed to cold air at 30C with

h  50 W/m2.K. Assuming a tube lengbth of 10 m, find the

heat loss from the tube to the air. Also find, across which
layer the largest temperature drop occurs.
                 (May/June 2009 - Anna University)

Given

r1  2.5 cm 0.025 m, k1  15 W/mK

r2  3.8 cm 0.038  m, k2  0.2 W/mK

r3  0.038   0.02  0.058 m

Inside temperature, Ti  330C

hi  400 W/m2K

Outside temperature, T0  30C

h0  60 W/m2K

tube length, L  10 m

Heat loss from tube to air (HMT DB pg No. 46)

Q  
2  L [Ti  T0]

1
hi r1

  
ln r2/r1

k1
  

ln r3/r2
k2

  
1

h0 r3

  
2   10 300

1
400  0.025

  
ln 0.038 /0.025

15
  

ln 0.058/0.038 
0.2

  
1

60  0.058

  7451.77  W

To find largest temperature drop

Q  
2  L T1  T2

ln r2/r1
k1

  
2  L T2  T3

ln r3/r2
k2

7451.77   
2   10   T1

ln 



 
0.038
0.025

 


15

   T1  33C

7451.77   
2   10   T2

ln 0.058/0.038
0.2

   T2  250.75 C

Largest temperature drop occurs in outer layer.
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Problem 1.14 A copper pipe carries steam at 100C for

some processing purpose. The OD and ID of pipe are 25 mm

and 22 mm respectively. The room temperature is 30C. The

pipe is insulated with standard 85% magnesia

[ k  0.072 W/mK ] for a thickness of 15 mm. The cost of

insulation per m length is Rs. 10. The cost of heating the

steam is 20 paise/3000 KJ. k copper  400 W/m K. The

resistance of fluid film is roughly constant and is equal to

0.05 
m2K

W
. How long must pipe be in operation to save the

insulation cost.              (Oct-97, Madras University)

Solution

Ti  100  Ta

r1  0.011  m

r2  0.0125  m

r3  0.0275  m

Troom  Tb  30C

k2  0.072  W/mK

The resistance of 
fluid film 

 
1
hi

  0.05 
m2 K

W

So, hi  20 
W

m2 K

Case A: Q1 Without insulation

Rci  
1

hiAi
  

1
hi2riL

 
1

20  2    0.011   1

 0.7234  K/W.

since Rco is not given, 

we can assume Rco  0.

R1  
1

2L
 



 

1
k1

 ln 



 
r2

r1
 



 




 
1

2  1
 

 

1
400

 ln 



 
0.0125
0.011

 



 



  5.086  10 5

Q1  
Ti  T0

R

Q1  Rci  R1

       0.7234   5.086   10 5

 0.72345  K/W

Q1  
100  30
0.72345

  96.7584 W

Heat loss without insulation Q1  96.7584  W.
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Problem 1.14 A copper pipe carries steam at 100C for

some processing purpose. The OD and ID of pipe are 25 mm

and 22 mm respectively. The room temperature is 30C. The

pipe is insulated with standard 85% magnesia

[ k  0.072 W/mK ] for a thickness of 15 mm. The cost of

insulation per m length is Rs. 10. The cost of heating the

steam is 20 paise/3000 KJ. k copper  400 W/m K. The

resistance of fluid film is roughly constant and is equal to

0.05 
m2K

W
. How long must pipe be in operation to save the

insulation cost.              (Oct-97, Madras University)

Solution

Ti  100  Ta

r1  0.011  m

r2  0.0125  m

r3  0.0275  m

Troom  Tb  30C

k2  0.072  W/mK

The resistance of 
fluid film 

 
1
hi

  0.05 
m2 K

W

So, hi  20 
W

m2 K

Case A: Q1 Without insulation

Rci  
1

hiAi
  

1
hi2riL

 
1

20  2    0.011   1

 0.7234  K/W.

since Rco is not given, 

we can assume Rco  0.

R1  
1

2L
 



 

1
k1

 ln 



 
r2

r1
 



 




 
1

2  1
 

 

1
400

 ln 



 
0.0125
0.011

 



 



  5.086  10 5

Q1  
Ti  T0

R

Q1  Rci  R1

       0.7234   5.086   10 5

 0.72345  K/W

Q1  
100  30
0.72345

  96.7584 W

Heat loss without insulation Q1  96.7584  W.
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Case B: Q2   With Insulation

R  Rci  R1  R2

where 

R2  
1

2  1
 



 

1
k2

 ln 



 
r3

r2
 



 




 
1

2
 



 

1
0.072

 ln 



 
0.0275
0.0125

 



 




 1.743 K/W.

Q2  
Ti  T0

0.7234   5.086  10 5  1.743

 
100  30

2.466
  28.382 W

Q2   Heat loss with insulation  28.382  W.

Drop in heat loss  Saving in steam

 Q1  Q2

 96.7584   28.382

 68.3761  W.

Let t  operating time in sec.

Qsaving in kJ  
68.3761

1000
  t

 0.0683761  t 
kJ
sec

  sec

For 3000 kJ, operating cost is 0.20

For 0.0683761 t kJ, operation cost is 
0.2

3000
  0.068371  t

 4.55818   10 6t.

So, operating cost for ‘t’ sec  4.55818   10 6t

For  breakeven, operating cost  Insulation  cost

4.55818   10 6t  10

t  
10

4.85  10 6
  2193858  sec

t  609.41  hrs.

After 609.41 hrs. of operation, the operation cost
 insulation cost. So the insulation cost will be covered
only after 609.41 hrs. i.e. after 25.39 days of operation.

Problem 1.15 Derive the log mean area of a cylinder used
to transform into an equivalent slab. (Nov/Dec 2007 AU)

Consider a cylinder and slab, both made of same
material. Let Ti and To be the temperatures maintained

on the two sides of plane slab and also on inside and
outside of cylinder. (Nov-Dec 2007 - AU)

Heat flow through cylinder    Heat flow through slab

2  kL 

 Ti  To 


ln ro/ri

  
kAm Ti  To

ro  ri

 Am  
2  L ro  ri

ln ro/ri

(or) Am  
Ao  Ai

ln Ao/Ai

r 1
r2 = 0.0125

r3= 0.0275

Case B with Insulation

k2= 0.072
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Case B: Q2   With Insulation

R  Rci  R1  R2

where 

R2  
1

2  1
 



 

1
k2

 ln 



 
r3

r2
 



 




 
1

2
 



 

1
0.072

 ln 



 
0.0275
0.0125

 



 




 1.743 K/W.

Q2  
Ti  T0

0.7234   5.086  10 5  1.743

 
100  30

2.466
  28.382 W

Q2   Heat loss with insulation  28.382  W.

Drop in heat loss  Saving in steam

 Q1  Q2

 96.7584   28.382

 68.3761  W.

Let t  operating time in sec.

Qsaving in kJ  
68.3761

1000
  t

 0.0683761  t 
kJ
sec

  sec

For 3000 kJ, operating cost is 0.20

For 0.0683761 t kJ, operation cost is 
0.2

3000
  0.068371  t

 4.55818   10 6t.

So, operating cost for ‘t’ sec  4.55818   10 6t

For  breakeven, operating cost  Insulation  cost

4.55818   10 6t  10

t  
10

4.85  10 6
  2193858  sec

t  609.41  hrs.

After 609.41 hrs. of operation, the operation cost
 insulation cost. So the insulation cost will be covered
only after 609.41 hrs. i.e. after 25.39 days of operation.

Problem 1.15 Derive the log mean area of a cylinder used
to transform into an equivalent slab. (Nov/Dec 2007 AU)

Consider a cylinder and slab, both made of same
material. Let Ti and To be the temperatures maintained

on the two sides of plane slab and also on inside and
outside of cylinder. (Nov-Dec 2007 - AU)

Heat flow through cylinder    Heat flow through slab

2  kL 

 Ti  To 


ln ro/ri

  
kAm Ti  To

ro  ri

 Am  
2  L ro  ri

ln ro/ri

(or) Am  
Ao  Ai

ln Ao/Ai

r 1
r2 = 0.0125

r3= 0.0275

Case B with Insulation

k2= 0.072
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Am is called log mean area of the cylinder.

rm  log mean radius

  










 
ro  ri

ln 
ro

ri

 










Problem 1.16 A 3 cm OD steam pipe is to be covered with
two layers of insulation each having a thickness of 2.5 cm.
The average thermal conductivity of one insulation is 5 times
that of other. Determine the percentage decrease in heat
transfer if better insulating material is next to pipe than it
in the outer layer. Assume that the outside and inside
temperatures of composite insulation are fixed. (May/June
2007 - AU) 

Solution

Case I: when better insulation is inside

r1  
0.03

2
  0.015  m

r2  0.015   0.025   0.04 m

r3  0.04  0.025   0.065  m

kB  5kA

Heat lost through pipe is given by

Q1  
2  L T1  T3

ln 



 
r2

r1
 




kA
  

ln 



 
r3

r2
 




kB

  
2  L T1  T3

ln 
0.04
0.015
kA

  
ln 




 
0.065
0.04

 




5kA

  0.9277   L kA T1  T3

Case II: When better insulation is outside

Q  
2  L T1  T3

ln 



 
r2

r1
 




kA
  

ln 



 
r3

r2
 




kB

  
2  L T1  T3

ln 
0.04 
0.015
kA

  
ln 




 
0.065
0.04

 




5kA

  1.4672   L kA T1  T3

Q2/Q1  1.5807

% decrease in heat transfer

  
Q2  Q1

Q
  

Q2

Q
  1  1.5807   1  0.581  (or) 58.1%

Problem 1.17 A 30 mm OD steam pipe is to be covered
with two layers of insulation each having a thickness of 20
mm. k. for one insulating material is 5 times  that of the
other. Which material should be next to the pipe to minimise
the heat loss and also determine the percentage of heat
decrease in this arrangement. Assume the inside and outside
surface temperature of the composite insulation are fixed.
(April - 2001, Madras University )

Solution:

Let kA  Conductivity of

material A

kB  conductivity of

material B.

Take kB  5kA

So conductivity of
material B is more. Now

r1r3 r2
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Am is called log mean area of the cylinder.

rm  log mean radius
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




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ln 
ro
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









Problem 1.16 A 3 cm OD steam pipe is to be covered with
two layers of insulation each having a thickness of 2.5 cm.
The average thermal conductivity of one insulation is 5 times
that of other. Determine the percentage decrease in heat
transfer if better insulating material is next to pipe than it
in the outer layer. Assume that the outside and inside
temperatures of composite insulation are fixed. (May/June
2007 - AU) 

Solution

Case I: when better insulation is inside

r1  
0.03

2
  0.015  m

r2  0.015   0.025   0.04 m

r3  0.04  0.025   0.065  m

kB  5kA

Heat lost through pipe is given by

Q1  
2  L T1  T3

ln 



 
r2

r1
 




kA
  

ln 



 
r3

r2
 




kB

  
2  L T1  T3

ln 
0.04
0.015
kA

  
ln 




 
0.065
0.04

 




5kA

  0.9277   L kA T1  T3

Case II: When better insulation is outside

Q  
2  L T1  T3

ln 



 
r2

r1
 




kA
  

ln 



 
r3

r2
 




kB

  
2  L T1  T3

ln 
0.04 
0.015
kA

  
ln 




 
0.065
0.04

 




5kA

  1.4672   L kA T1  T3

Q2/Q1  1.5807

% decrease in heat transfer

  
Q2  Q1

Q
  

Q2

Q
  1  1.5807   1  0.581  (or) 58.1%

Problem 1.17 A 30 mm OD steam pipe is to be covered
with two layers of insulation each having a thickness of 20
mm. k. for one insulating material is 5 times  that of the
other. Which material should be next to the pipe to minimise
the heat loss and also determine the percentage of heat
decrease in this arrangement. Assume the inside and outside
surface temperature of the composite insulation are fixed.
(April - 2001, Madras University )

Solution:

Let kA  Conductivity of

material A

kB  conductivity of

material B.

Take kB  5kA

So conductivity of
material B is more. Now

r1r3 r2
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assume A is nearer to pipe and find Q1. Given

r1  
30
2

  15 mm; r2  15  20  35 mm

r3  35  20  55 mm

Case (i) (A is nearer to pipe)

R  
1

2L
 



 

1
kA

 ln 



 
r2

r1
 



  

1
kB

 ln 



 
r3

r2
 



 




Q1  
T
R1

  
T1  T2

1
2L

 



 

1
kA

 ln 



 
35
15

 



  

1
kB

 ln 



 
55
35

 



 




Q1  
2L T

1
kA

 0.84729   
1

5kA
 0.451985 

    2kA L T [1.06645]  ... (i)       

Case (ii) (B is nearer to pipe)

R2  
1

2L
 



 

1
kB

 ln 



 
r2

r1
 



  

1
kA

 ln 



 
r3

r2
 



 




Q2  
T
R2

  
T1  T2

1
2L

 



 

1
5 kA

 ln 



 
35
15

 



  

1
kA

 ln 



 
55
35

 



 




Q2  
2L T

1
kA

 0.16945   0.451985 

  2L kA T 1.609178 

           ... (ii)

Comparing Q2 and Q1

2L kA T 1.609178  

    2 kA L T 1.06645 

Q2  Q1, since L, kA, T

are same for both equations

To minimise the heat
loss, the material ‘A’ should
be next to pipe since Q1 is

loss

1.26 COMPOSITE SPHERE
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r =553

5kA

kA

B

A
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T1 T2 T3 T4
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r4

r
2

r 1

T i 

To
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k2

k3
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Comparing Q2 and Q1
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loss, the material ‘A’ should
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loss
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Ti and T0  inner and outer fluid temperature

respectively.

T1, T2, T3, T4  surface temperatures.

k1, k2, k3  Thermal conductivity of materials 1, 2,

3 respectively.

Rci, Rco  inner and outer convective resistances.

R1, R2, R3  conductive resistance of the material 1,

2, 3 respectively.

Rci  
1

hiAi
  

1

hi4r1
2

Rco  
1

h0A0
  

1

h04r4
2

R1  
1

4k1
 

 
1
r1

  
1
r2

 


R2  
1

4k2
 



 
1
r2

  
1
r3

 




R3  
1

4k3
 



 
1
r3

  
1
r4

 




Q  
Ti  T0

R

where R  Rci  R1  R2  R3  Rco

Also Q  
Ti  T1

Rci
  

T1  T2

R1
  

T2  T3

R2
  

T3  T4

R3
  

T4  T0

Rco

Also Q  h1A1Ti  T1 and

Q  h0A0T4  T0

The formulae can be taken from HMT table Pg. 46
of CPK as follows:

R  
1

4
 

 

1

h1r1
2  

1
k1

 



 
1
r1

  
1
r2

 



 
 

           
 
   

1
k2

 

 
1
r2

  
1
r3

 



  

1
k3

 



 
1
r3

  
1
r4

 



  

1

h0r4
2 




Q  
Toverall

R

Problem 1.18 Determine the loss of heat through the wall
of a rotating sphere shaped boiling pan with an inner

diameter d1  1.5 m and total boiler wall thickness

t  20 cm. Inner surface temperature is 200C and that of

outer surface is 50C. The thermal conductivity of material

is 0.13956 W/m C.  Also find the heat flux,

Solution

Given: r1  0.75 m, r2  0.95 m

From HMT Table Pg. 46 of CPK

    R  
1

4
 



 

1

hir1
2  

1
k1

 



 
1
r1

  
1
r2

 



  

1

h0r2
2 




(Since hi and h0 are not given, we can strike off

these two terms).

R  
1

4
 



 

1
0.13957

 

 

1
0.75

  
1

0.95
 

 




 0.160045 K/W.

    Q  
T1  T2

R
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2, 3 respectively.

Rci  
1

hiAi
  

1

hi4r1
2

Rco  
1

h0A0
  

1

h04r4
2

R1  
1

4k1
 

 
1
r1

  
1
r2

 


R2  
1

4k2
 



 
1
r2

  
1
r3

 




R3  
1

4k3
 



 
1
r3

  
1
r4

 




Q  
Ti  T0

R

where R  Rci  R1  R2  R3  Rco

Also Q  
Ti  T1

Rci
  

T1  T2

R1
  

T2  T3

R2
  

T3  T4

R3
  

T4  T0

Rco

Also Q  h1A1Ti  T1 and

Q  h0A0T4  T0

The formulae can be taken from HMT table Pg. 46
of CPK as follows:

R  
1

4
 

 

1

h1r1
2  

1
k1

 



 
1
r1

  
1
r2

 



 
 

           
 
   

1
k2

 

 
1
r2

  
1
r3

 



  

1
k3

 



 
1
r3

  
1
r4

 



  

1

h0r4
2 




Q  
Toverall

R

Problem 1.18 Determine the loss of heat through the wall
of a rotating sphere shaped boiling pan with an inner

diameter d1  1.5 m and total boiler wall thickness

t  20 cm. Inner surface temperature is 200C and that of

outer surface is 50C. The thermal conductivity of material

is 0.13956 W/m C.  Also find the heat flux,

Solution

Given: r1  0.75 m, r2  0.95 m

From HMT Table Pg. 46 of CPK

    R  
1

4
 



 

1

hir1
2  

1
k1

 



 
1
r1

  
1
r2

 



  

1

h0r2
2 




(Since hi and h0 are not given, we can strike off

these two terms).

R  
1

4
 



 

1
0.13957

 

 

1
0.75

  
1

0.95
 

 




 0.160045 K/W.

    Q  
T1  T2

R
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 
200  50
0.160045

  937.23  W

Heat  flux q  
Q
A

  
937.23

40.752
  132.59  W/m2

Problem 1.19 A hollow sphere of 5 cm ID, 15 cm OD has

inner surface temperature 300C, outer surface temperature

is 30C. Thermal conductivity is 18 W/mC. Determine 

1. Heat loss by conduction.
2. Heat loss by conduction, if equation for plane wall is
assumed to apply to the sphere with area equal to mean of
inner and outer surface area. (Apr-97, Madras University)

Solution

(1) Heat loss by Conduction

r1  
0.05

2
  0.025  m

r2  
0.15

2
  0.075  m

T1  300C

T2  30C

R  
1

4k1
 



 
1
r1

  
1
r2

 




 
1

4    18
 



 

1
0.025

  
1

0.075
 




 0.11789 K/W

   Q  
T1  T2

0.11789
  

300  30
0.11789

  2290.22 W

Q  2290.22  W.

(2) 

  A  
Ai  A0

2

 
4r1

2  4r2
2

2

A  2r1
2  2r2

2

‘R’ equation for plane wall  
L

kA
  

r2  r2

kA

 
r2  r1

k [ 2r1
2  2r2

2 ]

 
0.075   0.025

18  [ 2  0.0252  2  0.0752 ]

 
0.05

0.70685

 0.070735  K/W

Q  
300  30
0.070735

  3817.03  W

Q  3817.03  W.

Problem 1.20: A hollow sphere 1 m ID, 1.6 m OD is having

a thermal conductivity of 1 W/mC. The inner surface

temperature is 70 K, outer surface temperature is 300 K.
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 
200  50
0.160045

  937.23  W

Heat  flux q  
Q
A

  
937.23

40.752
  132.59  W/m2

Problem 1.19 A hollow sphere of 5 cm ID, 15 cm OD has

inner surface temperature 300C, outer surface temperature

is 30C. Thermal conductivity is 18 W/mC. Determine 

1. Heat loss by conduction.
2. Heat loss by conduction, if equation for plane wall is
assumed to apply to the sphere with area equal to mean of
inner and outer surface area. (Apr-97, Madras University)

Solution

(1) Heat loss by Conduction

r1  
0.05

2
  0.025  m

r2  
0.15

2
  0.075  m

T1  300C

T2  30C

R  
1

4k1
 



 
1
r1

  
1
r2

 




 
1

4    18
 



 

1
0.025

  
1

0.075
 




 0.11789 K/W

   Q  
T1  T2

0.11789
  

300  30
0.11789

  2290.22 W

Q  2290.22  W.

(2) 

  A  
Ai  A0

2

 
4r1

2  4r2
2

2

A  2r1
2  2r2

2

‘R’ equation for plane wall  
L

kA
  

r2  r2

kA

 
r2  r1

k [ 2r1
2  2r2

2 ]

 
0.075   0.025

18  [ 2  0.0252  2  0.0752 ]

 
0.05

0.70685

 0.070735  K/W

Q  
300  30
0.070735

  3817.03  W

Q  3817.03  W.

Problem 1.20: A hollow sphere 1 m ID, 1.6 m OD is having

a thermal conductivity of 1 W/mC. The inner surface

temperature is 70 K, outer surface temperature is 300 K.
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Determine (1) heat transfer rate (2) temperature at a radius
of 650 mm.

Solution

r1  0.5 m

r2  0.8 m

r  0.65 m

k  1 W/mC

T1  70 K

T2  300 K

(1)

R  
1

4k
 



 
1
r1

  
1
r2

 



  

1
4  1

 



 

1
0.5

  
1

0.8
 



  0.05968  K/W

Q  
70  300
0.05968

   3853.68  W

‘’ sign indicates heat is flowing from outer surface
(hot side) to inner surface.

(2) When r  0.65  m

Rm  
1

4k
 



 
1
r1

  
1
r
 




    
1

4  1
 



 

1
0.5

  
1

0.65
 



 0.03673  K/W 

In this case  also, Q is same.

Q  
T1  T

Rm
  

70  T
0.03673

   3853.68  W

T  70  3853.68   0.03673   141.53

T  70  141.53   211.54  K.

Problem 1.21 A spherical shaped vessel of 1.5 m diameter
is 100 mm thick. Find the rate of heat leakage, if the
temperature difference between the inner and outer surfaces

is 220C. Thermal conductivity of the material of the sphere

is 0.083 W/mC.

Solution

 r2  0.75 m

   r1  0.65 m

T1  T2  220C

R  
1

4k
 



 
1
r1

  
1
r2

 




  
1

4  0.083
 



 

1
0.65

  
1

0.75
 



  0.19667  K/W

  Q  
T1  T2

R
  

220
0.19667

  1118.63  W

Q  1118.63  W.

Problem 1.22 A spherical container having outer diameter
600 mm is insulated by 150 mm thick layer of material with

thermal conductivity k  0.031  0.006t W/mC, where t is

in C. If the surface temperature of sphere is  200C and

temperature of outer surface is 30C, determine the heat flow

km  0.03 1  0.006 t

r1  0.3 m ; r2  0.45 m

r1

r2

r

r1

T1

T -T = 220 c1 2
o

T 2

r2

r =0.75m2

r =0.65m1

100
mm
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Determine (1) heat transfer rate (2) temperature at a radius
of 650 mm.

Solution

r1  0.5 m

r2  0.8 m

r  0.65 m

k  1 W/mC

T1  70 K

T2  300 K

(1)

R  
1

4k
 



 
1
r1

  
1
r2

 



  

1
4  1

 



 

1
0.5

  
1

0.8
 



  0.05968  K/W

Q  
70  300
0.05968

   3853.68  W

‘’ sign indicates heat is flowing from outer surface
(hot side) to inner surface.

(2) When r  0.65  m

Rm  
1

4k
 



 
1
r1

  
1
r
 




    
1

4  1
 



 

1
0.5

  
1

0.65
 



 0.03673  K/W 

In this case  also, Q is same.

Q  
T1  T

Rm
  

70  T
0.03673

   3853.68  W

T  70  3853.68   0.03673   141.53

T  70  141.53   211.54  K.

Problem 1.21 A spherical shaped vessel of 1.5 m diameter
is 100 mm thick. Find the rate of heat leakage, if the
temperature difference between the inner and outer surfaces

is 220C. Thermal conductivity of the material of the sphere

is 0.083 W/mC.

Solution

 r2  0.75 m

   r1  0.65 m

T1  T2  220C

R  
1

4k
 



 
1
r1

  
1
r2

 




  
1

4  0.083
 



 

1
0.65

  
1

0.75
 



  0.19667  K/W

  Q  
T1  T2

R
  

220
0.19667

  1118.63  W

Q  1118.63  W.

Problem 1.22 A spherical container having outer diameter
600 mm is insulated by 150 mm thick layer of material with

thermal conductivity k  0.031  0.006t W/mC, where t is

in C. If the surface temperature of sphere is  200C and

temperature of outer surface is 30C, determine the heat flow

km  0.03 1  0.006 t

r1  0.3 m ; r2  0.45 m

r1

r2

r

r1

T1

T -T = 220 c1 2
o

T 2

r2

r =0.75m2

r =0.65m1

100
mm
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km  0.03 



 1  0.006 




 
 200  30

2
 



 



  0.0147  W/mC 

Q  
T1  T2

R

where R  
1

4km
 



 
1
r1

  
1
r2

 



  

1
4  0.0147

 



 

1
0.3

  
1

0.45
 



 

 6.0149 K/W

Q  
 200  30

6.0149
   38.238  W 

‘–’ sign indicates heat is conducted from outer
surface to inner surface.

1.27 Critical Thickness of Insulation

Insulation prevents heat flow from the system to
surroundings. Insulation prevents heat flow from the
surroundings to the system. But in some situation,
insulation increases the heat transfer rate. Let us see
how it is occurred. Heat transfer is directly proportional
to the surface area of the cylinder and indirectly
proportional to the thickness of the layer.

If we add the insulator around a cable or cylinder,
its thickness is increased. So the heat transfer is reduced.
At the same time, since the surface area is (in case of
cylinder and sphere only) increased, the heat transfer is
increased. The Net heat transfer increases. If we go on
increasing the thickness of insulator, at particular
thickness, the heat transfer starts decreasing.

The thickness upto which heat flow increases and
after which heat flow decreases is termed as critical
thickness. In case of cylinders and spheres, it is called
critical radius.

rc - The critical radius is defined as outer radius of

insulation for which the heat transfer rate is maximum.

1.27.1 Critical thickness:

It is defined as the thickness of insulation for which
the heat transfer rate is maximum.

So, 

 Heat transfer increases, when 
r0 outer radius  rc.

 Heat transfer decreases, when r0  rc

In case of steam pipe, r0  rc so that heat leakage

can be avoided.

In case of electrical cables, insulation is used to
increase heat transfer rate in order to safeguard the
cable.

So, r0  rc

r1 r2-200
o
C30

o
C

Insulation

r =0.3m1

r =0.45m2

k =0.03m (1+0 .006t)

Conduction 1.75 Heat and Mass Transfer1.76

Downloaded from Ktunotes.in

http://ktunotes.in/


km  0.03 



 1  0.006 




 
 200  30

2
 



 



  0.0147  W/mC 

Q  
T1  T2

R

where R  
1

4km
 



 
1
r1

  
1
r2

 



  

1
4  0.0147

 



 

1
0.3

  
1

0.45
 



 

 6.0149 K/W

Q  
 200  30

6.0149
   38.238  W 

‘–’ sign indicates heat is conducted from outer
surface to inner surface.

1.27 Critical Thickness of Insulation

Insulation prevents heat flow from the system to
surroundings. Insulation prevents heat flow from the
surroundings to the system. But in some situation,
insulation increases the heat transfer rate. Let us see
how it is occurred. Heat transfer is directly proportional
to the surface area of the cylinder and indirectly
proportional to the thickness of the layer.

If we add the insulator around a cable or cylinder,
its thickness is increased. So the heat transfer is reduced.
At the same time, since the surface area is (in case of
cylinder and sphere only) increased, the heat transfer is
increased. The Net heat transfer increases. If we go on
increasing the thickness of insulator, at particular
thickness, the heat transfer starts decreasing.

The thickness upto which heat flow increases and
after which heat flow decreases is termed as critical
thickness. In case of cylinders and spheres, it is called
critical radius.

rc - The critical radius is defined as outer radius of

insulation for which the heat transfer rate is maximum.

1.27.1 Critical thickness:

It is defined as the thickness of insulation for which
the heat transfer rate is maximum.

So, 

 Heat transfer increases, when 
r0 outer radius  rc.

 Heat transfer decreases, when r0  rc

In case of steam pipe, r0  rc so that heat leakage

can be avoided.

In case of electrical cables, insulation is used to
increase heat transfer rate in order to safeguard the
cable.

So, r0  rc

r1 r2-200
o
C30

o
C

Insulation

r =0.3m1

r =0.45m2

k =0.03m (1+0 .006t)
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1.27.2 Critical radius of insulation for cylinder

 R1  
1

2L
 



 

1
k1

 ln 



 
r2

r1
 



 




Rco  
1

h02r2L

R  R1  Rco

Q  
T
R

  TR 1

Q  T 



 



 

1
2L

 



 

1
k1

 ln 



 
r2

r1
 



 



 



  

1
h0 2r2L

 




  1

To get Qmax, 
dQ
dr2

  0

dQ
dr2

  T  1 



 



 

1
2l

 



 

1
k1

 ln 



 
r2

r1
 



 



 



  

1
h0 2r2L

 




  2

 

      



 

1
2k1L

 
1



 r2/r1 


  

1
r1

  
1

h02L
  



 
1

r2
2 



 



  0

i.e. 
1

2k1Lr2
  

1

h02Lr2
2  0

1
k1r2

  
1

h0r2
2  0

1
k1r2

  
1

h0r2
2

1
k1

  
1

h0r2
  r2  

k1

h0

r2  r0  rc  critical  radius   rc  
k
h0

1.27.3 Critical radius of insulation for sphere

R  R1  Rco

R1  
1

4k
 



 
1
r1

  
1
r2

 




Rco  
1

h04r2
2

Q  
T
R

  TR 1

 T 



 



 

1
4k

 



 
1
r1

  
1
r2

 



 



  

1

h04r2
2

 




 1

To get Qmax,

dQ
dr2

  0

 T 1 

 

1
4k

 



 
1
r1

  
1
r2

 



  

1

h04r2
2

 




  2

  

           



 

1
4k

 



 0  

1

r2
2 



  

1
h04

 



 
 2

r2
3  



 



  0

1

4kr2
2  

2

h04r2
3  0

r1 r2

k

For cy linderFig. 1.14
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1.27.2 Critical radius of insulation for cylinder

 R1  
1
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

 

1
k1

 ln 



 
r2

r1
 



 




Rco  
1

h02r2L

R  R1  Rco

Q  
T
R

  TR 1

Q  T 



 



 

1
2L

 



 

1
k1

 ln 



 
r2

r1
 



 



 



  

1
h0 2r2L

 




  1

To get Qmax, 
dQ
dr2

  0

dQ
dr2

  T  1 



 



 

1
2l

 



 

1
k1

 ln 



 
r2

r1
 



 



 



  

1
h0 2r2L

 




  2

 

      



 

1
2k1L

 
1



 r2/r1 


  

1
r1

  
1

h02L
  



 
1

r2
2 



 



  0

i.e. 
1

2k1Lr2
  

1

h02Lr2
2  0

1
k1r2

  
1

h0r2
2  0

1
k1r2

  
1

h0r2
2

1
k1

  
1

h0r2
  r2  

k1

h0

r2  r0  rc  critical  radius   rc  
k
h0

1.27.3 Critical radius of insulation for sphere

R  R1  Rco

R1  
1

4k
 



 
1
r1

  
1
r2

 




Rco  
1

h04r2
2

Q  
T
R

  TR 1

 T 



 



 

1
4k

 



 
1
r1

  
1
r2

 



 



  

1

h04r2
2

 




 1

To get Qmax,

dQ
dr2

  0

 T 1 

 

1
4k

 



 
1
r1

  
1
r2

 



  

1

h04r2
2

 




  2

  

           



 

1
4k

 



 0  

1

r2
2 



  

1
h04

 



 
 2

r2
3  



 



  0

1

4kr2
2  

2

h04r2
3  0

r1 r2

k
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1

4kr2
2  

2

h04r2
3

1
k

  
2

h0r2

r2  
2k
h0

r2  rc  
2k
h0

1.27.4 Important Points to be noted

1. When ro  rc, then Q will be Qmax.

2. Region I is the recommended region i.e.,
recommended outer radius of insulation for
electrical cable so that heat transfer is increased.

3. Region II is the recommended outer radius of
insulation for steam carrying pipe (for decreasing
heat transfer).

Problem 1.23 A steam carrying pipe of 100 mm ID, 110

mm OD is carrying steam at 300C. This pipe is covered

with asbestos of k  1 W/mC. The surrounding air

temperature is 20C with heat transfer coefficient of

8 W/m2C. k for pipe  53.605 W/mC.

1. Determine heat transfer rate when the thickness
of insulation are 50 mm, 70 mm, 90 mm.

2. Find critical thickness and corresponding Qmax.

k1  k for pipe  53.605 W/mC

Since hi is not given, Rci  0 ; L  1 m

r1  
Pipe inner dia

2
  

100
2

  50 mm  0.05 m

r2  
Pipe outer dia

2
  

110
2

  55 mm  0.055  m

h0  8 W/m2C

Q  when layer thickness is 50 mm r0  0.105 

r0  r2  thickness of layer

 55  50  105 mm  0.105 m

r0  0.105 m

R  
1

2L
 



 

1
k1

 ln 



 
r2

r1
 



  

1
k2

 ln 



 
r0

r2
 



  

1
h0r0

 




 
1

2  1
 



 

1
53.605

 ln 



 
0.055
0.05

 



  

1
1

 ln 



 
0.105
0.055

 



  

1
8  0.105

 




 0.293 K/W

Q  
Ti  T0

R
  

300  20
0.293

  955.63  W.

II reg ion
I reg io n

r  =  ro c

r

Q

Fig. 1.16

Conduction 1.79 Heat and Mass Transfer1.80

Downloaded from Ktunotes.in

http://ktunotes.in/


1

4kr2
2  

2

h04r2
3

1
k

  
2

h0r2

r2  
2k
h0

r2  rc  
2k
h0

1.27.4 Important Points to be noted

1. When ro  rc, then Q will be Qmax.

2. Region I is the recommended region i.e.,
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Q when layer thickness is 70 mm  r0  0.125  m

r0  55  70  125 mm  0.125  m

R  
1

2L
 



 

1
k1

 ln 



 
r2

r1
 



  

1
k2

 ln 



 
r0

r2
 



  

1
h0r0

 




 
1

2  1
 



 

1
53.605

 ln 



 
0.055
0.05

 



  

1
1

 ln 



 
0.125
0.055

 



  

1
8  0.125

 




 
1
2

 [ 1.778   10 3  0.82098   1 ]

 0.2901 K/W

Q  
300  20
0.2901

  965.181.

Q when layer thickness is 90 mm r0  0.145  m

R  
1

2  1
 



 1.778   10 3  

1
1

 ln 



 
0.145
0.055

 



  

1
8  0.145

 




  0.29177  K/W

Q  
280

0.29177
  959.65  W.

To find critical 
radius ‘rc’

rc  
k2

h0
  

1
8

  0.125 m

[k for asbestos]

when rc  r0  0.125  m

Q will be 
Qmax  965.181  W.

To find critical thickness

rc  r2  0.125   0.55  0.7 m

Critical thickness  70 mm.

Problem 1.24 A wire of 8 mm diameter at a temperature

of 70C is to be insulated by a material having

k  0.174 W/mC. Convection heat transfer coefficient

h0  8.722 W/m2C. The ambient temperature is 25C. For

maximum heat dissipation, what is the minimum thickness of
insulation and heat loss per metre length? Also find the %
increase in the heat
dissipation too.

Solution

r1  
8
2

  4 mm  0.004 m

k2  0.174  W/mC.

For maximum heat
dissipation, critical
radius of insulation
r0  rc is

recommended:

So, r0  rc  
k2

h0
  

0.174
8.722

 0.01995  m.

Minimum thickness  r0  r1  0.01995   0.004

                    0.01595 m.

Q = Q  = 965 .181W m ax

Q  = 959.65 W

Q = 955.63  W

r
 =

 0
.1

05
 o r

=r
=

0.
12

5m
 c

 o

r 
 =

 0
.1

45
m

o

r
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radius ‘rc’
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  

1
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  0.125 m

[k for asbestos]

when rc  r0  0.125  m

Q will be 
Qmax  965.181  W.

To find critical thickness

rc  r2  0.125   0.55  0.7 m

Critical thickness  70 mm.

Problem 1.24 A wire of 8 mm diameter at a temperature

of 70C is to be insulated by a material having

k  0.174 W/mC. Convection heat transfer coefficient

h0  8.722 W/m2C. The ambient temperature is 25C. For

maximum heat dissipation, what is the minimum thickness of
insulation and heat loss per metre length? Also find the %
increase in the heat
dissipation too.

Solution

r1  
8
2

  4 mm  0.004 m

k2  0.174  W/mC.

For maximum heat
dissipation, critical
radius of insulation
r0  rc is

recommended:
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0.174
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 0.01995  m.
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 c
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Case (i) Heat the loss without insulation Q1

Q  
T
R

  
T1  T0

R
  

70  25
R

R  
1

2L
 



 

1
k1

 ln 



 
r1

ri
 



  

1
h0r1

 




From Pg. 46 of CPK

[Since k1 is not given, we can strike off the term

in the formula]

 
1

2  1
 



 

1
8.722  0.004

 




 4.56188  K/W.

Q  
45

4.56188
  9.864 W/m.

Case (ii) Q2  Heat loss with insulation of r0  rc

R  
1

2l
 



 

1
k2

 ln 



 
r0

r1
 



  

1
h0r0

 




  
1

2  1
 

 

1
0.174

 ln 



 
0.01995

0.004
 

  

1
8.722   0.01995

 




  2.3845 K/W

Q2  
70  25
2.3845

  18.872  W/m

% increase in heat dissipation  
Q2  Q1

Q1

            
18.872   9.864

9.864
  91.32%.

Problem 1.25: A pipe having OD 40 mm is required to be
thermally insulated. The outside air film coefficient of heat

transfer is 12 W/m2C. k for insulation  0.3 W/mC.

1. Determine whether the insulation will be effective.
2. Find the maximum value of thermal conductivity of
insulating material to reduce the heat transfer.

Solution

Given: r0  
40
2

  20 mm  0.02 m

h0  12 W/m2C

kinsulation   0.3 W/mC

To find critical radius rc

rc  
kins

h0
  

0.3
12

  0.025  m

i.e. 25 mm.

Since r0
20 mm

           rc
25 mm

,  heat transfer will increase

by adding insulation and thus it is not effective.

(2) For insulation to be effective what is k?

For insulation to be effective, r0  rc 

     i.e.,   0.02  
kinsulation

h0

0.02   
kinsulation

12

kinsulation  0.02  12
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  
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  18.872  W/m

% increase in heat dissipation  
Q2  Q1

Q1

            
18.872   9.864

9.864
  91.32%.

Problem 1.25: A pipe having OD 40 mm is required to be
thermally insulated. The outside air film coefficient of heat

transfer is 12 W/m2C. k for insulation  0.3 W/mC.

1. Determine whether the insulation will be effective.
2. Find the maximum value of thermal conductivity of
insulating material to reduce the heat transfer.

Solution

Given: r0  
40
2

  20 mm  0.02 m

h0  12 W/m2C

kinsulation   0.3 W/mC

To find critical radius rc

rc  
kins

h0
  

0.3
12

  0.025  m

i.e. 25 mm.

Since r0
20 mm

           rc
25 mm

,  heat transfer will increase

by adding insulation and thus it is not effective.

(2) For insulation to be effective what is k?

For insulation to be effective, r0  rc 

     i.e.,   0.02  
kinsulation

h0

0.02   
kinsulation

12

kinsulation  0.02  12
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i.e.,  kinsulation  0.24 W/mC

k for insulation should be less than 0.24 W/mC.

1.28 Q  HEAT GENERATION RATE

When electrical current passes through a conductor,

heat is generated and it is given by Q  I2Re

where Re    
L
a

where   resistivity or specific resistance

a  cross sectional area r2 of the conductor

L  length of the conductor

I  current flowing in the conductor

Re  electrical resistance

ke  electrical conductivity (reciprocal of ).

Problem 1.26 An electrical wire of 10 mm dia is covered
with 10 mm thickness of plastic insulation. The insulation

is exposed to air at 35C with heat transfer coefficient of

8 W/m2C. The temperature of wire surface is 180C.

Determine heat transfer rate, current carrying capacity, max.
heat transfer rate max. heat carrying capacity. k for

copperwire  400 W/mC, k for plastic  0.5 W/mC,

  resistivity  3  10 6 ohmm.

Solution
To find the heat transfer rate

r1  
10
2

  5 mm

r0  5  10  15 mm

T0  35C

h  8 W/m2C

T1  180C

k  0.5 W/mC

R  
1

2  L
 










 
1

kinsulator  ln 



 
r0

r1
 



  

1
h0 r0

 










 

R  
1

2  1
 



 

1
0.5

 ln 



 
15
5

 

  

1
8  0.015

 




 
1

2
 [ 2.19722  8.333  ]

 1.6759 K/W.

Q  
T1  T0

R
  

180  35
1.6759

  86.51628  W.

Heat transfer rate  86.51628 W and this heat is
generated.

To find current carrying capacity ‘I’

Q  86.51628   I2Re

I2  
86.51628

Re
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i.e.,  kinsulation  0.24 W/mC

k for insulation should be less than 0.24 W/mC.

1.28 Q  HEAT GENERATION RATE

When electrical current passes through a conductor,

heat is generated and it is given by Q  I2Re

where Re    
L
a

where   resistivity or specific resistance

a  cross sectional area r2 of the conductor

L  length of the conductor

I  current flowing in the conductor

Re  electrical resistance

ke  electrical conductivity (reciprocal of ).

Problem 1.26 An electrical wire of 10 mm dia is covered
with 10 mm thickness of plastic insulation. The insulation

is exposed to air at 35C with heat transfer coefficient of

8 W/m2C. The temperature of wire surface is 180C.

Determine heat transfer rate, current carrying capacity, max.
heat transfer rate max. heat carrying capacity. k for

copperwire  400 W/mC, k for plastic  0.5 W/mC,

  resistivity  3  10 6 ohmm.

Solution
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r1  
10
2

  5 mm
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T0  35C

h  8 W/m2C

T1  180C

k  0.5 W/mC

R  
1

2  L
 










 
1

kinsulator  ln 



 
r0

r1
 



  

1
h0 r0

 










 

R  
1

2  1
 



 

1
0.5

 ln 



 
15
5

 

  

1
8  0.015

 




 
1

2
 [ 2.19722  8.333  ]

 1.6759 K/W.

Q  
T1  T0

R
  

180  35
1.6759

  86.51628  W.

Heat transfer rate  86.51628 W and this heat is
generated.

To find current carrying capacity ‘I’

Q  86.51628   I2Re

I2  
86.51628

Re
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To find Re (Electrical Resistance)

Re   
L
A

 3  10 6  
1

0.0052

 0.038197 ohm

I2  
86.51628

Rc

 
86.51628
0.038197

  2264.99

I  47.592  amp.

To find max. heat transfer rate Qmax

For Qmax , r0  rc

rc  
k
h0

  
0.5
8

  0.0625  m

r1  0.005  m.

R  
1

2  1
 



 
1
k

 ln 



 
r0

r1
 



  

1
h0r0

 




 
1

2  1
 



 

1
0.5

 ln 



 
0.0625
0.005

 



  

1
8  0.0625

 




 
1

2  1
 [ 5.05145   2 ]

 1.12227  K/W.

Qmax  
T1  T0

R
  

180  35
R

  
145

1.12227
  129.202

Qmax  129.202  W.

To find max. heat carrying capacity Imax

Qmax  129.202  Imax
2 Re

where Re  0.038197  ohm (already found out).

Imax
2   

129.202
0.038197

  3382.52

Imax  58.1594  amp .

Problem 1.27 Steam at 150C passes through a 20 mm OD

pipe which is insulated with asbestos k  0.2 W/mC. It is

exposed to air at 35C with heat transfer coefficient

6 W/m2C. Determine (1) Critical thickness,

 (2) Corresponding Qmax.

Solution

 r2  
20
2

  10 mm

 0.01 m

Ti  150C

T0  35C

h0  6 W/m2C

1. To find critical thickness r0  r2 or  rc  r2

Critical radius rc  
kinsulator

h0
  

k2

h0
  

0.2
6

  0.03333

Conduction 1.87 Heat and Mass Transfer1.88

r1
r2

ro

k =not given1

k =0.22

Downloaded from Ktunotes.in

http://ktunotes.in/


To find Re (Electrical Resistance)

Re   
L
A

 3  10 6  
1

0.0052

 0.038197 ohm

I2  
86.51628

Rc

 
86.51628
0.038197

  2264.99

I  47.592  amp.

To find max. heat transfer rate Qmax

For Qmax , r0  rc

rc  
k
h0

  
0.5
8

  0.0625  m

r1  0.005  m.

R  
1

2  1
 



 
1
k

 ln 



 
r0

r1
 



  

1
h0r0

 




 
1

2  1
 



 

1
0.5

 ln 



 
0.0625
0.005

 



  

1
8  0.0625

 




 
1

2  1
 [ 5.05145   2 ]

 1.12227  K/W.

Qmax  
T1  T0

R
  

180  35
R

  
145

1.12227
  129.202

Qmax  129.202  W.

To find max. heat carrying capacity Imax

Qmax  129.202  Imax
2 Re

where Re  0.038197  ohm (already found out).

Imax
2   

129.202
0.038197

  3382.52

Imax  58.1594  amp .

Problem 1.27 Steam at 150C passes through a 20 mm OD
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2
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 0.01 m

Ti  150C

T0  35C

h0  6 W/m2C
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Critical radius rc  
kinsulator

h0
  
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Critical thickness  rc  r2

 0.0333   0.01

 0.02333  m

 23.33  mm

2. To find corresponding Qmax

Qmax  
T
R

R  
1

2  L
 



 

1
k2

 ln 



 
r0

r2
 



  

1
h0r0

 




 
1

2  1
 



 

1
0.2

 ln 



 
33.3
10

 



  

1
6  0.0333

 




 
1

2
 [ 5.9696  5 ]

 1.745

Qmax  
T1  T0

R

 
150  35
1.74595

  65.867 W

Qmax  65.867  W.

Problem 1.28 A sphere of 10 mm dia is exposed to a

convection environment with h  10 W/m2C, by enclosing it

in a spherical sheath of k  0.04 W/mC.  T  120C
Find out  (1) the thickness of insulation for which heat
transfer rate is maximum
(2) Heat transfer rate from bare sphere.
(3) Heat transfer rate from sheathed sphere.

1. To find the critical thickness

r1  
10
2

  5 mm

h0  10 W/m2C

k  0.04 W/mC

For Qmax , r should be  rc.

For sphere, rc  
2k
h0

  
2  0.04

10
  8  10 3 m  r0

Critical radius  8  10 3 m

Critical thickness  rc  r1  r0  r1

 8  10 3  0.005

 3  10 3 m

 3 mm

Thickness of insulation  3 mm

Q1 Heat transfer from bare sphere

  Rco  
1

h04r2

 
1

104  0.005 2
  318.309  K/W

Qbare  
T1  T0

Rco
  

120
318.309

  0.37699  W

Qbare  0.37699  W.

Conduction 1.89 Heat and Mass Transfer1.90

r1 ro

r1

h o

Downloaded from Ktunotes.in

http://ktunotes.in/


Critical thickness  rc  r2

 0.0333   0.01

 0.02333  m

 23.33  mm

2. To find corresponding Qmax

Qmax  
T
R

R  
1

2  L
 



 

1
k2

 ln 



 
r0

r2
 



  

1
h0r0

 




 
1

2  1
 



 

1
0.2

 ln 



 
33.3
10

 



  

1
6  0.0333

 




 
1

2
 [ 5.9696  5 ]

 1.745

Qmax  
T1  T0

R

 
150  35
1.74595

  65.867 W

Qmax  65.867  W.

Problem 1.28 A sphere of 10 mm dia is exposed to a
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  
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  0.37699  W

Qbare  0.37699  W.

Conduction 1.89 Heat and Mass Transfer1.90

r1 ro

r1

h o

 - www.airwalkpublications.com

Downloaded from Ktunotes.in

http://ktunotes.in/


Q2  Heat transfer from sheathed sphere

r0  0.008  m

r1  0.005  m

k  0.04

h0  10

   R1  
1

4k2
 



 
1
r1

  
1
r0

 




Rco  
1

h04r0
2

R1  
1

4  0.04
 



 

1
0.005

  
1

0.008
 




 149.207  K/W

Rco  
1

104  0.008 2
  124.339  K/W

R  R1  Rco  149.207  124.333

 273.5467 K/W

 Q  
T
R

  
120

273.5467

 0.43868 W

Qsheathed  0.43868  W.

So Q will be maximum (0.4386 W), when sphere is
sheathed.

1.29 PLANE WALL HEAT GENERATION

Heat is gener-
ated within the sys-
tem in many cases.
The heat generation
rate should be control-
led, otherwise equip-
ment (or) device may
fail. Therefore, while
designing thermal
equipments, tempera-
ture distribution
within the system and
the rate of heat dissi-
pation to the sur-
roundings should be
considered. Heat gen-
erating systems are 1.
fuel rod (nuclear reac-
tor), 2. electrical con-
ductor, 3. chemically reacting systems, etc. Figure 1.17
shows the plane wall with uniform heat generation.

Consider a plane wall of thickness 2 L with uniform
internal generation of heat and with uniform thermal
conductivity. The wall surfaces are maintained at
temperatures T1 and T2. Now, consider heat flow in one

direction and steady-state conditions.

The equation for heat generation is

d2 T

dx2   
q


k
  0 




 . . . 

2T

y2   
2T

z2   0 and 
T
t

  0 


 ...(1)

r1 ro
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Fig. 1.17 Plane wall with uniform

heat generation: both the
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same temperature
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Integrating this Eq. (1) twice, we get

dT
dx

  
  qx

k
  C1

...(2)

T  
  q


 x

k
  C1

T  
  q


 x2

2k
  C1 x  C2

...(3)

Case A: When both the surfaces of the wall have
the same temperature [Fig. 1.17]

T1  T2  Tw

The boundary conditions are 

   At x  0, T  T1

and at x  2L, T  T1 

Substituting the above boundary conditions in Eq.
(3)

At x  0, T  T1 : T1  C2 and at x  2L, T  T1 :

C1  
q

 L
k

Substituting C1 and C2 into Eq. (3), we get

T  
  q


 x2

2k
  

q

 Lx
k

  T1

 T  
q


2k
 Lx  x2  T1

...(4)

Equation (4) is the temperature distribution eqn. To
determine the maximum temperature and its location, we
can differentiate Eq. (4) w.r.t x and equate to zero, i.e.

dT
dx

  
d
dx

 



 

q
2k

 Lx  x2 

  0

...(5)

2L  2x  0; L  x

Hence, the maximum temperature occurs at x  L.
Substituting this in Eq. (4) to get the maximum
temperature Tmax,

Tmax  
q


2k
 2L2  L2  T1

Tmax  
q

 L2

2k
  T1  

qL2

2k
  Tw ...(6)

. . . T1  Tw

Heat transfer takes place from both the sides (i.e.
x  0, x  L) and is equal. This can be given by Fourier’s
equation,

Q   kA 
dT
dx

dT
dx

  
q


k
 L  x

Q   kA 
q


k
 L  x

When x  0 and  x  2L, we get

i.e. Q  ALq

 for each surface. ...(7)
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Here Q at each surface is further convected to the
surroundings at temperature T

Q  ALq
   hA T1  T

T1  T  
q


h
 L  Tw...(8)

Refer formula from
HMT DB Pg No. 48

Case B: When the
surfaces of the wall
have different
temperatures [Figure
1.18]

Two boundary
conditions are sufficient
for the determination of
the solution for
temperature distribution

At x  0, T  T1; 

At x  2L, T  T2

Substituting the
above boundary conditions in Eqn (3), we get

C2  T1 and 

C1  
T2  T1

2L
  

q

 L
k ...(9)

Substituting C1 and C2 in Eq. (3), we get

T  
  q


 x2

2k
  




 
T2  T1

2L
  

q

 L
k

 



 x  T1

T  
q

 Lx
2k

  
q

 x2

k
  

x
2L

 T2  T1  T1

T  x 



 
q

 2L  x

2k
  

T2  T1
2L

 



  T1 ...(10)

Equation (10) gives the temperature distribution
T, if both the sides of the plane have different
temperatures.

Heat transfer takes place from both the sides. This
can be given by the Fourier’s equation

Q   kA 
dT
dx ...(11)

Differentiate equ (10), we get

dT
dx

  
q


2k
 2L  2x  

T2  T1

2L

Substituting the above equation in Eq. (11) (Fourier
equation),

Q   kA 



 

q


2k
 2L  2x  

T2  T1

2L
 




At x  0,  Q   kA 



 
q


k
 L  

T2  T1

2L
 


 ...(12)

At x  2L,  Q   kA 



 
q

  L

k
  

T2  T1

2L
 


 ...(13)

Heat Q at each surface is further convected to the
surroundings at temperature T. Hence.
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Here Q at each surface is further convected to the
surroundings at temperature T

Q  ALq
   hA T1  T

T1  T  
q


h
 L  Tw...(8)

Refer formula from
HMT DB Pg No. 48

Case B: When the
surfaces of the wall
have different
temperatures [Figure
1.18]

Two boundary
conditions are sufficient
for the determination of
the solution for
temperature distribution

At x  0, T  T1; 

At x  2L, T  T2

Substituting the
above boundary conditions in Eqn (3), we get

C2  T1 and 

C1  
T2  T1

2L
  

q

 L
k ...(9)

Substituting C1 and C2 in Eq. (3), we get

T  
  q


 x2

2k
  




 
T2  T1

2L
  

q

 L
k

 



 x  T1

T  
q

 Lx
2k

  
q

 x2

k
  

x
2L

 T2  T1  T1

T  x 



 
q

 2L  x

2k
  

T2  T1
2L

 



  T1 ...(10)

Equation (10) gives the temperature distribution
T, if both the sides of the plane have different
temperatures.

Heat transfer takes place from both the sides. This
can be given by the Fourier’s equation

Q   kA 
dT
dx ...(11)

Differentiate equ (10), we get

dT
dx

  
q


2k
 2L  2x  

T2  T1

2L

Substituting the above equation in Eq. (11) (Fourier
equation),

Q   kA 



 

q


2k
 2L  2x  

T2  T1

2L
 




At x  0,  Q   kA 



 
q


k
 L  

T2  T1

2L
 


 ...(12)

At x  2L,  Q   kA 



 
q

  L

k
  

T2  T1

2L
 


 ...(13)

Heat Q at each surface is further convected to the
surroundings at temperature T. Hence.
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Q   kA 



 
q

L
k

  
T2  T1

2L
 



  hA T1  T, at x  0

...(14)

Q   kA 



 
q

L
k

  
T1  T2

2L
 



  hA T2  T, at x  2L

...(15)

For formulae, refer pg 48 of HMT DB.

Problem 1.29 Heat is generated in a slab of thickness 150

mm and k  125 W/m  K at the rate of 1.5  107 W/m3. The

temperature on either side of the slab is 130C. Calculate.

(a) The maximum temperature
(b) The temperature at one-fourth distance from left end.
(c) The heat flow rate at quarter plane

Solution

k  125 W/m  K, q

  1.5  107 W/m3, 

L  Half of thickness  
150
2

  75 mm  0.075  m

T1  T2  130C

(a) The maximum temperature Tmax

It is clear that maximum temperature occurs at
x  0

 x  
150

2
  75 mm

 T0  Tmax  
q


2k
 L2  T1 [refer HMT DB Pg. 48]

or T0  Tmax  
1.5  107

2  125
  0.0752  130

  467.5 C

(b) The temperature at one-fourth distance from
left end, i.e. x  0.5L  0.5  0.075  0.0375  m

T  T0  
q

x2

2k
  467.5   

1.5  107  0.03752

2  125

 T  383.125 C

(c) The heat flow rate at quarter plane qx at

0.25L). Heat transfer at any distance is given by

At Quarter plane, qx  q

  x

   1.5  107  0.0375  m  5.625   105 W/m2

Problem 1.30 A Plane wall 10 cm thick generates heat at

the rate of 4  104 W/m3 when an electric current is passed

through it. The convective heat transfer co-efficient between

each face of the wall and the ambient air is 50 W/m2 K.
Determine.
(a) the surface temperature
(b) the maximum air temperature on the wall. Assume the

Conduction 1.97 Heat and Mass Transfer1.98

0.5L q

2L
x=L

T 1 T 2

Tm ax

k

x  = 0

.
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Q   kA 



 
q

L
k

  
T2  T1

2L
 



  hA T1  T, at x  0

...(14)

Q   kA 



 
q

L
k

  
T1  T2

2L
 



  hA T2  T, at x  2L

...(15)

For formulae, refer pg 48 of HMT DB.

Problem 1.29 Heat is generated in a slab of thickness 150

mm and k  125 W/m  K at the rate of 1.5  107 W/m3. The

temperature on either side of the slab is 130C. Calculate.

(a) The maximum temperature
(b) The temperature at one-fourth distance from left end.
(c) The heat flow rate at quarter plane

Solution

k  125 W/m  K, q

  1.5  107 W/m3, 

L  Half of thickness  
150
2

  75 mm  0.075  m

T1  T2  130C

(a) The maximum temperature Tmax

It is clear that maximum temperature occurs at
x  0

 x  
150

2
  75 mm

 T0  Tmax  
q


2k
 L2  T1 [refer HMT DB Pg. 48]

or T0  Tmax  
1.5  107

2  125
  0.0752  130

  467.5 C

(b) The temperature at one-fourth distance from
left end, i.e. x  0.5L  0.5  0.075  0.0375  m

T  T0  
q

x2

2k
  467.5   

1.5  107  0.03752

2  125

 T  383.125 C

(c) The heat flow rate at quarter plane qx at

0.25L). Heat transfer at any distance is given by

At Quarter plane, qx  q

  x

   1.5  107  0.0375  m  5.625   105 W/m2

Problem 1.30 A Plane wall 10 cm thick generates heat at

the rate of 4  104 W/m3 when an electric current is passed

through it. The convective heat transfer co-efficient between

each face of the wall and the ambient air is 50 W/m2 K.
Determine.
(a) the surface temperature
(b) the maximum air temperature on the wall. Assume the

Conduction 1.97 Heat and Mass Transfer1.98

0.5L q

2L
x=L

T 1 T 2

Tm ax

k

x  = 0
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ambient air temperature to be 20C and the thermal

conductivity of the wall material to be 15 W/mK.
                       [Madras University April 98]

Solution

Given:

Half Thickness   L  
10
2

 cm  0.05 m

Heat generation, q

  4  104 W/m3

Convective heat transfer co-efficient, h  50 W/m2K’

Ambient air temperature, T  20C  273  293 K

Thermal conductivity, k  15 W/mK. 

From HMT DB page 48

Surface temperature, Tw  T  
q

L
h

 293  
4  104  0.05

50

Tw  333 K.

Maximum temperature occurs at mid of slab.

Maximum temperature, Tmax  Tw  
q

L2

2k

  333  
4  104  0.052

2  15

Tmax  336.3  K 

Problem 1.31 A concrete wall of 1 m thick is poured with

concrete. The hydration of concrete generates 150 W/m3 heat.

If both the surfaces of the wall are maintained at 35C, find

the maximum temperature in the wall.
                        [Madras University April 99]

Solution

Given:

Thickness, L   Half of thickness   
1
2

  0.5 m

Heat generation, q

  150 W/m3

Surface temperature, Tw  35C  273  308 K

From HMT data book, page 48

Maximum temperature present in mid of the wall.

Tmax  T0  Tw  
q

L2

2k

Thermal conductivity of concrete, k  1.279  W/mK

             [From HMT data book P.No.19]

Tmax  308  
150  0.52

2  1.279

Tmax  322.6  K

Problem 1.32 The rate of heat generation in a slab of

thickness 200 mm ( k  180 W/mC is 1.2  106 W/m3. If the

temperature of each of the surface of solid is 140C,

determine the temperature at the mid and quarter planes:

Solution

Conduction 1.99 Heat and Mass Transfer1.100
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ambient air temperature to be 20C and the thermal

conductivity of the wall material to be 15 W/mK.
                       [Madras University April 98]

Solution

Given:

Half Thickness   L  
10
2

 cm  0.05 m

Heat generation, q

  4  104 W/m3

Convective heat transfer co-efficient, h  50 W/m2K’

Ambient air temperature, T  20C  273  293 K

Thermal conductivity, k  15 W/mK. 

From HMT DB page 48

Surface temperature, Tw  T  
q

L
h

 293  
4  104  0.05

50

Tw  333 K.

Maximum temperature occurs at mid of slab.

Maximum temperature, Tmax  Tw  
q

L2

2k

  333  
4  104  0.052

2  15

Tmax  336.3  K 

Problem 1.31 A concrete wall of 1 m thick is poured with

concrete. The hydration of concrete generates 150 W/m3 heat.

If both the surfaces of the wall are maintained at 35C, find

the maximum temperature in the wall.
                        [Madras University April 99]

Solution

Given:

Thickness, L   Half of thickness   
1
2

  0.5 m

Heat generation, q

  150 W/m3

Surface temperature, Tw  35C  273  308 K

From HMT data book, page 48

Maximum temperature present in mid of the wall.

Tmax  T0  Tw  
q

L2

2k

Thermal conductivity of concrete, k  1.279  W/mK

             [From HMT data book P.No.19]

Tmax  308  
150  0.52

2  1.279

Tmax  322.6  K

Problem 1.32 The rate of heat generation in a slab of

thickness 200 mm ( k  180 W/mC is 1.2  106 W/m3. If the

temperature of each of the surface of solid is 140C,

determine the temperature at the mid and quarter planes:

Solution
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Refer to Fig.

Thickness of slab 2L  200 mm

  0.2 m

The rate of heat generated q

  1.2  106 W/m3

Thermal conductivity of slabs, k  180 W/mC

The temperature of each surface, T1  T2  Tw  140C

(Where Tw   temperature of the wall surface)

The temperature at the mid and quarter planes:

The temperature distribution is given by:

                (Refer pg 48 of HMT DB)

At mid plane: x  0

T0  Tw  
q


2k
L2

  140  
1.2  106

2  180
  0.12

  173.33 C

At Quarter plane

At x   
L
2

   
80
2

   40 mm

Tx  T0

T2  T0
  




 
x
L

 




2

Tx  173.33

140  173.33
  




  

40
80

 




2

  0.25

Tx  173.33    8.3325

Tx  164.9975 C

At Quarter plane, x   
L
2

Tx  173.33

140  173.33
  




 
40
80

 




2

  0.25

Tx  173.33    8.3325

Tx  164.9975  C

Problem 1.33 The temperatures on the two surfaces of a

25 mm thick steel plate, k  48 W/mC having a uniform

volumetric heat generation of 30  106 W/m3, are 180C and

120C. Neglecting the end effects, determine the following:

(i) The temperature distribution across the plate;
(ii) The value and position of the maximum temperature,

Conduction 1.101 Heat and Mass Transfer1.102

x=
-L

x=
L

2L=200

x=
-L

/2

x=
+

L
/2

x=0

k =  180W /m Co

q = 12 x10 W /m 36
tmax

T = T = T = 140 Cw1 w2 w
o

T wT w q

t

X

.

.
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Refer to Fig.

Thickness of slab 2L  200 mm

  0.2 m

The rate of heat generated q

  1.2  106 W/m3

Thermal conductivity of slabs, k  180 W/mC

The temperature of each surface, T1  T2  Tw  140C

(Where Tw   temperature of the wall surface)

The temperature at the mid and quarter planes:

The temperature distribution is given by:

                (Refer pg 48 of HMT DB)

At mid plane: x  0

T0  Tw  
q


2k
L2

  140  
1.2  106

2  180
  0.12

  173.33 C

At Quarter plane

At x   
L
2

   
80
2

   40 mm

Tx  T0

T2  T0
  




 
x
L

 




2

Tx  173.33

140  173.33
  




  

40
80

 




2

  0.25

Tx  173.33    8.3325

Tx  164.9975 C

At Quarter plane, x   
L
2

Tx  173.33

140  173.33
  




 
40
80

 




2

  0.25

Tx  173.33    8.3325

Tx  164.9975  C

Problem 1.33 The temperatures on the two surfaces of a

25 mm thick steel plate, k  48 W/mC having a uniform

volumetric heat generation of 30  106 W/m3, are 180C and

120C. Neglecting the end effects, determine the following:

(i) The temperature distribution across the plate;
(ii) The value and position of the maximum temperature,
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x=
-L
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L
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-L
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+
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and
(iii) The flow of heat from each surface of the plate.

Solution

Refer to Fig.

L  25 mm  0.025 m

tw1  180C ; tw2  120C

q

  30  106 W/m3

k  48 W/mC

Tmax  
q

 L2

2k
  

k

8 q

 L2  Tw1  Tw2

2  
1
2

 Tw1  Tw2

                    



 L  

25
2

  12.5 mm 




Tmax  
30  106  0.01252

2  48

 
48

8  30  106  0.0125 2  180  1202  
1
2

 180  120

  48.828   4.608   150

  203.436 C

Position of Maximum Temperature

xmax  
k

2 q

 L

 Tw2  Tw1

  
48

2  30  106  0.0125
 120  180

   3.84  10 3 m

Maximum Temperature occurs at 3.84 mm left to
mid plane (or) 8.6 mm from left side of the slab.

x=-L

2L=25m m

x=Lx=-3.84m m

Steel plate
(k=48W /m C)o

tmax

q1

t

X

q = 30 x10 W /m6 3

x=0

Tem perature
profile

t =  1 20 Cw2
o

q2

t(x)

.

T 2

r2

r1

T 1

L

Fig. 1.19
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and
(iii) The flow of heat from each surface of the plate.

Solution

Refer to Fig.

L  25 mm  0.025 m

tw1  180C ; tw2  120C

q

  30  106 W/m3

k  48 W/mC

Tmax  
q

 L2

2k
  

k

8 q

 L2  Tw1  Tw2

2  
1
2

 Tw1  Tw2

                    



 L  

25
2

  12.5 mm 




Tmax  
30  106  0.01252

2  48

 
48

8  30  106  0.0125 2  180  1202  
1
2

 180  120

  48.828   4.608   150

  203.436 C

Position of Maximum Temperature

xmax  
k

2 q

 L

 Tw2  Tw1

  
48

2  30  106  0.0125
 120  180

   3.84  10 3 m

Maximum Temperature occurs at 3.84 mm left to
mid plane (or) 8.6 mm from left side of the slab.

x=-L

2L=25m m

x=Lx=-3.84m m

Steel plate
(k=48W /m C)o

tmax

q1

t

X

q = 30 x10 W /m6 3

x=0

Tem perature
profile

t =  1 20 Cw2
o

q2

t(x)

.

T 2

r2

r1

T 1

L

Fig. 1.19
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1.30 Conduction through
hollow cylinder with
internal heat generation

Figure 1.19 shows a
long hollow cylinder of length
L and inside and outside radii
r1 and r2 respectively.

Temperatures T1 and T2 are

maintained at r1 and r2

respectively. A constant rate of heat q

 W/m3 is

generated within the cylinder.

The one-dimensional, steady state with heat
generation is

d
dr

 



 r

dT
dr

 



  

q

 r
k

  0,    r1  r2

            ...(16)

Integrating Equation. 16, once,

r dT
dr

  
q

 r2

2k
  C1

dT
dr

  
q

 r

2k
  

C1

r

or
dT
dr

  
C1

8
  

q

 r

2k ...(16 (a))

Integrating once again,

T  
 q

 r2

4k
  C1 ln r  C2 ...(17)

Substituting boundary conditions into Eq.17,

T  T1    at r  r1

T  T2    at r  r2

T1  
q

 r1

2

4k
  C1 ln r1  C2

...(18)

T2  
q

 r2

2

4k
  C1 ln r2  C2 ...(19)

Tmax  
q

 r2

4k
  C1 ln r  C2

[r   radial distance where the temperature is
maximum]

Solving Eqs. 18 and 19, we get

C1 ln
r2

r1
  T2  T1  

q

 r2

2  r1
2

4k

C1  
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

and C2  T1  
q

 r1

2

4k
  













 
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

 













  ln r1

Substituting C1 and C2 from the above equations

into Eq. 17, we get

r2

T2

T 2T 1

r1

k

Fig. 1.20
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1.30 Conduction through
hollow cylinder with
internal heat generation

Figure 1.19 shows a
long hollow cylinder of length
L and inside and outside radii
r1 and r2 respectively.

Temperatures T1 and T2 are

maintained at r1 and r2

respectively. A constant rate of heat q

 W/m3 is

generated within the cylinder.

The one-dimensional, steady state with heat
generation is

d
dr

 



 r

dT
dr

 



  

q

 r
k

  0,    r1  r2

            ...(16)

Integrating Equation. 16, once,

r dT
dr

  
q

 r2

2k
  C1

dT
dr

  
q

 r

2k
  

C1

r

or
dT
dr

  
C1

8
  

q

 r

2k ...(16 (a))

Integrating once again,

T  
 q

 r2

4k
  C1 ln r  C2 ...(17)

Substituting boundary conditions into Eq.17,

T  T1    at r  r1

T  T2    at r  r2

T1  
q

 r1

2

4k
  C1 ln r1  C2

...(18)

T2  
q

 r2

2

4k
  C1 ln r2  C2 ...(19)

Tmax  
q

 r2

4k
  C1 ln r  C2

[r   radial distance where the temperature is
maximum]

Solving Eqs. 18 and 19, we get

C1 ln
r2

r1
  T2  T1  

q

 r2

2  r1
2

4k

C1  
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

and C2  T1  
q

 r1

2

4k
  













 
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

 













  ln r1

Substituting C1 and C2 from the above equations

into Eq. 17, we get

r2

T2

T 2T 1

r1

k

Fig. 1.20
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T  
 q

 r2

4k
  




 T2  T1  

q


4k
 r2

2  r1
2 


 

ln r

ln 
r2

r1

  T1  
q

 r1

2

4k

                 













 
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

 













  ln r1

T  T1  
q


4k
 r1

2  r2  



 T2  T1  

q


4k
 r2

2  r1
2 


 

ln r/r1

ln r2/r1

T  T1

T2  T1
  

q


4k
 



 
r1

2  r2
T2  T1

  
r2

2  r1
2 ln r/r1

T2  T1 ln r2/r1
 



  

ln r/r1

ln r2/r1

T  T1

T2  T1
  

ln r/r1

ln r2/r1
  

q


4k

r2
2  r1

2

T2  T1
 






 

ln r/r1

ln r2/r1
  

r/r1
2  1

r2/r1
2  1

 







The radial heat flow can be found out by Fourier’s
equation.

  kA 
dT
dr

  k2  rL
dT
dr

Substituting dT/dr from Eq. 16 (a) into the above
equation.

Q   k2  rL 



 
C1

r
  

q

 r

2k
 



  2  L 




 
q

 r2

2
  C1k 





Q  2  L 













 
q

 r2

2
  










 
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

 










  k 











...(20)

Refer formulae from Pg 49 of HMT Database.

Also for solid sphere, take formula from pg 49 of
HMT DB

Problem 1.34 Heat is generated within a wire of 3 mm in
diameter by passing a current of 350 A. The thermal
conductivity and resistivity of the wire are 25 W/m-K and

80  10 8   m and the length of the wire is 2.2 m. This

wire is immersed in a water bath maintained at 30C.The

heat transfer coefficient at the outer surface of the wire is 4500 W/m2  

Calculate the temperature at the centre of the wire and at
the surface of the wire.

Solution

R  1.5 mm, L  2.2 mm, h  4500 W/m2  K,

k  25 W/m  K, T  30C, I  30 A,

  resistivity of the wire  80  10 8   m

q

  

Q


AL
  

I2  L
A

  
1

AL
   




 
I
A

 




2

Area   

4

  0.0032  7.068   10 6 m2

  80  10 8 



 

350

7.068   10 6
 




2

  1.9614   109 W/m3

(a) Temperature at the surface of the wire 

From pg 48 of HMT Databook

T2  T  
q

 R

2h
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T  
 q

 r2

4k
  




 T2  T1  

q


4k
 r2

2  r1
2 


 

ln r

ln 
r2

r1

  T1  
q

 r1

2

4k

                 













 
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

 













  ln r1

T  T1  
q


4k
 r1

2  r2  



 T2  T1  

q


4k
 r2

2  r1
2 


 

ln r/r1

ln r2/r1

T  T1

T2  T1
  

q


4k
 



 
r1

2  r2
T2  T1

  
r2

2  r1
2 ln r/r1

T2  T1 ln r2/r1
 



  

ln r/r1

ln r2/r1

T  T1

T2  T1
  

ln r/r1

ln r2/r1
  

q


4k

r2
2  r1

2

T2  T1
 






 

ln r/r1

ln r2/r1
  

r/r1
2  1

r2/r1
2  1

 







The radial heat flow can be found out by Fourier’s
equation.

  kA 
dT
dr

  k2  rL
dT
dr

Substituting dT/dr from Eq. 16 (a) into the above
equation.

Q   k2  rL 



 
C1

r
  

q

 r

2k
 



  2  L 




 
q

 r2

2
  C1k 





Q  2  L 













 
q

 r2

2
  










 
T2  T1  

q


4k
 r2

2  r1
2

ln 
r2

r1

 










  k 











...(20)

Refer formulae from Pg 49 of HMT Database.

Also for solid sphere, take formula from pg 49 of
HMT DB

Problem 1.34 Heat is generated within a wire of 3 mm in
diameter by passing a current of 350 A. The thermal
conductivity and resistivity of the wire are 25 W/m-K and

80  10 8   m and the length of the wire is 2.2 m. This

wire is immersed in a water bath maintained at 30C.The

heat transfer coefficient at the outer surface of the wire is 4500 W/m2  

Calculate the temperature at the centre of the wire and at
the surface of the wire.

Solution

R  1.5 mm, L  2.2 mm, h  4500 W/m2  K,

k  25 W/m  K, T  30C, I  30 A,

  resistivity of the wire  80  10 8   m

q

  

Q


AL
  

I2  L
A

  
1

AL
   




 
I
A

 




2

Area   

4

  0.0032  7.068   10 6 m2

  80  10 8 



 

350

7.068   10 6
 




2

  1.9614   109 W/m3

(a) Temperature at the surface of the wire 

From pg 48 of HMT Databook

T2  T  
q

 R

2h
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T  30C

Tw  30  
1.961   109  0.0015

2  4500

  356.896 C

  356.9 C

(b) Temperature at the centre of the wire

Tr  0  Tw  
q


4k
 R2  r2  

[Here r  0]

T0  356.9   
1.9614   109

4  25
  0.00152

  401.03 C

Problem 1.35 A current of 200 A is passed through a

stainless steel wire k  19 W/mK 3 mm in diameter. The

resistivity of the steel may be taken as 70   cm and the

length of the wire is submerged in a liquid at 110C with

heat transfer co-efficient h  4 kW/m2C. Calculate the centre

temperature of the wire.   [Madras University, April 2000]

Solution

Given:

Current A  200 A

Thermal conductivity k  19 W/mK

Diameter d  3 mm  0.003  m

Resistivity   70    cm  0.7   m  0.7  10 6  m

Liquid Temperature Tw  110C  273  383 K

Heat transfer co-efficient h  4 kW/m2 C 

                          4  103 W/m2C

Length of wire   1 m

T0   Centre temp    max. temp

The maximum temperature in the wire occurs at
the centre.

Tmax  T0  Tw  
q

 R2

4k ...(1)

[From Pg 48 of HMT]

Resistance of wire, R  
Resistivity  Length

Area

  
0.7  10 6  1

4

  0.003 2

R  0.099  

We know that,

Q  I2 R

  2002  0.099 

Q  3961.189  W

Heat generated, q

  

Q
V

  
3961.189

4

 d2  L

q

  

3961.189

4
0.0032  1

Conduction 1.109 Heat and Mass Transfer1.110

Downloaded from Ktunotes.in

http://ktunotes.in/


T  30C

Tw  30  
1.961   109  0.0015

2  4500

  356.896 C

  356.9 C

(b) Temperature at the centre of the wire

Tr  0  Tw  
q


4k
 R2  r2  

[Here r  0]

T0  356.9   
1.9614   109

4  25
  0.00152

  401.03 C

Problem 1.35 A current of 200 A is passed through a

stainless steel wire k  19 W/mK 3 mm in diameter. The

resistivity of the steel may be taken as 70   cm and the

length of the wire is submerged in a liquid at 110C with

heat transfer co-efficient h  4 kW/m2C. Calculate the centre

temperature of the wire.   [Madras University, April 2000]

Solution

Given:

Current A  200 A

Thermal conductivity k  19 W/mK

Diameter d  3 mm  0.003  m

Resistivity   70    cm  0.7   m  0.7  10 6  m

Liquid Temperature Tw  110C  273  383 K

Heat transfer co-efficient h  4 kW/m2 C 

                          4  103 W/m2C

Length of wire   1 m

T0   Centre temp    max. temp

The maximum temperature in the wire occurs at
the centre.

Tmax  T0  Tw  
q

 R2

4k ...(1)

[From Pg 48 of HMT]

Resistance of wire, R  
Resistivity  Length

Area

  
0.7  10 6  1

4

  0.003 2

R  0.099  

We know that,

Q  I2 R

  2002  0.099 

Q  3961.189  W

Heat generated, q

  

Q
V

  
3961.189

4

 d2  L

q

  

3961.189

4
0.0032  1
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q

  560.394  106

Substituting q

 value in Equation

Tmax  Tw  
q

 R2

4k

Tmax  T0  383  
560.394   106  0.00152

4  19

  383  16.59

T0  399.59  K

Centre temperature of wire, T0  399.59  K

Problem 1.36 A hollow cylinder has a conductivity of 0.2
W/m-K. Its inner and outer radii are 5 mm and 7 mm,

respectively. It has an electric resistance of 0.03  per metre.

It is insulated at the outer radius.

The inner radius is maintained at 30C.

Calculate the maximum current if
the temperature is not to exceed

60C

Solution

Data:

k  20 W/m  K, T2  Tmax  60C, r1  5 mm,

r2  7 mm, Re  0.03 /m, T1  30C

The outer surface is insulated, hence it has
maximum temperature, i.e., T2  Tmax

To find q


From Pg 49 of HMT Databook

For Hollow cylinder, outside adiabatic

T0  Ti  
q


2k
  R0

2 ln 
R0

Ri
  

q


4k
 R0

2  Ri
2

60  30  
q


2  20
  0.007 2 ln 




 
7
5

 

  

q


4  20
 0.007 2  0.0052

30  q

  4.1218   10 7  3  10 7 q



q

  

30

1.1218   10 7
  2.674   108 

W

m3

Heat generated per meter length:

q


1 m length
  q


  A  2.674  


4

  0.007 2  0.005 2

  5040.9  
W
m

The maximum Current (I)

q


1 m length
  I2 Re

5040.9   I2  0.03

I  5040.9
0.03

  409.914 A

k, q

T1

T 2

R e

R o

T 0

T m ax

R

q

Fig. 1.21
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q

  560.394  106

Substituting q

 value in Equation

Tmax  Tw  
q

 R2

4k

Tmax  T0  383  
560.394   106  0.00152

4  19

  383  16.59

T0  399.59  K

Centre temperature of wire, T0  399.59  K

Problem 1.36 A hollow cylinder has a conductivity of 0.2
W/m-K. Its inner and outer radii are 5 mm and 7 mm,

respectively. It has an electric resistance of 0.03  per metre.

It is insulated at the outer radius.

The inner radius is maintained at 30C.

Calculate the maximum current if
the temperature is not to exceed

60C

Solution

Data:

k  20 W/m  K, T2  Tmax  60C, r1  5 mm,

r2  7 mm, Re  0.03 /m, T1  30C

The outer surface is insulated, hence it has
maximum temperature, i.e., T2  Tmax

To find q


From Pg 49 of HMT Databook

For Hollow cylinder, outside adiabatic

T0  Ti  
q


2k
  R0

2 ln 
R0

Ri
  

q


4k
 R0

2  Ri
2

60  30  
q


2  20
  0.007 2 ln 




 
7
5

 

  

q


4  20
 0.007 2  0.0052

30  q

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
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  2.674   108 

W

m3

Heat generated per meter length:
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1.31 Solid Sphere with Heat Generation

Consider a solid sphere of Figure (1.21) with
internal heat generation. The outer radius is R and the
outer temperature is To. The solid sphere has uniform

thermal conductivity k. The one-dimensional, steady state
with heat generation equation is

1

r2 
d
dr

 



 r2dT

dr
 



  

q


k
  0

d
dr

 



 r2dT

dr
 



  

q

 r2

k
  0

Integrating the above equation twice, we get

r2dT
dr

   
q

 r3

3k
  C1

or 
dT
dr

   
q

 r

3k
  

C1

r2
...(38)

or T   
q

 r2

6k
  

C1

r
  C2

...(39)

Boundary conditions:

AT centre, r  0, dT/dr  0 ; At r  R, T  T0

At centre, r  0, 
dT
dr

  0, hence C1  0

At r  R, outer surface, T  T0

T0  
 q

 R2

6K
  C2     C2  T0  

q

 R2

6k

Substituting the values of constant C1 and C2 in

Equation. 39, we get

T  T0  
q


6k
 R2  r2

...(40)

This equation gives the temperature distribution in
solid sphere with heat generation.

dT
dr

 r  0

The temperature is maximum at r  0

Ti  Tmax

 Ti  Tmax  T0  
q

 R2

6k ...(41)

The heat flow rate can
be calculated from Fourier’s
equation,

Q   
 
 kA

dT
dr

   k4  R2 
dT
dr

 


r  R

Substituting for dT/dr
from equation.38 into the
above equation, we get

Q   k4  R2 



 
 q

 R

3k
 



  

4  R3 q


3 ...(42)

or Q  Volume  q


R

T m ax

T 0

q T

h

Fig. 1.22 Solid sphere 
with  convection.
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
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The heat generated within the sphere is conducted
at the outer surface, which is convected to the
surroundings.

We have

Heat generated within the solid sphere

  Heat conducted at the outer surface of the solid
sphere.

  Heat convected from outer surface into the
surroundings.

q

 
4
3

  R2 h T0  T ...(43)

T0  T  
q

 R

3h

Substituting the above equation in Eq. 40, we get

T  



 T  

q

 R

3h
 



  

q

 R2  r2

6k ...(44)

Equation (44) gives the temperature distribution
within the solid sphere with convective heat transfer
coefficient h and surrounding temperature T

Problem 1.37 An approximately spherical shaped orange

k  0.23 W/mC, 100 mm in diameter undergoes riping

process and generates 5100 W/m3 of energy. If external

surface of the orange is at 10C determine:

 (i) Temperature at the centre of the orange, and
(ii) Heat flow from the outer surface of the orange.
                        (May/June 2005 - AU)

Solution

Outside radius of the orange, 

R  
100

2
  50 mm  0.05 m

Rate of heat generation, q

  5100 W/m3

The temperature at the outer surface of the orange,
Tw  10C

(i) Temperature at the centre of the orange Tmax

Tmax  Tw  
q


6k
 R2

From pg. 49 of HMT DB

or Tmax  10  
5100

6  0.23
  0.052  19.24 C

(ii) Heat flow from the outer surface of the
orange, Q

Heat conducted    Heat generated

 Q  q

  

4
3

  R3

Q  5100  
4
3

   0.05 3  2.67 W
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1.32 HEAT TRANSFER THRO’ FINS

Extended surfaces or fins are used to transfer the
required quantity of heat with the available temperature
drop and convective heat transfer coefficient.

The fins are commonly used to increase the heat
transfer by increasing the surface area. By available
surface area, the heat transfer may be less. If we add
fins to the surfaces of heat transfer equipment, then the
surface area will be increased, hence heat transfer will
be increased.

The fins are used for scooters, motor-cycles and
compressors. They are used in evaporators and
condensors of refrigerating system by increasing surface
area of heat transfer to increase the heat transfer rate.

1.33 TYPES OF FINS

(i) Uniform  stra ight fin
(ii) Tapered stra ight finFig. 1.23

Fig. 1.24 (i) Splines

(ii) Annualar fin
(iii) P in fins (spines)

Fig. 1.24
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There are two types of fins used in industries.

1. Straight fin-It is attached to a wall.

2. Annular or Spline fin - It is attached to the
circumference of the cylindrical surface.

1.34 HEAT FLOW THROUGH RECTANGULAR FINS

Figure 1.25 shows a rectangular fin of uniform
cross section having temperature Tb at the base and the

surrounding atmosphere temperature T. The

assumptions made for the analysis of heat flow through
the fins.

 One-dimensional conduction in x-direction.

 Homogeneous and fin material has uniform
thermal conductivity (isotropic).

 No internal heat generated in the fin.

 Steady state conduction prevails.

 Uniform convective heat transfer coefficient over
the entire surface of the fin.

 Radiation heat transfer is neglected.

Let L  Length of the fin

b  Width of the fin

t  Thickness of the fin (m)

P  Perimeter of the rectangular fin
  2 b  t m

A  Cross-sectional area of the fin (area
perpendicular to the direction of heat flow)

m2
Tb  Temperature of the base of the fin

C or K
T  Surrounding ambient temperature C

h  Convective heat transfer coefficient

W/m2  K
k  Thermal conductivity of fin W/m  K

Fig. 1.25 Fin of uniform cross section: 
(a) rectangular fin, 

Conduction 1.119 Heat and Mass Transfer1.120

L

Fig. 1.25 Fin of uniform cross section: 
 (b) c ircular fin.
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Energy balance to an element of the fin of length
dx at a distance x from the surface is applied.

Heat conducted into the element    Heat conducted

out of the element    Heat convected away from the
element.

i.e Qx  Qx  dx  Qconvection

or 
 
  kA 

dT
dx

 


x

 
 
   kA 

dT
dx

 


x  dx

  h Pdx [T  T]
...(21)

We know 
 
 
dT
dx

 


x  dx

  
 
 
dT
dx

 


x

  
d
dx

 



 
dT
dx

 


x

 dx

Substituting the above expression in Eq.(21), we
have

 kA 
dT
dx

   kA 
dT
dx

  kA 
d
dx

 



 
dT
dx

 



 dx  hP dx [T  T]

kA 
d
dx

 



 
dT
dx

 



 dx   hP dx [T  T]

d2T

dx2   
hp
kA

 [T  T]  0

d2T

dx2   
hP
kA

   0
...(22)

Where   T  T ; T  constant ; Let m  hP
kA

d 
dx

  
dT
dx

 ; 
d2 

dx2   
d2T

dx2

Substituting m  
hP
kA

 and 
d2 
dx

  
d2T

dx2

We get 
d2 
dx

  m2   0
...(23)

The parameter m is constant, because h and k are
assumed constant. Then, the general solution for the
above equation (second order differential equation) is

  C1emx  C2e mx
...(24)

This equation can be written in the form of
hyperbolic sine and hyperbolic cosine functions. Thus, we
have

  C1 cosh mx  C2 sinh mx ...(25)

  C1 cosh m L  x  C2 sinh m L  x ...(26)

Three different conditions are possible for this fin.
They are:

1. The fin is infinitely long [temperature at the tip
of the fin    surrounding temperature, i.e.

T  T at x  

2. The tip of the fin is insulated, and short fin.

3. The length of the fin is short and heat transfer
is by convection and end not insulated.

Case (i)

Fin is Infinitely Long L  

  T  T
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Energy balance to an element of the fin of length
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
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 dx

Substituting the above expression in Eq.(21), we
have

 kA 
dT
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dT
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d
dx

 


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


 dx  hP dx [T  T]
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

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dT
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hp
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hP
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   0
...(22)

Where   T  T ; T  constant ; Let m  hP
kA

d 
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hP
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 and 
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  
d2T
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We get 
d2 
dx

  m2   0
...(23)

The parameter m is constant, because h and k are
assumed constant. Then, the general solution for the
above equation (second order differential equation) is

  C1emx  C2e mx
...(24)

This equation can be written in the form of
hyperbolic sine and hyperbolic cosine functions. Thus, we
have

  C1 cosh mx  C2 sinh mx ...(25)

  C1 cosh m L  x  C2 sinh m L  x ...(26)

Three different conditions are possible for this fin.
They are:

1. The fin is infinitely long [temperature at the tip
of the fin    surrounding temperature, i.e.

T  T at x  

2. The tip of the fin is insulated, and short fin.

3. The length of the fin is short and heat transfer
is by convection and end not insulated.

Case (i)

Fin is Infinitely Long L  

  T  T
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The boundary conditions are:

At x  0, T  Tb,    Tb  T  b

At x  , T  T,   T  T  0

Substituting the above boundary conditions into Eq.
(24) 

  C1emx  C2e mx

At x  0,  C1  C2  b  Tb  T

At x  , C1em   C2e m   0,  C1  0

 C2  b  Tb  T

Substituting the values of C1 and C2 in Eq. (24),

we get

  be mx  Tb  Te
 mx


b

  
T  T

Tb  T
  e mx

...(27)

Refer page 50 of HMT DB.

Equation 27 gives the temperature distribution
along the length of the fin.

(a) The rate of the heat flow through the fin can
be analyzed as follows:

Heat is convected away from the tip of the fin
L  . Hence,

Q  h Pdx  [T  T]        
0



  hP dx [T  T] 

                      . . . Pdx  Surface Area

From Eq. 27,

T  T  Tb  T e
 mx

Q        
0



  hP Tb  T e
 mx dx  hP Tb  T  

1
m

Q  hp Tb  T kA
hP

  hPkA  Tb  T
...(28)

Refer formula from pg.50 of HMT Databook. 

Case (ii) Short fin-end insulated.

d2 
dx

  m2   0,  0  x  L
[  T  T]

Boundary Conditions

At x  0,  T  Tb ;  Then   Tb  T  b

Substituting the above boundary conditions in the
following equation (26), we get 

  C1 cosh m L  x  C2 sinh m L  x

At x  0,   b  C1 cosh mL  C2 sinh mL ...(29)

At x  L, 
dT
dx

  
d 
dx

  0         [end is insulated]
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The boundary conditions are:

At x  0, T  Tb,    Tb  T  b

At x  , T  T,   T  T  0

Substituting the above boundary conditions into Eq.
(24) 

  C1emx  C2e mx

At x  0,  C1  C2  b  Tb  T

At x  , C1em   C2e m   0,  C1  0

 C2  b  Tb  T

Substituting the values of C1 and C2 in Eq. (24),

we get

  be mx  Tb  Te
 mx


b

  
T  T

Tb  T
  e mx

...(27)

Refer page 50 of HMT DB.

Equation 27 gives the temperature distribution
along the length of the fin.

(a) The rate of the heat flow through the fin can
be analyzed as follows:

Heat is convected away from the tip of the fin
L  . Hence,

Q  h Pdx  [T  T]        
0



  hP dx [T  T] 

                      . . . Pdx  Surface Area

From Eq. 27,

T  T  Tb  T e
 mx

Q        
0



  hP Tb  T e
 mx dx  hP Tb  T  

1
m

Q  hp Tb  T kA
hP

  hPkA  Tb  T
...(28)

Refer formula from pg.50 of HMT Databook. 

Case (ii) Short fin-end insulated.

d2 
dx

  m2   0,  0  x  L
[  T  T]

Boundary Conditions

At x  0,  T  Tb ;  Then   Tb  T  b

Substituting the above boundary conditions in the
following equation (26), we get 

  C1 cosh m L  x  C2 sinh m L  x

At x  0,   b  C1 cosh mL  C2 sinh mL ...(29)

At x  L, 
dT
dx

  
d 
dx

  0         [end is insulated]
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Differentiating  Eq. (26), putting x  L and

d 
dx

  0, we have

d 
dx

  C1 sinh [m L  L]  C2 cosh [m L  L]

  C1  0  C2m  0

C2  0

Substituting C2  0 in Eq. (29)

C1  
b

cosh mL

Substituting C1 and C2 values in  Eq. (26), we get

  [T  T]  
b

cosh mL
 cosh [m x  L]  0

  
b cosh [m L  x]

cosh mL

or 

b

  
T  T

Tb  T
  

cosh [m L  x]
cosh mL ...(29)

The above equation gives the temperature
distribution in a fin, with end insulated.

To find Q

Equation (29) can be written as

       b
cosh [m L  x]

cosh mL

d 
dx

  
 m b sinh L  x m

cosh mL

 
 
d 
dx

 


x  0

   m b 
sinh mL
cosh mL

   m b tanh mL

The rate of heat flow through the short fin (end
insulated) is given by Fourier’s equation,

Q    kA
dT
dx

 


x  0

   kA
d 
dx

 


x  0

  kA [ m b tanh mL]

Q  k Am  b tanh mL  kA hp
kA

 Tb  T tanh mL

Q  hPkA Tb  T tanh mL ...(30)

Refer page 50 of HMT DB for formula [  T  T]

Case (iii) Short fin end not insulated

  T  T

At x  0, T  Tb,   b  Tb  T

At x  L

Heat conducted to the tip

 Heat convected into the surroundings

   kA 
dT
dx

  h A [T  T]
[   T  T]

dT
dx

  
 h
k

 
...(31)

Putting x  L in Eq. (26) 
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Differentiating  Eq. (26), putting x  L and

d 
dx

  0, we have

d 
dx

  C1 sinh [m L  L]  C2 cosh [m L  L]

  C1  0  C2m  0

C2  0

Substituting C2  0 in Eq. (29)

C1  
b

cosh mL

Substituting C1 and C2 values in  Eq. (26), we get

  [T  T]  
b

cosh mL
 cosh [m x  L]  0

  
b cosh [m L  x]

cosh mL

or 

b

  
T  T

Tb  T
  

cosh [m L  x]
cosh mL ...(29)

The above equation gives the temperature
distribution in a fin, with end insulated.

To find Q

Equation (29) can be written as

       b
cosh [m L  x]

cosh mL

d 
dx

  
 m b sinh L  x m

cosh mL

 
 
d 
dx

 


x  0

   m b 
sinh mL
cosh mL

   m b tanh mL

The rate of heat flow through the short fin (end
insulated) is given by Fourier’s equation,

Q    kA
dT
dx

 


x  0

   kA
d 
dx

 


x  0

  kA [ m b tanh mL]

Q  k Am  b tanh mL  kA hp
kA

 Tb  T tanh mL

Q  hPkA Tb  T tanh mL ...(30)

Refer page 50 of HMT DB for formula [  T  T]

Case (iii) Short fin end not insulated

  T  T

At x  0, T  Tb,   b  Tb  T

At x  L

Heat conducted to the tip

 Heat convected into the surroundings

   kA 
dT
dx

  h A [T  T]
[   T  T]

dT
dx

  
 h
k

 
...(31)

Putting x  L in Eq. (26) 
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  C1 cosh m L  x  C2 sinh m L  x

L  C1 cosh [m 0]  C2 sinh [m 0]

or L  C1  TL  T ...(32)

Differentiating Eq. (26) and putting x  L,

d 
dx

  C1 sinh [m L  x]  C2 cosh [m L  x]

Put x  L,

d L
dx

  C1 sinh [m 0]  C2 cosh [m 0]  C2 m
...(33)

From Eqs. (31), (33) and x  L, we get

dTL

dx
  

d L
dx

  C2 m  
h
k

 L

 C2  
h L
mk ...(34)

Substituting C1 and C2 back in Eq. (26), we get

  L cos h [m L  x]  
h L
mk

 sin h [m L  x]
...(35)

Dividing Eq. (35) by b


b

  
T  T

Tb  T
  

cosh [m L  x]  
h

mk
 sinh [m L  x]

cosh mL  
h

mk
 sinh mL

...(36)

Equation (36) gives the temperature distribution in
a short fin (end not insulated) when heat is convected
from the tip. 

 Q  
Tb  T 




 tanh mL  

h
mk

 




1  
h

mk
 tanhmL

 hPkA

...(37)

In simple words, there are three types of fins as
follows

1. Sufficiently long fin (or) Infinitely long fin

2. Short fin - end (tip of the fin) insulated

3. Short fin - end ( tip of the fin) not insulated

If the type of fin is not clearly given in the problem,
then use the following formula.

If 
L
d

  30, then it is case (1) ie it is infinitely long

fin.
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  C1 cosh m L  x  C2 sinh m L  x

L  C1 cosh [m 0]  C2 sinh [m 0]

or L  C1  TL  T ...(32)

Differentiating Eq. (26) and putting x  L,

d 
dx

  C1 sinh [m L  x]  C2 cosh [m L  x]

Put x  L,

d L
dx

  C1 sinh [m 0]  C2 cosh [m 0]  C2 m
...(33)

From Eqs. (31), (33) and x  L, we get

dTL

dx
  

d L
dx

  C2 m  
h
k

 L

 C2  
h L
mk ...(34)

Substituting C1 and C2 back in Eq. (26), we get

  L cos h [m L  x]  
h L
mk

 sin h [m L  x]
...(35)

Dividing Eq. (35) by b


b

  
T  T

Tb  T
  

cosh [m L  x]  
h

mk
 sinh [m L  x]

cosh mL  
h

mk
 sinh mL

...(36)

Equation (36) gives the temperature distribution in
a short fin (end not insulated) when heat is convected
from the tip. 

 Q  
Tb  T 




 tanh mL  

h
mk

 




1  
h

mk
 tanhmL

 hPkA

...(37)

In simple words, there are three types of fins as
follows

1. Sufficiently long fin (or) Infinitely long fin

2. Short fin - end (tip of the fin) insulated

3. Short fin - end ( tip of the fin) not insulated

If the type of fin is not clearly given in the problem,
then use the following formula.

If 
L
d

  30, then it is case (1) ie it is infinitely long

fin.
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Problem 1.38: Find the amount of heat transfer through a
fin of thickness 5mm, height 50 mm and width 100 mm.
Also determine the temperature at the tip of the fin. The
atmospheric temperature is 28C. The temperature at the

base of the fin is 80C k  58.139 W/mC; h  11.63 W/m2C;
Tb  80C. The end of the fin is insulated.

Solution

Short fin - End insulated. 
Refer Pg 50 of HMT DB

Cross Sectional Area 
Ac  0.1  0.005

  5  10 4 m2

Perimeter 
P  2 100  5
 0.21 m

m  hP
kAc

 11.63  0.21

58.139  5  10 4

  9.16602

Q  hPkAc   Tb  T tanh mL

mL  9.166018  0.05  0.4583

Q   11.63  0.21  58.139  5  10 4

                     80  28 tanh 0.4583 

  0.26645  52  tanh 0.4583

 5.9397  Watts

Temperature Distribution 

T  T

Tb  T
  

cosh m L  x
cosh mL

 (Pg 50 of CPK)

Here x  L (Since we need temperature at the tip of
the fin)

T  28
80  28

  
cosh m L  L
cosh 0.4583

T  28  0.903448   52     46.979

T  46.979  28  74.979 C

Temperature at the tip of the fin   75C

Problem 1.39: Find the heat loss from a rod of 4 cm in
diametre and infinitely long, when its base is maintained at

100C . The conductivity of the material is 58.14 W/mC
and the heat transfer coefficient on the surface of the rod is

46.512 W  m2 C. The temperature of the air surrounding the

rod is 20C

Solution

Infinitely long fin

T  T

Tb  T
  e mx

Q  Tb  T hPkA c

from Pg 50 of HMT DB.

Ac  

4

 d2  

4

  0.042  1.2567   10 3 m2

P   d    0.04  0.1256 7 m

d = 4 cmk =  58.14

h = 46.512

T = 20 C o

T  = 100 Cb
o

5

T
=80

b
o C

50m m
100mm

T
=?

L

T =28 C
o
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Problem 1.38: Find the amount of heat transfer through a
fin of thickness 5mm, height 50 mm and width 100 mm.
Also determine the temperature at the tip of the fin. The
atmospheric temperature is 28C. The temperature at the

base of the fin is 80C k  58.139 W/mC; h  11.63 W/m2C;
Tb  80C. The end of the fin is insulated.

Solution

Short fin - End insulated. 
Refer Pg 50 of HMT DB

Cross Sectional Area 
Ac  0.1  0.005

  5  10 4 m2

Perimeter 
P  2 100  5
 0.21 m

m  hP
kAc

 11.63  0.21

58.139  5  10 4

  9.16602

Q  hPkAc   Tb  T tanh mL

mL  9.166018  0.05  0.4583

Q   11.63  0.21  58.139  5  10 4

                     80  28 tanh 0.4583 

  0.26645  52  tanh 0.4583

 5.9397  Watts

Temperature Distribution 

T  T

Tb  T
  

cosh m L  x
cosh mL

 (Pg 50 of CPK)

Here x  L (Since we need temperature at the tip of
the fin)

T  28
80  28

  
cosh m L  L
cosh 0.4583

T  28  0.903448   52     46.979

T  46.979  28  74.979 C

Temperature at the tip of the fin   75C

Problem 1.39: Find the heat loss from a rod of 4 cm in
diametre and infinitely long, when its base is maintained at

100C . The conductivity of the material is 58.14 W/mC
and the heat transfer coefficient on the surface of the rod is

46.512 W  m2 C. The temperature of the air surrounding the

rod is 20C

Solution

Infinitely long fin

T  T

Tb  T
  e mx

Q  Tb  T hPkA c

from Pg 50 of HMT DB.

Ac  

4

 d2  

4

  0.042  1.2567   10 3 m2

P   d    0.04  0.1256 7 m

d = 4 cmk =  58.14

h = 46.512

T = 20 C o

T  = 100 Cb
o

5

T
=80

b
o C

50m m
100mm

T
=?

L

T =28 C
o
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Q  100  20  46.512  0.12567   58.14  1.2567  10 3

  52.28  W

Heat loss Q  52.28 W

Problem 1.40: The stainless steel blades of an aerofoil cross
section are to be designed to carry 81.3953 W of heat by each
blade in a gas turbine system. Find the height of the blade-if

Ac  cross sectonal area of blade  2  10 4 m2;

P  perimeter of aerofoil blade  0.06 m; T   Temperature of

the gas flowing over the blade  800C; Tb  temperature of

the root of the blade   300C; k  23.256 W  mC;

h  116.279 W  m2 C;  End face of the blade is insulated.

Solution

Short fin end insulated; L   height of the blade   ?.

Q  hPkAc  Tb  T tanh mL

m  hP
kAc

  116.279   0.06

23.256   2  10 4
  38.73

Q  81.3953   116.279   0.06  23.256   2  10 4

                    800  300  tanh 38.73 L

81.3953 0.18014   500  tanh 38.73 L  

              tanh 38.73L  0.9037

38.73L  tanh 1 0.9037   1.49198

L  0.0385  m

L  3.85 cm

Problem 1.41: Two long rods of the same diameter, one

made of  brass (k  85 W  m C and other made of copper

k  375 W  m C have one of their ends inserted into the

furnace. Both of the  rods are exposed to the same
environment. At a distance 105 mm away from the furnace

end, the temperature of the brass rod is 120C. At what

distance from the furnace end, the same temperature would
be reached in copper rod?

Solution

For  infinitely long rod: when x  l

T  T

Tb  T
  e mx

For Brass x  0.105 m

120  T

Tb  T
  e m1 0.105     ... (1)

For Copper x  l

120  T

Tb  T
  e m2l       ... (2)

Divide (1) by (2)

120 T

Tb  T
  

Tb  T

120  T
  

e m1 0.105

e m2 l

e m2l  e m1 0.105

Taking ln on both sides

 m2l   m1 0.105

l  
m1

m2
  0.105         ... (3)
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Q  100  20  46.512  0.12567   58.14  1.2567  10 3

  52.28  W

Heat loss Q  52.28 W

Problem 1.40: The stainless steel blades of an aerofoil cross
section are to be designed to carry 81.3953 W of heat by each
blade in a gas turbine system. Find the height of the blade-if

Ac  cross sectonal area of blade  2  10 4 m2;

P  perimeter of aerofoil blade  0.06 m; T   Temperature of

the gas flowing over the blade  800C; Tb  temperature of

the root of the blade   300C; k  23.256 W  mC;

h  116.279 W  m2 C;  End face of the blade is insulated.

Solution

Short fin end insulated; L   height of the blade   ?.

Q  hPkAc  Tb  T tanh mL

m  hP
kAc

  116.279   0.06

23.256   2  10 4
  38.73

Q  81.3953   116.279   0.06  23.256   2  10 4

                    800  300  tanh 38.73 L

81.3953 0.18014   500  tanh 38.73 L  

              tanh 38.73L  0.9037

38.73L  tanh 1 0.9037   1.49198

L  0.0385  m

L  3.85 cm

Problem 1.41: Two long rods of the same diameter, one

made of  brass (k  85 W  m C and other made of copper

k  375 W  m C have one of their ends inserted into the

furnace. Both of the  rods are exposed to the same
environment. At a distance 105 mm away from the furnace

end, the temperature of the brass rod is 120C. At what

distance from the furnace end, the same temperature would
be reached in copper rod?

Solution

For  infinitely long rod: when x  l

T  T

Tb  T
  e mx

For Brass x  0.105 m

120  T

Tb  T
  e m1 0.105     ... (1)

For Copper x  l

120  T

Tb  T
  e m2l       ... (2)

Divide (1) by (2)

120 T

Tb  T
  

Tb  T

120  T
  

e m1 0.105

e m2 l

e m2l  e m1 0.105

Taking ln on both sides

 m2l   m1 0.105

l  
m1

m2
  0.105         ... (3)
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Now 
m1

m2
  

hP
k1Ac

 for Brass

hP
k2Ac  for Copper

  1
k1

  k2

  
k2

k1
  375

85
  2.1004

Substitute 
m1

m2
 value in equation (3).

l  2.1004   0.105  0.2205  m

ie., l  22.05 cm

Problem 1.42: One end of the long rod is inserted into a
furnace with the other end projecting into the outside air.
After steady state is reached, the temperature of the rod is
measured at two points 10 cm apart and found to be
125C and 91C, when the ambient temperature is 28C. If

the rod is 2cm in diameter and h  17.442 W  m2 C, what
is the thermal conductivity of the rod?

Solution

Temperature distribution along the rod is given by
T  T

Tb  T
  e mx for long fin.

P  d    0.02  0.06283

Ac  

4

  d2  

4

  0.022  3.14159  10 4 m2

When T  125C

125  28
Tb  T

  e mx           1

l =?.

k =375    copper2

105 m m

k =851
Brass

T = 120 Cl 
o

T = 120 C105  

oFurnace

d

d

1 25 C
o

91 C
o

0 .1  m

x x+ 0.1m

T = 28 C
o

2 cm

h =1 7.44 2W /m
o
C
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Now 
m1

m2
  

hP
k1Ac

 for Brass

hP
k2Ac  for Copper

  1
k1

  k2

  
k2

k1
  375

85
  2.1004

Substitute 
m1

m2
 value in equation (3).

l  2.1004   0.105  0.2205  m

ie., l  22.05 cm

Problem 1.42: One end of the long rod is inserted into a
furnace with the other end projecting into the outside air.
After steady state is reached, the temperature of the rod is
measured at two points 10 cm apart and found to be
125C and 91C, when the ambient temperature is 28C. If

the rod is 2cm in diameter and h  17.442 W  m2 C, what
is the thermal conductivity of the rod?

Solution

Temperature distribution along the rod is given by
T  T

Tb  T
  e mx for long fin.

P  d    0.02  0.06283

Ac  

4

  d2  

4

  0.022  3.14159  10 4 m2

When T  125C

125  28
Tb  T

  e mx           1

l =?.

k =375    copper2

105 m m

k =851
Brass

T = 120 Cl 
o

T = 120 C105  

oFurnace

d

d

1 25 C
o

91 C
o

0 .1  m

x x+ 0.1m

T = 28 C
o

2 cm

h =1 7.44 2W /m
o
C
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When T  91C, x  x  0.1 m

91  28
Tb  T

  e m x  0.1  (2)

Divide (1) by (2)

125  28
Tb  T

  
Tb  T

91  28
  

e m x

e m x  0.1

1.53968   
e mx

e mx  e 0.1 m

e 0.1 m  
1

1.53968
  0.64948

Taking ln on both sides

 0.1 m  ln 0.64948    0.431576

m  
0.431576

0.1
  4.31576

hP
kAC

  4.31576

17.442   0.06283

k  3.14159   10 4
  4.31576

k  
17.442   0.06283

4.31576 2  3.14159  10 4

  187.2832  W  mC 

Problem 1.43: A turbine blade made of steel

k  29 W  m C is 60 mm long, 500 mm2 cross-sectional area
and 120 mm perimeter. The temperature of the root of blade

is 480C and it is exposed to 820C. If the film heat transfer

coefficient between the blade and the gases is 320 W  m2 C,
determine 1. The temperature at the middle of the blade.
2. The rate of heat flow from the blade.

Solution

  Ac  500  10 6 m2

P  120  10 3 m

Tb   480C

T  820C

Temperature distribution for short fin end not
insulated.

T  T

Tb  T
  

cosh [m L  x]  h  mk sinh m L  x]
cosh mL  h  mk sinh mL

m  hP
kAc

  320  120  10 3

29  500  10 6
  51.46

mL  51.46   0.06  3.08768

h
km

  
320

29  51.46
  0.2144  

To find temperature at the middle 

 x  
L
2

  0.03 m

T  820
480  820

  
cosh  51.46 0.03     0.2144   sinh  51.46  0.03  

cosh 3.08768   0.2144  sinh 3.087 

  
2.4479   0.47905

10.9858   2.34399
  0.21957

T 820 C o

l = 0.06 m

k =  29W /m C
o

h = 320 W m C
2 o
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When T  91C, x  x  0.1 m

91  28
Tb  T

  e m x  0.1  (2)

Divide (1) by (2)

125  28
Tb  T

  
Tb  T

91  28
  

e m x

e m x  0.1

1.53968   
e mx

e mx  e 0.1 m

e 0.1 m  
1

1.53968
  0.64948

Taking ln on both sides

 0.1 m  ln 0.64948    0.431576

m  
0.431576

0.1
  4.31576

hP
kAC

  4.31576

17.442   0.06283

k  3.14159   10 4
  4.31576

k  
17.442   0.06283

4.31576 2  3.14159  10 4

  187.2832  W  mC 

Problem 1.43: A turbine blade made of steel

k  29 W  m C is 60 mm long, 500 mm2 cross-sectional area
and 120 mm perimeter. The temperature of the root of blade

is 480C and it is exposed to 820C. If the film heat transfer

coefficient between the blade and the gases is 320 W  m2 C,
determine 1. The temperature at the middle of the blade.
2. The rate of heat flow from the blade.

Solution

  Ac  500  10 6 m2

P  120  10 3 m

Tb   480C

T  820C

Temperature distribution for short fin end not
insulated.

T  T

Tb  T
  

cosh [m L  x]  h  mk sinh m L  x]
cosh mL  h  mk sinh mL

m  hP
kAc

  320  120  10 3

29  500  10 6
  51.46

mL  51.46   0.06  3.08768

h
km

  
320

29  51.46
  0.2144  

To find temperature at the middle 

 x  
L
2

  0.03 m

T  820
480  820

  
cosh  51.46 0.03     0.2144   sinh  51.46  0.03  

cosh 3.08768   0.2144  sinh 3.087 

  
2.4479   0.47905

10.9858   2.34399
  0.21957

T 820 C o

l = 0.06 m

k =  29W /m C
o

h = 320 W m C
2 o

Heat and Mass Transfer1.136 Conduction 1.137

Downloaded from Ktunotes.in

http://ktunotes.in/


T   0.21957   480  820   820

  745.34  295C

T  745.343 C

at x  0.03 m

The heat transfer rate Q

Q  Tb  T 



 

tanh mL  h/mk
1  h/mk tanh mL

 



 hPkAc

hPkAc    320  120  10 3  29  500  10 6

hPkAc   0.7462

Q  480  820 



 

tanh 3.08768   0.2144 
1  0.2144 tanh 3.08768 

 



  0.7462

  340 



 
1.2102
1.2135

 



  0.7462

   253.0249  W  [‘-’ sign indicates that heat flows
from gas to turbine blades]

1.36 Effectiveness of fin (fin  

It is the ratio of heat transfer rate with fin to the
heat transfer rate without fin.

  
Qwith fin

Qwithout fin

1.37 Efficiency of fin 

fin  
Heat lost from fin

 
 
Heat lost from the fin if Whole
 surface of the fin is maintained
 at root base temperature

   
 
  

tanh mL
mL

Problem 1.44: A circular pocker rod of 10 mm dia, 50 mm
long is having thermal conductivity of 30 W  m K,

h  50 W  m2C. Base temperature is 98C. Ambient air
temperature is 65C. 
Determine
1. tip temperature
2. Heat transfer rate
3. fin efficiency
4. length at which T  90C

Assume, the rod end is insulated.

Solution

Short fin-end insulated

h  50 W  m2 C ;             Tb  98C

k  30 W  m C ;            T  65C

Ac  

4

 d2  

4

  0.012  7.8539   10 5 m2

P  d    0.01  0.03142  m

m  hP
kAc

  50  0.03142

30  7.8539   10 5
  25.82

Q - Heat transfer rate

Q  hPkAc  Tb  T tanh mL.

mL  25.82  0.05  1.291

Q  50  0.03142   30  7.8539   105

                      98  65  tanh 1.291 

T Co

T
C

b

o

L= 50 m m

k =  30 d 

d = 10 mm
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T   0.21957   480  820   820
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Problem 1.44: A circular pocker rod of 10 mm dia, 50 mm
long is having thermal conductivity of 30 W  m K,

h  50 W  m2C. Base temperature is 98C. Ambient air
temperature is 65C. 
Determine
1. tip temperature
2. Heat transfer rate
3. fin efficiency
4. length at which T  90C

Assume, the rod end is insulated.

Solution

Short fin-end insulated

h  50 W  m2 C ;             Tb  98C

k  30 W  m C ;            T  65C

Ac  

4
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
4
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P  d    0.01  0.03142  m

m  hP
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  50  0.03142

30  7.8539   10 5
  25.82

Q - Heat transfer rate

Q  hPkAc  Tb  T tanh mL.

mL  25.82  0.05  1.291
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 0.060840328.3598   1.72542  W

Q  1.72542  W

Fin Efficiency fin

fin  
tanh mL

mL

 
tanh 1.291 

1.291
  0.665676 66.57%

Effectiveness of the fin  

1  
Q with fin

Q without fin
  

Q with fin

h A  T
  

1.72542

50  7.8539   105  98  65

 13.3145

x-Length at which temperature is 90 C

Temperature distribution

T  T

Tb  T
  

cosh mL  x
cosh mL

90  65
98  65

  
cosh 25.82  0.05  x

cosh 1.291




 

25
331

 



  cosh 1.291   cosh  25.82 0.05  x 

1.4815   cosh  25.82 0.05  x

25.82 0.05  x  cosh1 1.4815  0.94577

0.05  x  
0.94577

25.82

x  0.05  
0.94577

25.82
  0.01337  m.

At 13.37 mm from the base, the temperature will
be 90C.

Problem 1.45: A 6 cm long copper rod (k = 300 W/mK) 6
mm in diameter is exposed to an environment at 20C. The
base temperature of the rod is maintained at 160C. The

heat transfer co-efficient is 20 W/m2 K. Calculate the heat
given by the rod and efficiency and effectiveness of rod. (May
& June 2007 AU)

Solution:

Length of the rod, L  6 cm  0.06 m

Diameter of the rod, d  6 mm  0.06 m

Base Temperature of rod, Tb  160 C

Environment temperature, T  20 C

Thermal conductivity of rod material, k  300 W/mk

Convective heat transfer coefficient h  20 W/m2 K

Heat given by the rod, from HMT DB page 50, 

P  d    0.006  0.01885

Ac  

4

 d2  

4

  0.0062  2.827   10 5

m  hP
KAc

  20  0.01885

300  2.827   10 5

m  6.67

Q  hPkAc  Tb  T tanh mL

Q with fin   20  0.01885   300  2.827  10 5

                     160  20 tanh 6.67  0.06
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tanh mL

mL
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tanh 1.291 

1.291
  0.665676 66.57%
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Q with fin

Q without fin
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  

1.72542

50  7.8539   105  98  65

 13.3145

x-Length at which temperature is 90 C

Temperature distribution

T  T

Tb  T
  

cosh mL  x
cosh mL

90  65
98  65

  
cosh 25.82  0.05  x

cosh 1.291




 

25
331

 



  cosh 1.291   cosh  25.82 0.05  x 

1.4815   cosh  25.82 0.05  x

25.82 0.05  x  cosh1 1.4815  0.94577

0.05  x  
0.94577

25.82

x  0.05  
0.94577

25.82
  0.01337  m.

At 13.37 mm from the base, the temperature will
be 90C.

Problem 1.45: A 6 cm long copper rod (k = 300 W/mK) 6
mm in diameter is exposed to an environment at 20C. The
base temperature of the rod is maintained at 160C. The

heat transfer co-efficient is 20 W/m2 K. Calculate the heat
given by the rod and efficiency and effectiveness of rod. (May
& June 2007 AU)

Solution:

Length of the rod, L  6 cm  0.06 m

Diameter of the rod, d  6 mm  0.06 m

Base Temperature of rod, Tb  160 C

Environment temperature, T  20 C

Thermal conductivity of rod material, k  300 W/mk

Convective heat transfer coefficient h  20 W/m2 K

Heat given by the rod, from HMT DB page 50, 

P  d    0.006  0.01885

Ac  

4

 d2  

4

  0.0062  2.827   10 5

m  hP
KAc

  20  0.01885

300  2.827   10 5

m  6.67

Q  hPkAc  Tb  T tanh mL
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         0.0565   140  0.37995

  3.007 W 

Q without fin  hA Tb  T

  20  2.827   10 5  160  20

  0.079156 W

Efficiency of fin   
tanh mL

mL

  
tanh 6.67  0.06

6.67  0.06

  0.9498   94.98%

Effectiveness of fin   
Qwith fin

Qwithout fin

  
3.007

0.079156

  37.98

1.38 TRANSIENT CONDUCTION (or) UNSTEADY

STATE CONDUCTION

1.38.1 Introduction

In the previous section, we have discussed
conductive heat transfer problems in which the
temperatures are time independent. However, if there is
an rapid change in exterior temperature (or) the
surroundings, it takes little later time to attain the
steady state conditions, after the heat transfer begins.
During this period, the temperature varies with time. The
process of conduction where the temperature varies with
time as well as position is called Transient conduction.
In rectangular coordinates, this variation is expressed as
T x, y, z,  where x, y, z indicates variation in the x, y and

z directions and  indicates variation with time. In this
section, we are discussing the variation of temperature
with time as well as position in one and multi
dimensional systems.

The Applications of Transient heat conduction are

(i) Cooling of IC engines.

(ii) Automobile Engine.

(iii) Heating and cooling of metal billets.

(iv) Cooling and freezing of food.

(v) Heat treatment of metals by quenching.

(vi) Starting and stopping of various heat exchange
units in power installation.

(vii) Vulcanization of rubber.

(viii) Time responses of thermocouples and
thermometers, etc.,

(ix) Brick Burning
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During the transient heat transfer, the change in
temperature may follow a periodic or nonperiodic
variation. 

1.38.2 Periodic variation

In a periodic variation, temperature changes
periodically within the system which are either regular
(or) irregular but definitely cyclic. In a regular periodic
variation, the variation is harmonic sinusoidal or
nonsinusoidal function. In irregular periodic variation, the
variation follows by any function which is cyclic but not
necessarily harmonic. The examples of periodic variations
are the temperature variations in cylinder of an IC
engine, building during a period of 24 hours, surface of
earth during a period of 24 hours and heat processing of
regenerators.

1.38.3 Non periodic variation

In non periodic variation, the temperature varies
non-linearly with time. The examples are heating of ingot
in furnace and cooling of bars, blanks and metal billets
in steel works, etc.,

1.39 LUMPED SYSTEM ANALYSIS

In this process, the internal conduction resistance
of the system is so small that the temperature with in
the system is substantially uniform at any time. Such
analysis is called lumped system analysis.

Consider a small body whose surface are  ‘A’s, m
2

whose initial temperature is To throughout and which is
suddenly placed in a new environment at constant

temperature T. The response of the body can be

determined by relating its rate of change of internal
energy convective exchange at the surface. 

The lumped heat capacity of the solid is  CV,

where  is the density of solid in kg/m3, c   specific heat

of solid in J/kg k and v   volume of the solid in m3. The
convective heat transfer coefficient between the solid

surroundings is h in W/m2 K.

 Q   h As T  T   CV 
dT
d  ...(1)

 
dT

T  T
  

 h As

 CV
 d 

...(2)

Integrating above equation 

Fig. 1.27 
Lum ped heat capacity system

General system  for unsteady heat conduction
        -
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ln T  T  
 h As

 CV
   C1

...(3)

The constant of integration, C1 can be found by

applying the initial condition 

The initial boundary condition is

At   0, T  To

 C1  ln To  T

Substituting in equation

ln T  T  
 h As

 CV
   ln To  T

 ln 



 
T  T

To  Tf
 



  

 h As

 CV
 

 
T  T

To  T
  exp 




 
 h As

 CV
  


 ...(4)

The above equation helps us to determine the
temperature “T” of the system for Newtonian heating (or)
cooling, at time “” or the time “” required for the
temperature to reach the temperature “T”.

The temperature of the system falls or rises to the
surrounding temperature “T” exponentially. The

temperature of the system changes drastically at the
begining but slowly later on as shown in Figure 1.28.

The term 
 VC
h As

 is known as thermal time constant

“th”. This indicates the rate of response of a system to

a sudden change in the surrounding temperature.

(ie) th  



 

1
h As

 



   Vc

  Rth  Cth

where

Rth  resistance to convection heat transfer

Cth  lumped thermal capacitance of solid

Application of eqn (4) depends on several factors,
but the condition can be checked by using relative
temperature drop within the solid compared to
temperature drop from surface to the fluid.

Heat conducted within the solid can be obtained
considering the solid as slab.

T 0

T
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Exponen tial cooling

Tim e,
Fig 1.28 Newtonian heating or cooling
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ln T  T  
 h As

 CV
   C1

...(3)

The constant of integration, C1 can be found by

applying the initial condition 

The initial boundary condition is

At   0, T  To

 C1  ln To  T
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ln T  T  
 h As

 CV
   ln To  T

 ln 



 
T  T

To  Tf
 



  

 h As

 CV
 

 
T  T

To  T
  exp 




 
 h As

 CV
  


 ...(4)

The above equation helps us to determine the
temperature “T” of the system for Newtonian heating (or)
cooling, at time “” or the time “” required for the
temperature to reach the temperature “T”.

The temperature of the system falls or rises to the
surrounding temperature “T” exponentially. The

temperature of the system changes drastically at the
begining but slowly later on as shown in Figure 1.28.
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 VC
h As

 is known as thermal time constant

“th”. This indicates the rate of response of a system to

a sudden change in the surrounding temperature.

(ie) th  



 

1
h As

 



   Vc

  Rth  Cth

where

Rth  resistance to convection heat transfer

Cth  lumped thermal capacitance of solid

Application of eqn (4) depends on several factors,
but the condition can be checked by using relative
temperature drop within the solid compared to
temperature drop from surface to the fluid.

Heat conducted within the solid can be obtained
considering the solid as slab.
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Q  
k As  Ts

Lc ...(5)

where  Ts is the temperature drop in solid,

Lc is the characteristic length

k is the thermal conductivity.

The heat convected at the surface is given by

Q  h As  Tc ...(6)

where  Tc is the convection drop, h is convective

heat transfer coefficient

Equating (5) & (6)

k As  Ts
Lc

  h As  Tc

 
 Ts
 Tc

  
hLc

k

The term 
hLc

k
 is the dimensionless number.

This dimensionless number is called as Biot
Number (Bi). It gives the ratio of internal resistance to
surface resistance. If Biot number is small then  Ts is

small (ie) internal resistance is small, so this condition
is taken as the check for applicability of lumped analysis.
If Biot number is less than 0.1, it is proved that this
analysis can be used without appreciable error (ie) around
5%.

Figure 1.29
shows an analogus
electric network,
thermal capacity of
system is charged
initially at potential
“To” by closing the

switch “S”. Then, when
the switch is opened,
the energy stored in the
thermal capacitance
“Cth” is dissipated

through the resistance 
1

h As
.

The term 
h As

 VC
  can be represented in non

dimensional form as

h As

 VC
   




 

hv
k As

 



 



 

As
2 k

 v2 c
  




  



 
h Lc

k
 



 



 
 

Lc
2  



  Bi Fo

where   
k
C

   thermal diffusivity of solid

The characteristic length “Lc” is defined as the ratio

of volume of the solid “V” to surface area of solid “As”.

For simple geometrical shapes, the values of
characteristic length are given as follows.

T 0
S

C =  V cth  R =  th

1
hA s

Fig. 1.29 Equivalent 
therm al circu it for

lum ped capacitance  solid
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For a flat plate with length “L”, breadth “B”, height
“H” the heat transfer occurs from both sides, hence the
area exposed for heat transfer 2BH and the volume of
flat plate is LBH.

 Lc  
V
As

  
LBH
2BH

  
L
2

For a cylinder with 

Height “L”, Radius “R”

Lc  
 R2 L
2 RL

  
R
2

For sphere, with Radius of sphere “R”,

Lc  
4/3  R3

4 R2   
R
3

For cube, with side of cube “L”,

Lc  
L3

6L2  
L
6

The term 
 
Lc

2  is a non dimensional factor which is

known as Fourier number. “Fo”. This number signifies the

rate of passing of heat through the body with respect to
the body dimensions. Fourier number should be higher
for sudden response in heating (or) cooling.

1.40 SUMMARY

Steady state  T  constant

Unsteady state  T  variable with time t

1.41 TYPES OF UNSTEADY STATE CONDUCTION

1. Lumped heat conduction (Bi~  0, Bi  0.1

2. Infinite solids 0.1  Bi  100

3. Semi-infinite solids Bi  

where Bi  Biot Number  
R

RC

Biot number is defined as the ratio of internal
conductive resistance to its surface convective resistance.

Bi  
R

RC
  

x/kA
1/hA

 slab

 
h x

k

 
h Lc

k
  [Refer page 58,112 for formula]

where Lc  characteristic length or significant length

Lc  
Volume

Surface Area

Lc for slab

Lc  L  half thickness

Lc  
A  L

2A
  

L
2

L

A

L for slabc 

Fig. 1.30 (i)
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Lc for cylinder of radius R

Surface Area  2RL

Volume  R2  L

Lc   
Vo l
S.A.

  
R2  L
2RL

  
R
2

 

 Lc for sphere

Surface Area  4R2

Volume  
4
3
R3

Lc  
Vol
S.A

  
4
3

 
R3

4R2  
R
3

Lc for cube of side ‘L’.

Surface Area  6L2

Volume  L3

Lc  
Vol
S.A.

  
L3

6L2  
L
6

 

Lc-Characteristic length

for slab  
L
2

for Cylinder  
R
2

for Sphere  
R
3

for Cube  
L
6

Problem  1.46: A Copper slab of 400mm  400mm  5mm

thick is initially at 250C, suddenly its surface temp. is

lowered to 30C with heat transfer coefficient 90 W/m2C.

Determine (a) Time required for the slab to reach 90C.

(b) Instantaneous heat transfer rate at 90C (c) Total heat

flow upto 90C (d) Temp. after 1 minute.

Solution

t  L  5mm; T0  250C 

T  30C; Lc  
L
2

  2.5mm

h  90 W/m2C

For Copper (Take from Pg 2 of HMT Table - CPK)

  8954 kg/m3

Cp  381 J/KgK

k  386 W/m-K

L  Thickness  5 mm

Lc  2.5mm

Bi  
h Lc

k
  

90  2.5  103

386
  0.5829   103  0.1

So it is Lumped conduction.

Fig. 1.30 (ii)

Fig. 1.30 (iii)

L

L

Fig. 1.30 (iv)
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From Pg 58

T  T

T0  T
  e

 



   

hA
CV

  


where 
A
V

  
1
Lc

90  30
250  30

  e
 



 

  90  

381  8954  2.5  103
 




Take ln on both sides

ln



 

60
220

 



  [0.01055  ]

  123.12146  sec

The time required for the slab to reach
90C    123.124  sec

(b) Instantaneous heat transfer rate at 90C

q  h A T  T

A  2A  (for slab) from both sides of slab

 2  0.4  0.4  0.32 m2

q  90  0.32 90  30  1728W.

q  1728 W

(c) Total heat flow upto  90C

qt  m CPT  T0   V CP T  T0

V  A  L

 0.16  5  10 3  8  104 m3

qt  8954  381  8  104 90  250

    436668.6723

qt   436668.672  J

‘-’ sign indicates heat is coming 
out of the slab.

(d) Temp after 1 minute

T  T

T0  T
  e




   

hA
VC

  




where 
A
V

  
1
Lc

  60 sec

T  30
250  30

  e
 

   

90  60

8954  381  2.5  103
 




T  146.8008 C

Problem 1.47: An aluminium alloy plate of 200 mm    200

mm    2 mm size at 180C is suddenly quenched in liquid

oxygen at  192C determine the time required for the plate

to reach a temperature of  90C. Assume

h  5.56 kw/m2 C, cp  0.8 kJ/kgC, and   3000 kg/m3. 

Given

L  2 mm  0.002  m; B  400 mm  0.4 m

H  400 mm  0.4 m

To  180 C; T   192 C; T   90 C;

L

A
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Problem 1.47: An aluminium alloy plate of 200 mm    200

mm    2 mm size at 180C is suddenly quenched in liquid

oxygen at  192C determine the time required for the plate

to reach a temperature of  90C. Assume

h  5.56 kw/m2 C, cp  0.8 kJ/kgC, and   3000 kg/m3. 

Given
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A
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h  5.56 kw/m2 C; Cp  0.8 kJ/kgC;

  3000 kg/m3

To find



Solution

From Heat and Mass transfer table,

Pg.No.1,

for Aluminium Alloy

k   177 W/mk = 0.177 kW/mk

 Bi (Biot number) for slab

  
hLc

k

where Lc  characteristic length

  
V
As

  
L
2

  
0.002

2

Lc  0.001 m

 Bi  
hLc

k
  

5.56  0.001
0.177

  0.03141

Since Bi is less than 0.1, hence lumped capacitance
method may be applied for the solution.

From HMT table pg.no. 58,

the temperature distribution is given

T  T

To  T
  exp 




  

h As

CV 
  




  90   192
180   192

  exp 



 

  5.56
0.8  3000

  
1

0.001
   





0.2741   e 2.3166  

0.2741   
1

e2.3166 

e2.3166    
1

0.2741
  3.647

2.3166    ln 3.647

2.3166    1.2939

   
1.2939
2.3166

  0.5585 secs 

Problem 1.48: Aluminium Cube of 60 mm side is at

500C initially and it is suddenly immersed in water at

100C with h  120 W/m2C.

Determine

(a) time required for the cube to reach 250C
(b)  Instantaneous heat transfer rate.

(c) Total heat flow upto 250C.

for Aluminium From Pg 1 of HMT Table

k  204 W/m K ;   2707 Kg/m3

Thermal diffusivity

   
k
 C

  0.34m2/hr  8.39  105 m2/sec

L  60mm and Lc  
L
6
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h  5.56 kw/m2 C; Cp  0.8 kJ/kgC;

  3000 kg/m3

To find



Solution

From Heat and Mass transfer table,

Pg.No.1,

for Aluminium Alloy

k   177 W/mk = 0.177 kW/mk

 Bi (Biot number) for slab

  
hLc

k

where Lc  characteristic length

  
V
As

  
L
2

  
0.002

2

Lc  0.001 m

 Bi  
hLc

k
  

5.56  0.001
0.177

  0.03141

Since Bi is less than 0.1, hence lumped capacitance
method may be applied for the solution.

From HMT table pg.no. 58,

the temperature distribution is given

T  T

To  T
  exp 




  

h As

CV 
  




  90   192
180   192

  exp 



 

  5.56
0.8  3000

  
1

0.001
   





0.2741   e 2.3166  

0.2741   
1

e2.3166 

e2.3166    
1

0.2741
  3.647

2.3166    ln 3.647

2.3166    1.2939

   
1.2939
2.3166

  0.5585 secs 

Problem 1.48: Aluminium Cube of 60 mm side is at

500C initially and it is suddenly immersed in water at

100C with h  120 W/m2C.

Determine

(a) time required for the cube to reach 250C
(b)  Instantaneous heat transfer rate.

(c) Total heat flow upto 250C.

for Aluminium From Pg 1 of HMT Table

k  204 W/m K ;   2707 Kg/m3

Thermal diffusivity

   
k
 C

  0.34m2/hr  8.39  105 m2/sec

L  60mm and Lc  
L
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Lc  
60  103

6
  0.01m

T0  500C ; T  100C

h  120 W/m2 C ;

  
k
 C

  8.39  105

C  
k

8.39  105
  

204

8.39  105

  2.431466   106

Biot Number  
hLc

k

 
120  0.01

204

 5.8823   103  0.1

So it is lumped heat conductions.

From Pg 58

T  T

T0  T
  e

 



   

hA
CV

  


A  6L2  6  0.062

 0.0216  m2

V  L3  0.063

A
V

  
1
Lc

  
1

0.01
 

T  250C

250  100
500  100

  e
 



 

 120  

2.4314   106  0.01
 




Taking ln on both sides

ln 0.375     4.93529   103 

  198.73775  sec

(b) Instantaneous heat transfer at 250C

From Pg 58 

q  h A T  T

A  6L2  6  0.062  0.0216 m2

q  120  0.0216 250  100  388.8  W

q  388.8 W

(c) Total heat flow upto 250C

From Pg 58  

     qt  C V T  T0

 2.431466   106  0.063 250  500   131295.6  J

qt  131295.6 J

‘-’ sign indicates heat is flowing from the cube.

Time Constant 0

T  T

T0  T
  e




   

h A 
CV

 



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Lc  
60  103

6
  0.01m

T0  500C ; T  100C

h  120 W/m2 C ;

  
k
 C

  8.39  105

C  
k

8.39  105
  

204

8.39  105

  2.431466   106

Biot Number  
hLc

k

 
120  0.01

204

 5.8823   103  0.1

So it is lumped heat conductions.

From Pg 58

T  T

T0  T
  e

 



   

hA
CV

  


A  6L2  6  0.062

 0.0216  m2

V  L3  0.063

A
V

  
1
Lc

  
1

0.01
 

T  250C

250  100
500  100

  e
 



 

 120  

2.4314   106  0.01
 




Taking ln on both sides

ln 0.375     4.93529   103 

  198.73775  sec

(b) Instantaneous heat transfer at 250C

From Pg 58 

q  h A T  T

A  6L2  6  0.062  0.0216 m2

q  120  0.0216 250  100  388.8  W

q  388.8 W

(c) Total heat flow upto 250C

From Pg 58  

     qt  C V T  T0

 2.431466   106  0.063 250  500   131295.6  J

qt  131295.6 J

‘-’ sign indicates heat is flowing from the cube.

Time Constant 0

T  T

T0  T
  e




   

h A 
CV

 



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Substitute   
cv
h A

T  T

T0  T
  e

 



   

h A
CV

  
 CV
h A

 




 e [ 1]

 0.3678

 



 

T  T

T0  T
 



   0.3678

  1 



 

T  T

T0  T
 



   0.3678   1

T0  T  T  T

T0  T
  0.6322

T0  T

T0  T
  0.6322

T0  T  0.6322 T0  T

T0  T   Temp. drop and T0  T  Initial temp.

difference.

So, time Constant 0 is defined as time required

for temperature drop to reach 63.22% of initial
temperature difference.

It is used in determining the sensitivity of
thermometer.

If 0  0.625  sec, then it is sensitive.

Problem 1.49: A 50 cm  50 cm copper slab 6.25 mm thick

has a uniform temp. of 300C. Its temperature is suddenly

lowered to 36C. Calculate the time required for the plate to

reach the temp. of 108C. Take   9000 Kg/m3;

C  0.38KJ/KgC, k  370 W/mC,  h  90 W/m2C; thickness

  6.25  103 m

Solution

Surface Area (Both Sides)

A  2  0.5  0.5

 0.5 m2

Characteristic length Lc

Lc  
Volume

Surface Area

 
0.5  0.5  6.25  103

0.5

 3.125  103 m

Biot Number Bi  
hLC

k

 
90  3.125   103

370

 7.60135  104  0.1

Since Bi  0.1, lumped capacitance method should be

applied for the solution 

50

50

thick 6.25m m
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Substitute   
cv
h A
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 CV
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
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

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T0  T
  0.6322

T0  T  0.6322 T0  T

T0  T   Temp. drop and T0  T  Initial temp.

difference.

So, time Constant 0 is defined as time required

for temperature drop to reach 63.22% of initial
temperature difference.

It is used in determining the sensitivity of
thermometer.

If 0  0.625  sec, then it is sensitive.

Problem 1.49: A 50 cm  50 cm copper slab 6.25 mm thick

has a uniform temp. of 300C. Its temperature is suddenly

lowered to 36C. Calculate the time required for the plate to

reach the temp. of 108C. Take   9000 Kg/m3;

C  0.38KJ/KgC, k  370 W/mC,  h  90 W/m2C; thickness

  6.25  103 m

Solution

Surface Area (Both Sides)

A  2  0.5  0.5

 0.5 m2

Characteristic length Lc

Lc  
Volume

Surface Area

 
0.5  0.5  6.25  103

0.5

 3.125  103 m

Biot Number Bi  
hLC

k

 
90  3.125   103

370

 7.60135  104  0.1

Since Bi  0.1, lumped capacitance method should be

applied for the solution 

50

50

thick 6.25m m
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Temperature distribution

from Pg. 58 

T  T

T0  T
  e




   

h A
CV

  


108  36
300  36

  e
 



  

90  0.5

9000  0.5  0.5  6.25  103  380
  




0.272727   e
  8.421  103  

ln 0.272727   8.421   103 

  
 1.299

 8.421   10 3
  154.29 sec

  154.29  sec

Problem 1.50: Alloy steel of 12 mm diameter heated to
800C are quenched in a bath at 100C. The material
properties of the ball are k  205 KJ/mhrC, density

  7860 Kg/m3, diffusivity   0.06 m2 /hr; Sp. heat
Cp  0.45 KJ/KgK. The Connective heat transfer coefficient h

is 180 KJ/hr m2 K.  Determine temperature for ball after 10
sec and time for the ball to cool to 400C.  
                 (April-1999, Madras University)

Solution

k  
205  103

3600
 W/mC  59.44 W/mC

h  
150  103

3600
 W/m2C  41.67  W/mC;  Bi  

hLc

k

Lc  
R
3

  for sphere

Lc  
6
3

  2mm  2  103m

Bi  
41.67   2  103

59.44
  1.402   103  0.1

Since Bi  0.1, the Lumped Capacity analysis is applied.

T0  initial temp  800C

T  Surface temp  100C

To find T when   10 sec

From Pg 58

T  T

T0  T
  e

 



 

hA 
 CV

 







 
A
V

  
1
Lc

 




T  100
800  100

  e
 



  

41.67   10

7860  450  2  103
 




 0.9428

T  100  0.9428   700

T  0.9428   700  100   759.96  C

 T  759.96 C

Heat and Mass Transfer1.162 Conduction 1.163 - www.airwalkpublications.com

Downloaded from Ktunotes.in

http://ktunotes.in/


Temperature distribution

from Pg. 58 

T  T

T0  T
  e




   

h A
CV

  


108  36
300  36

  e
 



  

90  0.5

9000  0.5  0.5  6.25  103  380
  




0.272727   e
  8.421  103  

ln 0.272727   8.421   103 

  
 1.299

 8.421   10 3
  154.29 sec

  154.29  sec

Problem 1.50: Alloy steel of 12 mm diameter heated to
800C are quenched in a bath at 100C. The material
properties of the ball are k  205 KJ/mhrC, density

  7860 Kg/m3, diffusivity   0.06 m2 /hr; Sp. heat
Cp  0.45 KJ/KgK. The Connective heat transfer coefficient h

is 180 KJ/hr m2 K.  Determine temperature for ball after 10
sec and time for the ball to cool to 400C.  
                 (April-1999, Madras University)

Solution

k  
205  103

3600
 W/mC  59.44 W/mC

h  
150  103

3600
 W/m2C  41.67  W/mC;  Bi  

hLc

k

Lc  
R
3

  for sphere

Lc  
6
3

  2mm  2  103m

Bi  
41.67   2  103

59.44
  1.402   103  0.1

Since Bi  0.1, the Lumped Capacity analysis is applied.

T0  initial temp  800C

T  Surface temp  100C

To find T when   10 sec

From Pg 58

T  T

T0  T
  e

 



 

hA 
 CV

 







 
A
V

  
1
Lc

 




T  100
800  100

  e
 



  

41.67   10

7860  450  2  103
 




 0.9428

T  100  0.9428   700

T  0.9428   700  100   759.96  C

 T  759.96 C
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To find  for T  400C

T  T

T0  T
  e

 



  

h A 
 C V

 




400  100
800  100

  e
 



  

41.67   

7860  450  2  10 3
 




ln 0.42857    5.8906  10 3 

  143.84 sec

Problem 1.51: A solid copper cylinder of 9 cm diameter is

initially temperature of 28C and it is suddenly dropped into

ice water. After 5 minutes the temperature of cylinder again

measured as 1C. Determine unit surface conductance by

using lumped heat analysis method.

Given

D  9 cm  0.09 m; To  28 C  273  301 K;

T  0 C  273  273 K; T  1 C  273  274 K;

  5 min  300 S

To find

h

Solution

from HMT data book, the properties of copper, from
Pg No.2

  8954 kg/m3

cp  383 J/kg k

k  386 w/mk 

for cylinder,

the characteristic length, Lc  
R
2

 Lc  
0.045

2
  0.0225  m

 Lc  0.0225  m

from HMT data book, Pg No. 58

T  T

To  T
  exp 




 
 h As

CV 
  




274  273
301  273

  exp 



 
  h  
CLc 

 




0.03571   exp 



 

  h  300
383  0.0225  8954

 




0.03571   exp [  h  3.8879   10 3]

ln [0.03571 ]   h  3.8879  10 3

 h  857.1  w/m2 k

Problem 1.52: An egg with a mean diameter of 35 mm and
initially at 22C is placed in boiling water pan for 5 minutes
and found to be boiled to the consumer’s taste. For how long
should a similar egg for same consumer be boiled when
taken from a refrigerator at 5C. Take the following
properties for egg.

k  10 w/mC,   1200 kg/m3,

c  2 kJ/kgC, h  100 W/m2 C,
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To find  for T  400C

T  T

T0  T
  e

 



  

h A 
 C V

 




400  100
800  100

  e
 



  

41.67   

7860  450  2  10 3
 




ln 0.42857    5.8906  10 3 

  143.84 sec

Problem 1.51: A solid copper cylinder of 9 cm diameter is

initially temperature of 28C and it is suddenly dropped into

ice water. After 5 minutes the temperature of cylinder again

measured as 1C. Determine unit surface conductance by

using lumped heat analysis method.

Given

D  9 cm  0.09 m; To  28 C  273  301 K;

T  0 C  273  273 K; T  1 C  273  274 K;

  5 min  300 S

To find

h

Solution

from HMT data book, the properties of copper, from
Pg No.2

  8954 kg/m3

cp  383 J/kg k

k  386 w/mk 

for cylinder,

the characteristic length, Lc  
R
2

 Lc  
0.045

2
  0.0225  m

 Lc  0.0225  m

from HMT data book, Pg No. 58

T  T

To  T
  exp 




 
 h As

CV 
  




274  273
301  273

  exp 



 
  h  
CLc 

 




0.03571   exp 



 

  h  300
383  0.0225  8954

 




0.03571   exp [  h  3.8879   10 3]

ln [0.03571 ]   h  3.8879  10 3

 h  857.1  w/m2 k

Problem 1.52: An egg with a mean diameter of 35 mm and
initially at 22C is placed in boiling water pan for 5 minutes
and found to be boiled to the consumer’s taste. For how long
should a similar egg for same consumer be boiled when
taken from a refrigerator at 5C. Take the following
properties for egg.

k  10 w/mC,   1200 kg/m3,

c  2 kJ/kgC, h  100 W/m2 C,
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use lumped analysis.

Given:

D  35 mm  0.035  m  R  
0.035

2
  0.0175  m;

To  22 C,   5 min  300 s; k  10 w/m C;

  1200 kg/m3, h  100 W/m2 C

T  100 C  373 K , C  2 kJ/kgC  2000 J/kgC

To find



Solution:

for sphere,

the characteristic length Lc  
R
3

 Lc  
0.0175

3

Lc  5.833   10 3 m

 Bi (biot number)

  
hLc

K
  

100  5.833  10 3

10

  0.05833   0.1

Since Bi is less than 0.1, hence lumped capacitance
method may be applied for the solution

from HMT data book, Page No. 58, 

T  T

To  T
  exp 




 
 h As 

PVC
 




T  373
295  373

  exp 



 

 100  300

1200  5.833   10 3  2000
 




 T  363.85  K

Keeping the given data same

(ie) To  5 C  278 K, T  100 C  373 K;

T  363.85  K

Substituting in

T  T

To  T
  exp 




 

  100  

1200  5.833  10 3  2000
 




[0.09631]  exp [  7.1432   10 3 ]

ln 0.09631    7.1432   10 3 

  327.6  s 

Problem 1.53: When a thermocouple is moved from one
medium to another medium at a different temperature,
sufficient time must be given to a thermocouple to come to
thermal equilibrium with the new conditions before a reading
is taken. Find the temperature response (i.e. an approximate
temperature Vs time for intervals, 0, 40 and 120 seconds)
when this is suddenly immersed in

(i) Water at 40C h  80 W/m2 K 

(ii) Air at 40C h  40 W/m2 K 
Assume unit length of wire
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use lumped analysis.

Given:

D  35 mm  0.035  m  R  
0.035

2
  0.0175  m;

To  22 C,   5 min  300 s; k  10 w/m C;

  1200 kg/m3, h  100 W/m2 C

T  100 C  373 K , C  2 kJ/kgC  2000 J/kgC

To find



Solution:

for sphere,

the characteristic length Lc  
R
3

 Lc  
0.0175

3

Lc  5.833   10 3 m

 Bi (biot number)

  
hLc

K
  

100  5.833  10 3

10

  0.05833   0.1

Since Bi is less than 0.1, hence lumped capacitance
method may be applied for the solution

from HMT data book, Page No. 58, 

T  T

To  T
  exp 




 
 h As 

PVC
 




T  373
295  373

  exp 



 

 100  300

1200  5.833   10 3  2000
 




 T  363.85  K

Keeping the given data same

(ie) To  5 C  278 K, T  100 C  373 K;

T  363.85  K

Substituting in

T  T

To  T
  exp 




 

  100  

1200  5.833  10 3  2000
 




[0.09631]  exp [  7.1432   10 3 ]

ln 0.09631    7.1432   10 3 

  327.6  s 

Problem 1.53: When a thermocouple is moved from one
medium to another medium at a different temperature,
sufficient time must be given to a thermocouple to come to
thermal equilibrium with the new conditions before a reading
is taken. Find the temperature response (i.e. an approximate
temperature Vs time for intervals, 0, 40 and 120 seconds)
when this is suddenly immersed in

(i) Water at 40C h  80 W/m2 K 

(ii) Air at 40C h  40 W/m2 K 
Assume unit length of wire
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Solution:

Given initial temperature To  150 C

  0, 40 and 120 seconds,

for copper (Pg.No.2 HMT DB)

  8954 kg/m3, C  383 J/kgK

(i) water

T  40 C, h  80 W/m2 K

for   0 sec

From HMT DB page, 58

 
T  T

To  T
  exp 




  

h


  
1
L

 

c
 




  exp 



  

h


  
2
R

  


T  40
150  40

  exp 



  

80
8954

  
2

0.0005
  

0
383

 




 t  150 C

For   40 sec

T  40
150  40

  exp 



  

80
8954

  
2

0.0005
  

40
383

 




  0.024

 T  42.63   C

For   120 sec

T  40
150  40

  exp 



  

80
8954

  
2

0.0005   383
 120 





   40 sec

(ii) for air T  40 C, h   40 W/m2 K

When   0 sec

T  T

To  t
  exp0  

t  40
150  40

  1  t  150 C

When t  40 sec

T  40
150  40

  exp 



  

40
8954

  
2

0.0005
  

40
383

 




 t  57 C

When   120 sec

T  T

To  T
  exp  




 
h


  
1
L

  

C

 




T  40
150  40

  exp  



 

40
8954

  
2

0.0005
  

120
383

 




 T  40.4  C

Problem 1.54: A large steel plate of 5 cm thick initially at
400C is suddenly exposed to a surrounding at 60C with

h  285 W/m2C  
Calculate 
(a) Centre line temperature
(b) temp inside the plate at a distance of 1.25 cm form

midplane after 3 minutes. k  42.5 W/mC;   0.043 m2 /hr
                    (Nov-96, Madras University)

Solution

Initial temp. Ti  400C

40

80

120

160

40 80 120 1600

for air
for water

t



Tem perature response
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Solution:

Given initial temperature To  150 C

  0, 40 and 120 seconds,

for copper (Pg.No.2 HMT DB)

  8954 kg/m3, C  383 J/kgK

(i) water

T  40 C, h  80 W/m2 K

for   0 sec

From HMT DB page, 58

 
T  T

To  T
  exp 




  

h


  
1
L

 

c
 




  exp 



  

h


  
2
R

  


T  40
150  40

  exp 



  

80
8954

  
2

0.0005
  

0
383

 




 t  150 C

For   40 sec

T  40
150  40

  exp 



  

80
8954

  
2

0.0005
  

40
383

 




  0.024

 T  42.63   C

For   120 sec

T  40
150  40

  exp 



  

80
8954

  
2

0.0005   383
 120 





   40 sec

(ii) for air T  40 C, h   40 W/m2 K

When   0 sec

T  T

To  t
  exp0  

t  40
150  40

  1  t  150 C

When t  40 sec

T  40
150  40

  exp 



  

40
8954

  
2

0.0005
  

40
383

 




 t  57 C

When   120 sec

T  T

To  T
  exp  




 
h


  
1
L

  

C

 




T  40
150  40

  exp  



 

40
8954

  
2

0.0005
  

120
383

 




 T  40.4  C

Problem 1.54: A large steel plate of 5 cm thick initially at
400C is suddenly exposed to a surrounding at 60C with

h  285 W/m2C  
Calculate 
(a) Centre line temperature
(b) temp inside the plate at a distance of 1.25 cm form

midplane after 3 minutes. k  42.5 W/mC;   0.043 m2 /hr
                    (Nov-96, Madras University)

Solution

Initial temp. Ti  400C

40

80

120

160

40 80 120 1600

for air
for water

t



Tem perature response
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  3 min

    180 sec

Surface temp T  60C

k  42.5 W/mC ;   0.043  m2/hr

 1.194  10 5 m2/sec.

Lc  
L
2

 half thickness  
5
2

  2.5 cm

Lc  0.025  m

Bi  
hLc

k
  0.1676   0.1

Since Bi  0.1, it is infinite Solid.

From Pg 66 of HMT Table-CPK

‘X’ axis  
 

Lc
2   

1.194   10 5  180

0.0252
  3.44 

Refer Heisler’s chart for plane wall centre
temperature,

For X-axis 3.44 and 
hLc

k
  0.17, Y axis  0.62

Page 66 of HMT Table 

From Chart,

we found 
T0  T

Ti  T
  0.62

T0  0.62 Ti  T  T

    0.62 400  60  60  270.8C

So the centre  line temp 270.8C

To find temperature
at 1.25 cm from
midplane (Pg 67)

Tx  T

T0  T
  0.98

for Bi  
hL
k

  0.17

and 
x
L

  
0.0125
0.025

  0.5

   
Tx  T

T0  T
  0.98

Tx  60

270.8   60
  0.98

Tx  0.98 270.8   60  60

      266.584 C

y

x

0.62=
T - To  
T  - Ti  hLc

k
= 0.17



L
2

=3 .44

1.25
cm

T

y

x

0.
98

=
T

-T
 X


T

-T
 O



hL C

k
=0.17

x/L=0.5
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  3 min

    180 sec

Surface temp T  60C

k  42.5 W/mC ;   0.043  m2/hr

 1.194  10 5 m2/sec.

Lc  
L
2

 half thickness  
5
2

  2.5 cm

Lc  0.025  m

Bi  
hLc

k
  0.1676   0.1

Since Bi  0.1, it is infinite Solid.

From Pg 66 of HMT Table-CPK

‘X’ axis  
 

Lc
2   

1.194   10 5  180

0.0252
  3.44 

Refer Heisler’s chart for plane wall centre
temperature,

For X-axis 3.44 and 
hLc

k
  0.17, Y axis  0.62

Page 66 of HMT Table 

From Chart,

we found 
T0  T

Ti  T
  0.62

T0  0.62 Ti  T  T

    0.62 400  60  60  270.8C

So the centre  line temp 270.8C

To find temperature
at 1.25 cm from
midplane (Pg 67)

Tx  T

T0  T
  0.98

for Bi  
hL
k

  0.17

and 
x
L

  
0.0125
0.025

  0.5

   
Tx  T

T0  T
  0.98

Tx  60

270.8   60
  0.98

Tx  0.98 270.8   60  60

      266.584 C

y

x

0.62=
T - To  
T  - Ti  hLc

k
= 0.17



L
2

=3 .44

1.25
cm

T

y

x

0.
98

=
T

-T
 X


T

-T
 O



hL C

k
=0.17

x/L=0.5
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Temperature inside the plate at a distance of 1.25
cm from midplane after 3 min. is 266.584 C

Problem 1.55: A slab of Aluminium 5 cm thick initially at

200C is suddenly immersed in a liquid at 70C for which

the convection heat transfer coefficient is 525 W/m2K.
Determine the temperature at a depth of 12.5 mm from one
of the faces 1 minute after the immersion. Also calculate the
energy removed per unit area from the plate during 1 minute
of immersion. (May/June 2007 - AU)

Take P  2700 bar Cp  0.9 kJ/kgK

k  215 W/mK   8.4  10 5 m2/s

Solution:

The Heisler charts are used for solving this problem

Here 2L = 5 cm, L = 2.5 cm, t  1 min = 60 s

from Pg.No. 64

Fo  
 

L2   
8.4  10 5  60

0.025 2   8.064

1
Bi

  
k

hL
  

215
525  0.025

  16.38

From HMT DB page 64

The centre line temperature is given by

To  T

Ti  T
  

c

o
  0.6

 c  To  T  0.6 200  70

  88.4 C

 To  88.4  70  158.4  C

Temperature at a depth of 12.5 mm from one of the
faces 1 minutes after immersion

x
L

  
12.5
25

  0.5

From heisler chart, at

x
L

  0.5, 
k

hL
  16.38

From HMT DB page 67

Tx/L  T

To  T
  0.75

Tx/L  0.75 158.4  70  T

  66.3 C  T

  66.3  70  136.3 C

Energy removed per unit area, 



 
U
A

 




h2  t

k2   
5252  8.4  10 5  60

2152   0.03

B1  
hL
k

  
525  0.025

215
  0.06

U
Uo

  0.5

 
Uo

A
   C 2L To  T

  2700  900  0.05 200  70

  15.8  106 J/m2
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Temperature inside the plate at a distance of 1.25
cm from midplane after 3 min. is 266.584 C

Problem 1.55: A slab of Aluminium 5 cm thick initially at

200C is suddenly immersed in a liquid at 70C for which

the convection heat transfer coefficient is 525 W/m2K.
Determine the temperature at a depth of 12.5 mm from one
of the faces 1 minute after the immersion. Also calculate the
energy removed per unit area from the plate during 1 minute
of immersion. (May/June 2007 - AU)

Take P  2700 bar Cp  0.9 kJ/kgK

k  215 W/mK   8.4  10 5 m2/s

Solution:

The Heisler charts are used for solving this problem

Here 2L = 5 cm, L = 2.5 cm, t  1 min = 60 s

from Pg.No. 64

Fo  
 

L2   
8.4  10 5  60

0.025 2   8.064

1
Bi

  
k

hL
  

215
525  0.025

  16.38

From HMT DB page 64

The centre line temperature is given by

To  T

Ti  T
  

c

o
  0.6

 c  To  T  0.6 200  70

  88.4 C

 To  88.4  70  158.4  C

Temperature at a depth of 12.5 mm from one of the
faces 1 minutes after immersion

x
L

  
12.5
25

  0.5

From heisler chart, at

x
L

  0.5, 
k

hL
  16.38

From HMT DB page 67

Tx/L  T

To  T
  0.75

Tx/L  0.75 158.4  70  T

  66.3 C  T

  66.3  70  136.3 C

Energy removed per unit area, 



 
U
A

 




h2  t

k2   
5252  8.4  10 5  60

2152   0.03

B1  
hL
k

  
525  0.025

215
  0.06

U
Uo

  0.5

 
Uo

A
   C 2L To  T

  2700  900  0.05 200  70

  15.8  106 J/m2
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 
U
A

  0.5  15.8  106

  7.89  106 J/m2 

Problem 1.56: A long steel cylinder of 12 cm dia initially

at 20C is placed in a furnace at 820C with

h  140 W/m2C. Calculate 

(a)  time required for the axis to reach 800 C
(b) The corresponding temp. at a radius of 5.4 cm at same time

k  21 W/’m C;   6.11  106 m2/sec 

Ti  initial temperature  20C (Oct-99, Madras University)

Solution

T  surface  temperature   820C; h  140 W/m2C

Lc  
R0

2
  

0.06
2

  0.03 m

Bi  
hLc

k
  

140  0.03
21

  0.2  0.1

Since Bi  0.1, and Bi  100 it is infinite solid. 

From Pg 69, Refer chart

Curve   
hR0

k
  

140  0.06
21

  0.4

Yaxis    
T0  T

Ti  T
  

800  820
20  820

  0.025

So from ‘x’ axis, 
 

R0
2   6

6.11  106  

0.062   6

  3535.188 sec

Temp. at radius of 5.4 cm (Refer Chart in Pg 70 of
HMT Table)

r
R0

  
0.054
0.06

  0.9

Tr  T

T0  T
  0.85

 By seeing curve  0.9 and x axis   0.4, y axis will be 0.85 

Tr  820

800  820
  0.85  [Yaxis]

Tr  803C

Temperature  at the radius of 5.4 cm is  803C

Extra

(c) Find the total heat flow upto 20 min. per m
length.

To find heat flow, we can use the Grober’s chart (page 71)

  7833, Cp  465

y

x

0.025

/R =6o
2

hR o

k =0.4
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 
U
A

  0.5  15.8  106

  7.89  106 J/m2 

Problem 1.56: A long steel cylinder of 12 cm dia initially

at 20C is placed in a furnace at 820C with

h  140 W/m2C. Calculate 

(a)  time required for the axis to reach 800 C
(b) The corresponding temp. at a radius of 5.4 cm at same time

k  21 W/’m C;   6.11  106 m2/sec 

Ti  initial temperature  20C (Oct-99, Madras University)

Solution

T  surface  temperature   820C; h  140 W/m2C

Lc  
R0

2
  

0.06
2

  0.03 m

Bi  
hLc

k
  

140  0.03
21

  0.2  0.1

Since Bi  0.1, and Bi  100 it is infinite solid. 

From Pg 69, Refer chart

Curve   
hR0

k
  

140  0.06
21

  0.4

Yaxis    
T0  T

Ti  T
  

800  820
20  820

  0.025

So from ‘x’ axis, 
 

R0
2   6

6.11  106  

0.062   6

  3535.188 sec

Temp. at radius of 5.4 cm (Refer Chart in Pg 70 of
HMT Table)

r
R0

  
0.054
0.06

  0.9

Tr  T

T0  T
  0.85

 By seeing curve  0.9 and x axis   0.4, y axis will be 0.85 

Tr  820

800  820
  0.85  [Yaxis]

Tr  803C

Temperature  at the radius of 5.4 cm is  803C

Extra

(c) Find the total heat flow upto 20 min. per m
length.

To find heat flow, we can use the Grober’s chart (page 71)

  7833, Cp  465

y

x

0.025

/R =6o
2

hR o

k =0.4
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From page No. 71

h R0

k
  

140  0.06
21

  0.4

h2  

k2   
1402  6.11  10 6  20  60

212

 0.3259

xaxis   0.33

Curve  0.4

Y axis  0.5 
from pg 71

So 
Q
Q0

  0.5

where Q0   C  Ro
2 

 Ti  T 



 7833  465  0.062 [20  820]   10.5 MJ

‘-’ Sign indicates heat is flowing from surrounding to
cylinder.

Problem 1.57: Aluminium slab of 100 mm thick initially

at 400C is exposed to a convection environment at 90C with

h  1400 W/m2C. Determine (a) time required for the centre

line temperature to reach 180C (b) Temperature at a depth

of 20 mm from the surface at same time.

Solution

Initial temp Ti  400C

Surface temp. T  90C

h  1400 W/m2C ; t  0.1m

From Pg 1 Properties of Aluminium

  2707kg/m3

k  204.2 W/mC

C  896 J/KgK

Lc  half thickness  
0.1
2

  0.05 m

Bi  
hLc

k
  

1400  0.05
204.2

  0.34

Since Bi  0.1 and Bi  100, it is infinite solid.

From Pg 66

Y axis, 
T0  T

Ti  T
  

180  90
400  90

  0.2903

Curve 
h Lc

k
  0.34, for these parameters,

corresponding Y axis, 
 
L2   4.3

where 

  

 

k
 C

 



  

204.2
2707  896

 

 8.4189   10 5 m2/sec

 

L2   
8.4189   10 5  

0.052

  4.3

  127.687 sec.

y

x

Q

Q o
= 0.5

hRo
k

=0.4

h
2

k
2 =0.33

y

x

hL c

k =0 .34

0.
29

=
T

-T o


T
-T i


=4.3
L

2
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From page No. 71

h R0

k
  

140  0.06
21

  0.4

h2  

k2   
1402  6.11  10 6  20  60

212

 0.3259

xaxis   0.33

Curve  0.4

Y axis  0.5 
from pg 71

So 
Q
Q0

  0.5

where Q0   C  Ro
2 

 Ti  T 



 7833  465  0.062 [20  820]   10.5 MJ

‘-’ Sign indicates heat is flowing from surrounding to
cylinder.

Problem 1.57: Aluminium slab of 100 mm thick initially

at 400C is exposed to a convection environment at 90C with

h  1400 W/m2C. Determine (a) time required for the centre

line temperature to reach 180C (b) Temperature at a depth

of 20 mm from the surface at same time.

Solution

Initial temp Ti  400C

Surface temp. T  90C

h  1400 W/m2C ; t  0.1m

From Pg 1 Properties of Aluminium

  2707kg/m3

k  204.2 W/mC

C  896 J/KgK

Lc  half thickness  
0.1
2

  0.05 m

Bi  
hLc

k
  

1400  0.05
204.2

  0.34

Since Bi  0.1 and Bi  100, it is infinite solid.

From Pg 66

Y axis, 
T0  T

Ti  T
  

180  90
400  90

  0.2903

Curve 
h Lc

k
  0.34, for these parameters,

corresponding Y axis, 
 
L2   4.3

where 

  

 

k
 C

 



  

204.2
2707  896

 

 8.4189   10 5 m2/sec

 

L2   
8.4189   10 5  

0.052

  4.3

  127.687 sec.

y

x

Q

Q o
= 0.5

hRo
k

=0.4

h
2

k
2 =0.33

y

x

hL c

k =0 .34

0.
29

=
T

-T o


T
-T i


=4.3
L

2
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So the time required for the centre line temperature
to reach 180C is 127.687 sec .

Temperature at a depth of 20 mm from surface at
  127.687  sec

From Pg 67

x  20 mm from surface means 30 mm from centre

line. So x  0.03 m 

Curve 
x
L

  
0.03
0.05

  0.6

X-axis, 
hL
k

  0.34. For these two parameters,

corresponding Y-axis 
Tx  T

T0  T
  0.94

Tx  T

T0  T
  0.94  

Tx  90

180  90
  0.94

Tx  90  0.94  90  174.6 C

Problem 1.58: A metallic sphere of 10 mm radius is at

400C initially. It is to be heat treated first by cooling it in

air at 20C h  10 W/m2C until the centre temperature

becomes 335C. It is then quenched in water at 20C

h  6000 W/m2C until the centre temperature falls from

335C to 50C. Determine 1. time required for cooling in air

2. time required for cooling in water 3. Surface temp after
cooling in air 4. Surface temp after cooling in water
Take the properties of sphere as follows.

  3000 Kg/m3; C  1000 J/KgK, k  20 W/mC

Solution

I Process: Air Cooling

hair  10 W/m2C

II process: Water Cooling

h L c

k = 0 .3 4

y

x

x
L

= 0 .60 .94 =
T -Tx 

T -To 

cooling in air

T =400 cinitial
o

T  = 335 co
oT =cen tre

T  =  20 c
    in a ir
 o

cooling in water

T  = 335 co
o

T  =  20 c o

T  = 50 co
oin water
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So the time required for the centre line temperature
to reach 180C is 127.687 sec .

Temperature at a depth of 20 mm from surface at
  127.687  sec

From Pg 67

x  20 mm from surface means 30 mm from centre

line. So x  0.03 m 

Curve 
x
L

  
0.03
0.05

  0.6

X-axis, 
hL
k

  0.34. For these two parameters,

corresponding Y-axis 
Tx  T

T0  T
  0.94

Tx  T

T0  T
  0.94  

Tx  90

180  90
  0.94

Tx  90  0.94  90  174.6 C

Problem 1.58: A metallic sphere of 10 mm radius is at

400C initially. It is to be heat treated first by cooling it in

air at 20C h  10 W/m2C until the centre temperature

becomes 335C. It is then quenched in water at 20C

h  6000 W/m2C until the centre temperature falls from

335C to 50C. Determine 1. time required for cooling in air

2. time required for cooling in water 3. Surface temp after
cooling in air 4. Surface temp after cooling in water
Take the properties of sphere as follows.

  3000 Kg/m3; C  1000 J/KgK, k  20 W/mC

Solution

I Process: Air Cooling

hair  10 W/m2C

II process: Water Cooling

h L c

k = 0 .3 4

y

x

x
L

= 0 .60 .94 =
T -Tx 

T -To 

cooling in air

T =400 cinitial
o

T  = 335 co
oT =cen tre

T  =  20 c
    in a ir
 o

cooling in water

T  = 335 co
o

T  =  20 c o

T  = 50 co
oin water
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T  20C

1. I process : Air Cooling

Lc  
Ro

3
  

10  10 3

3
  3.33  10 3m

Bi  
h Lc

k
  

10  3.33  10 3

20
  0.001655

Since Bi  0.1, it is lumped

Initial temperature T0  400C

Air temperature T  20C

T  335C

From Pg 58 

T  T

T0  T
  e

 



 

h 
 C Lc

 


  


 . . . 

A
V

  
1
Lc

 

 

335  20
400  20

  e
 



  

10  

3000  1000  3.33  103
 




ln 0.8289   1    103 

  187.468 sec

2. II  Process - Water Cooling

Bi  
h Lc

k
  

6000  3.33  10 3

20

 0.999   0.1

Since Bi  0.1, it is infinite solid.

Use Heisler’s Chart

From Pg 72

Ti  initial temperature  335C

T0  Centre temperature  50C

T  20C

h R0

k
  

6000  10  10 3

20
  3

T0  T

Ti  T
  

50  20
335  20

  0.09524 .

For Y axis  0.09524  and Curve  3

The X axis  0.56

So 
 

R0
2

  0.56

y

x

0.09

T  - To 

T  - Ti a
hR o

k
=3

/R o
2
=0 .56
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T  20C

1. I process : Air Cooling

Lc  
Ro

3
  

10  10 3

3
  3.33  10 3m

Bi  
h Lc

k
  

10  3.33  10 3

20
  0.001655

Since Bi  0.1, it is lumped

Initial temperature T0  400C

Air temperature T  20C

T  335C

From Pg 58 

T  T

T0  T
  e

 



 

h 
 C Lc

 


  


 . . . 

A
V

  
1
Lc

 

 

335  20
400  20

  e
 



  

10  

3000  1000  3.33  103
 




ln 0.8289   1    103 

  187.468 sec

2. II  Process - Water Cooling

Bi  
h Lc

k
  

6000  3.33  10 3

20

 0.999   0.1

Since Bi  0.1, it is infinite solid.

Use Heisler’s Chart

From Pg 72

Ti  initial temperature  335C

T0  Centre temperature  50C

T  20C

h R0

k
  

6000  10  10 3

20
  3

T0  T

Ti  T
  

50  20
335  20

  0.09524 .

For Y axis  0.09524  and Curve  3

The X axis  0.56

So 
 

R0
2

  0.56

y

x

0.09

T  - To 

T  - Ti a
hR o

k
=3

/R o
2
=0 .56
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  
0.56  R0

2



     
0.56   10  10 3 

2



  
k
C

  
20

3000  1000
  6.67  10 6

  
0.56  0.01 2

6.67  10 6
  8.4sec

3. Surface temperature is also 335C, since in
Lumped system, the temperature at all surfaces are
equal.

4. Surface temperature after cooling in water.

From Pg 73

r
R0

  
0.01
0.01

  1       

 Since r  R0 at the surface 



h R0

k
  

6000  0.01
20

  3

For Curve    1 and Xaxis   3

Y axis 0.34

Tr  T

T0  T
  0.34

Tr  20

50  20
  0.34

Tr  0.34  30  20  30.2C

Surface temperature after cooling in water  30.2C

y

x

0.34

T -Tr 

T -To 

hR o

k =3

1

r
R o

=1
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  
0.56  R0

2



     
0.56   10  10 3 

2



  
k
C

  
20

3000  1000
  6.67  10 6

  
0.56  0.01 2

6.67  10 6
  8.4sec

3. Surface temperature is also 335C, since in
Lumped system, the temperature at all surfaces are
equal.

4. Surface temperature after cooling in water.

From Pg 73

r
R0

  
0.01
0.01

  1       

 Since r  R0 at the surface 



h R0

k
  

6000  0.01
20

  3

For Curve    1 and Xaxis   3

Y axis 0.34

Tr  T

T0  T
  0.34

Tr  20

50  20
  0.34

Tr  0.34  30  20  30.2C

Surface temperature after cooling in water  30.2C

y

x

0.34

T -Tr 

T -To 

hR o

k =3

1

r
R o

=1
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1.42 SEMI-INFINITE SOLIDS 

     (Refer HMT DB Page 59 to 63)

Lumped, To  initial temperature (Page 58)

Infinite, To  centre temperature (Page 64)

Semi-infinite, To  surface temperature (Page 59)

Bi  
hLc

k
   [ or h   ]

Tx  To

Ti  To
  erf z  erf  error function  Page59 

z  constant  
x

2 

x  depth

  Thermal  diffusivity

  time

qx  heat flux at location x at time 

from Pg No. 59

qx  



 
k T0  Ti

  
 exp [ z2] 





qx  
W

mC
  

C

m2

sec
  sec

  
W/m

m
  

W

m2

from Pg No. 59 

qo  



 
K T0  Ti

  
 




qo  heat flux at surface

from Pg No. 59 

qt  Total heat flow into solid upto time  per unit area

 2kTo  Ti 


 
W

m  C
  sec sec

m2/sec

 
W
m

  
sec
m

  W sec/m2  J/m2.

Problem 1.59: A large plane wall k  0.8 W/mC

  0.003 m2/hr initially at 25C. Its surface temperature
is changed to 800C and maintained constant thereafter.
Determine temperature at a depth of 200 mm after 10 hrs,
instantaneous heat flux at that depth and total heat flow

upto 10 hrs/m2 area.

Solution

Since ‘h’ is not given, h  

 Bi  
hLc

k
  

So, it is semi-infinite solids.

  0.003  
m2

hr
  

0.003
3600

 
m2

sec
  8.33  10 7 m2/sec

k  0.8 
W

mC

Ti  initial  temp.   25C
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1.42 SEMI-INFINITE SOLIDS 

     (Refer HMT DB Page 59 to 63)

Lumped, To  initial temperature (Page 58)

Infinite, To  centre temperature (Page 64)

Semi-infinite, To  surface temperature (Page 59)

Bi  
hLc

k
   [ or h   ]

Tx  To

Ti  To
  erf z  erf  error function  Page59 

z  constant  
x

2 

x  depth

  Thermal  diffusivity

  time

qx  heat flux at location x at time 

from Pg No. 59

qx  



 
k T0  Ti

  
 exp [ z2] 





qx  
W

mC
  

C

m2

sec
  sec

  
W/m

m
  

W

m2

from Pg No. 59 

qo  



 
K T0  Ti

  
 




qo  heat flux at surface

from Pg No. 59 

qt  Total heat flow into solid upto time  per unit area

 2kTo  Ti 


 
W

m  C
  sec sec

m2/sec

 
W
m

  
sec
m

  W sec/m2  J/m2.

Problem 1.59: A large plane wall k  0.8 W/mC

  0.003 m2/hr initially at 25C. Its surface temperature
is changed to 800C and maintained constant thereafter.
Determine temperature at a depth of 200 mm after 10 hrs,
instantaneous heat flux at that depth and total heat flow

upto 10 hrs/m2 area.

Solution

Since ‘h’ is not given, h  

 Bi  
hLc

k
  

So, it is semi-infinite solids.

  0.003  
m2

hr
  

0.003
3600

 
m2

sec
  8.33  10 7 m2/sec

k  0.8 
W

mC

Ti  initial  temp.   25C
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To  800C  surface temp.

  36000  sec

x  depth  0.2 m

z  
x

2 
  

0.2

2 8.33  10 7  36000

 0.5774.

from Pg No. 60 corresponding to z

erf z  0.58792

from Pg No. 59

Tx  To

Ti  To
  erf z

Tx  800

25  800
  0.58792

Tx  344.362C

(b) qx  instantaneous heat flux flow at 200 mm

from Pg No. 59 

qx  
kTo  Ti

  
 exp [  z2 ]

 
0.8800  25

   8.333  10 7  36000
 exp [  0.57742 ]

 2019.961   0.71649

 1447.282  W/m2

qt  Total heat flow for 10 hrs/m2 unit area

from Pg No. 59 

qt  2kTo  Ti 
 

 2  0.8800  25 36000

  8.333   10 7

qt  145.411   106 J/m2.

Problem 1.60: A large concrete highway initially at 55C,
suddenly cooled by rain water such that the surface
temperature is lowered to 35C at night time and constant
thereafter. Determine (a) time required to reach 45C at a

depth of 50 mm. (b) instantaneous heat transfer rate/m2 at

45C. (c) total heat flow/m2 upto this time.

Solution

Since ‘h’ is not given, so, h  

 Bi   So, semi-infinite

k  1.299  W  mK

  1.77  10 3 m2/hr

Ti  initial temp. 55C

To  35C surface  temp.

z  
x

2  
  

50  10 3

2 1.77  10 3

3600
  t

when Tx  45C

Tx  To

Ti  To
  erf z
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To  800C  surface temp.

  36000  sec

x  depth  0.2 m

z  
x

2 
  

0.2

2 8.33  10 7  36000

 0.5774.

from Pg No. 60 corresponding to z

erf z  0.58792

from Pg No. 59

Tx  To

Ti  To
  erf z

Tx  800

25  800
  0.58792

Tx  344.362C

(b) qx  instantaneous heat flux flow at 200 mm

from Pg No. 59 

qx  
kTo  Ti

  
 exp [  z2 ]

 
0.8800  25

   8.333  10 7  36000
 exp [  0.57742 ]

 2019.961   0.71649

 1447.282  W/m2

qt  Total heat flow for 10 hrs/m2 unit area

from Pg No. 59 

qt  2kTo  Ti 
 

 2  0.8800  25 36000

  8.333   10 7

qt  145.411   106 J/m2.

Problem 1.60: A large concrete highway initially at 55C,
suddenly cooled by rain water such that the surface
temperature is lowered to 35C at night time and constant
thereafter. Determine (a) time required to reach 45C at a

depth of 50 mm. (b) instantaneous heat transfer rate/m2 at

45C. (c) total heat flow/m2 upto this time.

Solution

Since ‘h’ is not given, so, h  

 Bi   So, semi-infinite

k  1.299  W  mK

  1.77  10 3 m2/hr

Ti  initial temp. 55C

To  35C surface  temp.

z  
x

2  
  

50  10 3

2 1.77  10 3

3600
  t

when Tx  45C

Tx  To

Ti  To
  erf z
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45  35
55  35

  erf z

erfz  0.5

z erfz

0.48 0.50275 from page 60 of CPK

0.48  
50  10 3

2
 1.77  10 3

3600
  

0.2304   
2.5  10 3

4  1.77  10 3

3600
  

  5517.3022 sec.

qx  instantaneous heat flux at location

from Pg No. 59

qx 
kTo  Ti

 
 exp z2

 
1.299 35  55

  
1.77  10 3

3600
  5517.3

 exp  0.482

qx   223.515 W/m2

from Pg. No. 59 

qt  Total heat flow upto /unit area

 2kTo  Ti 


 2  1.299 20 5517.30

  
1.77  10 3

3600

qt   3.077   106 J/m2

 indicates heat is coming out.

Problem 1.61: A large wall 2 cm thick has uniform
temperature 30C. If the walls are suddenly raised to and
maintained at 400C. Find (i) the temperature at a depth of
0.8 cm from the surface of wall after 10 sec (ii) instantaneous

heat flow rate through that surface /m2 hour. (Apr.97,
Madras University)

Solution:

  0.008 m2   hr

k  6 W  mC

x  0.008 m

Since ‘h’ is not given, h  

Bi  

 Semi-infinite solids.

Ti  initial temp.  30C

To  surface temp.  400C

z  
x

2
  

0.008

20.008
3600

  10

  0.848528

erf z  0.77067  Take from page 60
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45  35
55  35

  erf z

erfz  0.5

z erfz

0.48 0.50275 from page 60 of CPK

0.48  
50  10 3

2
 1.77  10 3

3600
  

0.2304   
2.5  10 3

4  1.77  10 3

3600
  

  5517.3022 sec.

qx  instantaneous heat flux at location

from Pg No. 59

qx 
kTo  Ti

 
 exp z2

 
1.299 35  55

  
1.77  10 3

3600
  5517.3

 exp  0.482

qx   223.515 W/m2

from Pg. No. 59 

qt  Total heat flow upto /unit area

 2kTo  Ti 


 2  1.299 20 5517.30

  
1.77  10 3

3600

qt   3.077   106 J/m2

 indicates heat is coming out.

Problem 1.61: A large wall 2 cm thick has uniform
temperature 30C. If the walls are suddenly raised to and
maintained at 400C. Find (i) the temperature at a depth of
0.8 cm from the surface of wall after 10 sec (ii) instantaneous

heat flow rate through that surface /m2 hour. (Apr.97,
Madras University)

Solution:

  0.008 m2   hr

k  6 W  mC

x  0.008 m

Since ‘h’ is not given, h  

Bi  

 Semi-infinite solids.

Ti  initial temp.  30C

To  surface temp.  400C

z  
x

2
  

0.008

20.008
3600

  10

  0.848528

erf z  0.77067  Take from page 60
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from Pg. No. 59

Tx  To

Ti  To
  erf z

Tx  400

30  400
  0.77067

from Pg No. 59

Tx  114.852 C.

qx  
kTo  T1

  exp [  z2 ]

 
6400  30

  
0.008
3600

  10
 exp [  0.84852 ]

qx  129334.08  W/m2.

1.43 DERIVATION FOR MAXIMUM HEAT TRANSFER

CONDITION

 qx  
kTo  Ti


 exp 




  

x2

4
 



 [Here   time  t]

qx and   are variables     To get qmax 
dq
d

  0 or 
dq
dt

  0

qx  
kTo  Ti


  12 exp 




  

x2

4
 




dqx

dt
  

kTo  Ti


 



  

1
2

 t 32exp 



  

x2

4t
 




        
 
  t 12exp 




  

x2

4t
 



 



  

x2

4
  

 1

t2  



 



  0

 
kTo  Ti


 



  

1
2

 t 32exp 



  

x2

4t
 



  t 12exp 




  

x2

4t
 



 

x2

4t2 



  0

  
1
2

 t 32exp 



  

x2

4t
 



  t 12exp 




  

x2

4t
 



 

x2

4t2  0

1
2

 t 32exp 



 
 x2

4t
 



  t 12exp 




 
 x2

4t
 



 

x2

4t2

t 32  12  2  
2x2

4

 t  
x2

2

ie   
x2

2

This is the condition for maximum heat transfer.

Problem 1.62: A large metal mass   0.405 m2/hr
initially at 100C is suddenly brought to 0C, at its surface

and maintained constant. Determine (i) the depth at which
cooling rate is maximum after 1 minute (b) time required

for temperature gradient at surface to reach 4C/cm.

Solution:

‘h’ is not given, h  

 Bi  
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from Pg. No. 59

Tx  To

Ti  To
  erf z

Tx  400

30  400
  0.77067

from Pg No. 59

Tx  114.852 C.

qx  
kTo  T1

  exp [  z2 ]

 
6400  30

  
0.008
3600

  10
 exp [  0.84852 ]

qx  129334.08  W/m2.

1.43 DERIVATION FOR MAXIMUM HEAT TRANSFER

CONDITION

 qx  
kTo  Ti


 exp 




  

x2

4
 



 [Here   time  t]

qx and   are variables     To get qmax 
dq
d

  0 or 
dq
dt

  0

qx  
kTo  Ti


  12 exp 




  

x2

4
 




dqx

dt
  

kTo  Ti


 



  

1
2

 t 32exp 



  

x2

4t
 




        
 
  t 12exp 




  

x2

4t
 



 



  

x2

4
  

 1

t2  



 



  0

 
kTo  Ti


 



  

1
2

 t 32exp 



  

x2

4t
 



  t 12exp 




  

x2

4t
 



 

x2

4t2 



  0

  
1
2

 t 32exp 



  

x2

4t
 



  t 12exp 




  

x2

4t
 



 

x2

4t2  0

1
2

 t 32exp 



 
 x2

4t
 



  t 12exp 




 
 x2

4t
 



 

x2

4t2

t 32  12  2  
2x2

4

 t  
x2

2

ie   
x2

2

This is the condition for maximum heat transfer.

Problem 1.62: A large metal mass   0.405 m2/hr
initially at 100C is suddenly brought to 0C, at its surface

and maintained constant. Determine (i) the depth at which
cooling rate is maximum after 1 minute (b) time required

for temperature gradient at surface to reach 4C/cm.

Solution:

‘h’ is not given, h  

 Bi  
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So, it is semi-infinite solid.

Ti  100C; T0  0C

  1 minute   60 second

 condition for qmax  t  
x2

2

x2  2t

x2  2 



 
0.405
3600

 



  60

x  0.1161895  m

 116.189 mm

At this depth, cooling is maximum.

(b) Temperature gradient  



 
T
x

 


surface

  
4C
cm

  
4C

10 2 m




 
T
x

 


o

  400C/m

   Q   kA 
T
x




 
T
x

 


o

  
qo

k
  400C/m

400  
To  Ti



400  
 100

  
0.405
3600

  
 

 0.25   3.53  10 4  

  176.8388  sec

Time required for surface gradient to reach
4C/cm is 176.83 sec.

Problem 1.63: A semi infinite plate of cu initially at

30C is exposed to a constant heat flux of 300 KW/m2 at its

surface. Determine surface temperature after 10 minutes and
temperature at a depth of 200 mm after this time.

Solution:

Ti  initial temp.  30C

qo  300  103 W/m2

  600 sec

To  surface temperature  ?

from Pg.No. 59 

qo  
kTo  T1



From Page 2 For Cu 

  0.404  m2/hr  1.122  10 4m2/sec

k  386 W/mk

300  103  
386To  30

  1.122   10 4  600

To  387.45611 C.
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So, it is semi-infinite solid.

Ti  100C; T0  0C

  1 minute   60 second

 condition for qmax  t  
x2

2

x2  2t

x2  2 



 
0.405
3600

 



  60

x  0.1161895  m

 116.189 mm

At this depth, cooling is maximum.

(b) Temperature gradient  



 
T
x

 


surface

  
4C
cm

  
4C

10 2 m




 
T
x

 


o

  400C/m

   Q   kA 
T
x




 
T
x

 


o

  
qo

k
  400C/m

400  
To  Ti



400  
 100

  
0.405
3600

  
 

 0.25   3.53  10 4  

  176.8388  sec

Time required for surface gradient to reach
4C/cm is 176.83 sec.

Problem 1.63: A semi infinite plate of cu initially at

30C is exposed to a constant heat flux of 300 KW/m2 at its

surface. Determine surface temperature after 10 minutes and
temperature at a depth of 200 mm after this time.

Solution:

Ti  initial temp.  30C

qo  300  103 W/m2

  600 sec

To  surface temperature  ?

from Pg.No. 59 

qo  
kTo  T1



From Page 2 For Cu 

  0.404  m2/hr  1.122  10 4m2/sec

k  386 W/mk

300  103  
386To  30

  1.122   10 4  600

To  387.45611 C.
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(b) x  0.2 m

from Pg.No. 59

qx  
kTo  Ti

  
 exp 




  

x2

4t
 




z  
x

2
  

0.2

21.122   10 4  600
  0.3854

Tx  Ti  
2q0

k
 



 



 




12

exp  z2  
qox

k
 [ 1  erfz ]

 
2  300  103

386
 



 
1.122   10 4  600


 




0.5

 exp  0.3854 2

      
300  103  0.2

386
 [ 1  0.41874  ]

 196.1344   90.351

 105.783

Tx  105.783   30  135.783 C.

Problem 1.64: A large slab of aluminium initially at

250C suddenly exposed to a convection environment at

50C with h  500 W/m2C. Determine temperature at a

depth of 50 mm after 1 hour,

k  215 W/mC      8.4  10 5 m2/sec.

Solution

L  half thickness not given, L  

 Bi  
hL
k

  . So it is semi-infinite solid.

Ti  250C x  50 mm

T  surface/fluid temperature  50C ; t  3600 sec

h  500 W/m2C
k  215 W/mC

  8.4  10 5 m2/sec

z  
x

2

 
0.05

2 8.4  10 5  3600

 0.04546206
z  0.0454  ;   erfz  0.05637 page60

Refer Page 59, third row for formula:

Tx  Ti

T  Ti
  [ 1  erf z ]  




 exp 




 
hx
k

  
h2

k2  



 




                          



 1  erf 




 z  

h
k

 



 




 [ 1  0.05637  ]  



 exp 




 
500  0.05

215
  

5002  8.4  10 5  3600

2152  



 



 

       



 1  erf 




 0.04546   

500 8.4  105  3600
215

 



 




 0.94363   5.7647   [ 1  erf 1.3243   

 0.94363  5.7647  1  0.93806 

Tx  Ti

T  Ti
  0.58656

Tx  250

50  250
  0.58656

Tx  132.688  C
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(b) x  0.2 m

from Pg.No. 59

qx  
kTo  Ti

  
 exp 




  

x2

4t
 




z  
x

2
  

0.2

21.122   10 4  600
  0.3854

Tx  Ti  
2q0

k
 



 



 




12

exp  z2  
qox

k
 [ 1  erfz ]

 
2  300  103

386
 



 
1.122   10 4  600


 




0.5

 exp  0.3854 2

      
300  103  0.2

386
 [ 1  0.41874  ]

 196.1344   90.351

 105.783

Tx  105.783   30  135.783 C.

Problem 1.64: A large slab of aluminium initially at

250C suddenly exposed to a convection environment at

50C with h  500 W/m2C. Determine temperature at a

depth of 50 mm after 1 hour,

k  215 W/mC      8.4  10 5 m2/sec.

Solution

L  half thickness not given, L  

 Bi  
hL
k

  . So it is semi-infinite solid.

Ti  250C x  50 mm

T  surface/fluid temperature  50C ; t  3600 sec

h  500 W/m2C
k  215 W/mC

  8.4  10 5 m2/sec

z  
x

2

 
0.05

2 8.4  10 5  3600

 0.04546206
z  0.0454  ;   erfz  0.05637 page60

Refer Page 59, third row for formula:

Tx  Ti

T  Ti
  [ 1  erf z ]  




 exp 




 
hx
k

  
h2

k2  



 




                          



 1  erf 




 z  

h
k

 



 




 [ 1  0.05637  ]  



 exp 




 
500  0.05

215
  

5002  8.4  10 5  3600

2152  



 



 

       



 1  erf 




 0.04546   

500 8.4  105  3600
215

 



 




 0.94363   5.7647   [ 1  erf 1.3243   

 0.94363  5.7647  1  0.93806 

Tx  Ti

T  Ti
  0.58656

Tx  250

50  250
  0.58656

Tx  132.688  C
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Problem 1.65: A thick concrete wall   7  10 7 m2/sec,
 k  1.37 W/mC is initially at 340C suddenly exposed to

a convection environment at 40C with h  100 W/m2C.
Determine temperature at a depth of 100 mm after one hour.

Note IV: erf 3.6  1

Z  3.6, erf Z  1

Case III

Ti  340C k  1.37 W/mC

T  40C   7  10 7m2/sec

h  100 W/m2C x  0.1 m

  3600 sec

z  
x

2
  

0.1

27  10 7  3600

 0.99602

erf z  0.8427 .

Refer page 59, 3rd row for formula

Constant  1  1  erf z  0.1573

Constant  3  1  erf 



 z  

h
k

 




 1  erf 



 0.99602  

1007  10 7  3600

1.37
 




 1  erf 4.66   1  1

 0.

 Constant  2  exp 



 
hx
k

  
h2

k2  




 exp 



 
100  0.1

1.37
  

1002  7  10 7  3600

1.372  




 1.

Tx  Ti

T  Ti
  Constant 1  constant 2  constant3

  0.1573   1  0  0.1573

Tx  340

40  340
  0.1573

Tx  292.81 C.

1.44 TWO DIMENSIONAL CONDUCTION CONDUCTION

SHAPE FACTOR

M  no. of temperature intervals

N  no. of heat transfer tubes

Q  heat transfer through one tube

T  temperature difference between intervals

t  thickness  1

T1  T2  MT  ... (a)

Q  QN  ... (b)

Q  kA 
T

SEPARATION
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Problem 1.65: A thick concrete wall   7  10 7 m2/sec,
 k  1.37 W/mC is initially at 340C suddenly exposed to

a convection environment at 40C with h  100 W/m2C.
Determine temperature at a depth of 100 mm after one hour.

Note IV: erf 3.6  1

Z  3.6, erf Z  1

Case III

Ti  340C k  1.37 W/mC

T  40C   7  10 7m2/sec

h  100 W/m2C x  0.1 m

  3600 sec

z  
x

2
  

0.1

27  10 7  3600

 0.99602

erf z  0.8427 .

Refer page 59, 3rd row for formula

Constant  1  1  erf z  0.1573

Constant  3  1  erf 



 z  

h
k

 




 1  erf 



 0.99602  

1007  10 7  3600

1.37
 




 1  erf 4.66   1  1

 0.

 Constant  2  exp 



 
hx
k

  
h2

k2  




 exp 



 
100  0.1

1.37
  

1002  7  10 7  3600

1.372  




 1.

Tx  Ti

T  Ti
  Constant 1  constant 2  constant3

  0.1573   1  0  0.1573

Tx  340

40  340
  0.1573

Tx  292.81 C.

1.44 TWO DIMENSIONAL CONDUCTION CONDUCTION

SHAPE FACTOR

M  no. of temperature intervals

N  no. of heat transfer tubes

Q  heat transfer through one tube

T  temperature difference between intervals

t  thickness  1

T1  T2  MT  ... (a)

Q  QN  ... (b)

Q  kA 
T

SEPARATION
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where Q  Heat transfer through one tube

   
ktx T

y

Here  x is approximately equal to y curvilinear

So Q  ktT

Substitute T from equation (a)

Q  
ktT1  T2

M

Q  N  
NktT1  T2

M
  Q      [Refer equation b]

so Q  ktT1  T2 
N
M

   

           



 where t  

N
M

  shape factor   S in meters 




Q  kST1  T2

S  shape factor
Conduction shape factor is defined as (thickness 

no. of tubes)/No. of temperature interceals.

Refer Page 53 of CPK.
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
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


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


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S  

2L

ln 



 
r2

r1
 




Parallel Cylinder
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
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
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where Q  Heat transfer through one tube

   
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y
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Vertical Hole
S  

2L

ln 



 
2L


 




Problem 1.66: A pipe of 500 mm OD is buried in earth at
a depth of 1.5 m. The surface temperature of cylinder is

85C. Soil temperature is 20C. ksoil  0.52 W/mC.

Determine heat loss.

Solution:

D  1.5 m; r  250 mm

3r  0.75 m; So, D  3r

(Refer Page 45) L  1 m

S  
2L

ln 



 
2D
r

 




 
2  1

ln 



 
2  1.5
0.25

 




  2.52854  m

k  0.52 W/mC

Q  kS T1  T2

 0.52  2.5285 85  20

Q  85.4633 W.

Problem 1.67: A pipe of 500 mm OD is buried in earth at
a depth of 4.5 m. The surface temperature of cylinder is

85C. Soil temperature is 20C. ksoil  0.52 W/mC.

Determine heat loss.

Solution:

D  4.5 m

r  0.25 m

3r  0.75 m

D
3r

  
4.5

0.75
  6  4

S  
2L

ln 



 
L
r

 



 










 

ln 



 

L
2D

 




1  ln 



 
L
r

 




 











 
2  1

ln 



 

1
0.25

 



 












 

ln 



 

1
2  4.5

 




1  ln 



 

1
0.25

 




 













 
6.28

1.3863  
 2.19722
 0.38629

  0.7964

S  0.7964 m.

Q  kS T1  T2

 0.52  0.796485  20

Q  26.91832  W.

L

2r

D=1.5

Buried pipe

D=4.5

Buried pipe
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Problem 1.68: A sphere of 1.5 m diameter is buried in soil
such that its upper surface is 5.25 m below the earth surface.

The sphere generates 600 W of heat. ksoil  0.52 W/mC.

Determine surface temperature of sphere, if soil temperature

is 5C.

Solution:

 S  
4r

1  



 

r
2D

 




 
4  0.75

1  



 
0.75
2  6

 




  10.053  m

 Q  kST1  T2

600  0.52  10.053T1  5

T1  119.775 C

Problem 1.69: A hollow cube, 500 mm is wide made up of

50 mm thick asbestos k  0.192 W/mC. The inner surface

is at 150C and outer surface is at 50C. Determine the heat

loss from the cube.

Solution:

6 surfaces

12 edges

8 corners

Refer Page 45 of CPK.

Ssurface  
Area
width

      
0.5  0.5

0.05
  5 m

Sedge  0.54  D  0.54  0.5

 0.27 m

Scorners  0.15  width

 0.15  0.05  7.5  10 3 m

S  6  5  12  0.27  8  7.5  10 3

 33.3 m

Q  kST1  T2

 0.192   33.3150  50

 639.36  W.

Problem 1.70: A furnace of 4 m  3 m  2 m is having a

thickness of 200 mm. It is made up of material with

k  1.6 W/mC. Determine (a) heat loss from it if its inner

surface is at 220C and its outer surface temperature is

100C.

Surfaces

2 4  3  Top and Bottom area

2 3  2  Left and Right area

2 2  4  Front and Rear area

Ssurface  
Area

width or thickness

 
2

0.2
 [4  3  3  2  2  4]  260 m

D

Buried sphere

5.25

r1

50m m

50
0

500

500
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Problem 1.68: A sphere of 1.5 m diameter is buried in soil
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Determine surface temperature of sphere, if soil temperature

is 5C.

Solution:

 S  
4r

1  



 

r
2D

 




 
4  0.75

1  



 
0.75
2  6

 




  10.053  m

 Q  kST1  T2

600  0.52  10.053T1  5

T1  119.775 C

Problem 1.69: A hollow cube, 500 mm is wide made up of
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12 edges

8 corners

Refer Page 45 of CPK.
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 639.36  W.

Problem 1.70: A furnace of 4 m  3 m  2 m is having a

thickness of 200 mm. It is made up of material with

k  1.6 W/mC. Determine (a) heat loss from it if its inner

surface is at 220C and its outer surface temperature is

100C.
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width or thickness

 
2

0.2
 [4  3  3  2  2  4]  260 m

D

Buried sphere

5.25

r1

50m m

50
0

500

500

Heat and Mass Transfer1.202 Conduction 1.203

Downloaded from Ktunotes.in

http://ktunotes.in/


Edges

Front and Rear  4  4

Left and Right  4  3

Vertical  4  2

 Sedges  0.54  depth

 0.54 [4  4 4  3  4  2]

 19.44  m

Scorner  0.15thickness  8

 0.15  8  0.2  0.24 m

Q  kST1  T2  1.6  260  19.44   0.24  200  100

          53698 W.

Problem 1.71: One pipe of 50 cm diameter carrying steam

at 160C and another pipe 25 cm in diameter carrying water

at 15C are buried at a depth with the centres at 1 m.

Assuming the ground as infinite medium and pipes run
parallel to each other. Find the net heat transfer between the

pipe/hour. Length of each pipe  50 m. ksoil  0.4 W/m K.
Neglect the resistance of pipe materials. If the velocity of
water is limited to 1 m/min. Find out the rise in temperature
of water due to the above heat transfer. (April 97, Madras
University)

Solution:

L  50 m; r1  25 cm; r2  12.5 cm

S  
2L

cosh 1 



 
D2  r1

2  r2
2

2r1r2
 




S  
2  50

cosh 1 



 
12  0.252  0.125 2

2  0.25  0.125
 




 92.857 m

Q  kS T1  T2

 0.4  92.857 160  15

200mm
2

3

4

Paralle l tubesr1

r2

D  =1 m

Heat and Mass Transfer1.204 Conduction 1.205 - www.airwalkpublications.com

Downloaded from Ktunotes.in

http://ktunotes.in/


Edges

Front and Rear  4  4

Left and Right  4  3

Vertical  4  2
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     5385.706  W

 5385.706   3600

Q  19388653.92  J/hr

Velocity   1 m/min  
1

60
 m/sec

mass rate of flow of water m


  AV

 r2
2 V

  1000    0.125 2  
1

60
  0.818123  kg/sec

Cpwater  4186 J/kg K

Q  m


 CpwTw

5385.7   0.818123  4186  T

T  1.5726C.

Problem 1.72: Two tubes of 600 mm diameter 200 mm
diameter are placed parallel to each other with a distance
of 1 m between their centres. Their respective temperature

are 150C, and 10C. Length of each cylinder is 50 m.

ksoil  0.35 W/mC. Water at a velocity of 1 m/min is

flowing through the 200 mm diameter pipe.  Determine heat
transfer rate and temperature rise of water.

Solution

r1  300 mm;  r2  100 mm

S  
2L

cosh 1 



 
D2  r1

2  r2
2

2r1r2
 




 
2  50

cosh 1 



 
12  0.32  0.12

2  0.3  0.1
 




  92.397 m

Q  kS T1  T2

 0.35  92.397 140

 4527.477 W

A2  r2
2    0.12  0.031416  m2

1 m/min  
1

60
 m/sec

m


  A2V2

 1000  0.031416   
1

60

 0.5235  kg/sec

Parallel pipes

r1

r2

D  =1 m

L = 50m
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Problem 1.72: Two tubes of 600 mm diameter 200 mm
diameter are placed parallel to each other with a distance
of 1 m between their centres. Their respective temperature

are 150C, and 10C. Length of each cylinder is 50 m.

ksoil  0.35 W/mC. Water at a velocity of 1 m/min is

flowing through the 200 mm diameter pipe.  Determine heat
transfer rate and temperature rise of water.
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1
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1
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L = 50m
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  Q  mCpw Tw

4527.277   0.5235  4186  Tw

Tw  2.0655 C.

Q  4527.477 W

Tw  2.0656 C.

Problem 1.73: A furnace of 3 m  2.5 m  2 m having a
thickness of 200 mm with k  1.3 W/mC. Determine heat
loss, if the surface temperature are 250C, and50C.

Solution

Ssurface  
Area

Width or thickness

 
2

0.2
 [ 3  2.5  2.5  2  2  3 ]

 185 m

Sedges  0.54  depth

 0.5  3  3  2.5  3  2  3

 12.15  m

 Scorner  0.15thickness  8

 0.15  8  0.2  0.24 m

Q  kST1  T2

 1.3  185  12.15   0.24  200  51321.4  W.

200mm

2

2.5

3
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